
Chapter 9
Case Study II: Tuning of Gradient
Boosting (xgboost)

Thomas Bartz-Beielstein, Sowmya Chandrasekaran, and Frederik Rehbach

Abstract This case study gives a hands-on description of Hyperparameter Tuning
(HPT) methods discussed in this book. The Extreme Gradient Boosting (XGBoost)
method and its implementation xgboost was chosen, because it is one of the most
powerful methods in many Machine Learning (ML) tasks, especially when standard
tabular data should be analyzed. This case study follows the same HPT pipeline
as the first and third studies: after the data set is provided and pre-processed, the
experimental design is set up. Next, the HPT experiments are performed. The R
package SPOT is used as a “datascope” to analyze the results from the HPT runs
from several perspectives: in addition toClassification andRegressionTrees (CART),
the analysis combines results from the surface, sensitivity, and parallel plots with a
classical regression analysis. Severity is used to discuss the practical relevance of
the results from an error-statistical point-of-view. The well-proven R package mlr is
used as a uniform interface from the methods of the packages SPOT and SPOTMisc
to theMLmethods. The corresponding source code is explained in a comprehensible
manner.

9.1 Introduction

This chapter considers the XGBoost algorithm which was detailed in Sect. 3.6.
How to find suitable parameter values and bounds, and how to perform experiments
w.r.t. the following nine XGBoost hyperparameters will be discussed: nrounds,

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-981-19-5170-1_9.

T. Bartz-Beielstein (B) · S. Chandrasekaran · F. Rehbach
Institute for Data Science, Engineering and Analytics, TH Köln, Cologne, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

S. Chandrasekaran
e-mail: sowmya.chandrasekaran@th-koeln.de

F. Rehbach
e-mail: frederik.rehbach@th-koeln.de

© The Author(s) 2023
E. Bartz et al. (eds.), Hyperparameter Tuning for Machine and Deep Learning with R,
https://doi.org/10.1007/978-981-19-5170-1_9

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5170-1_9&domain=pdf
http://dx.doi.org/10.1007/978-981-19-5170-1_3
https://doi.org/10.1007/978-981-19-5170-1_9
mailto:thomas.bartz-beielstein@th-koeln.de
mailto:sowmya.chandrasekaran@th-koeln.de
mailto:frederik.rehbach@th-koeln.de
https://doi.org/10.1007/978-981-19-5170-1_9

222 T. Bartz-Beielstein et al.

eta, lambda, alpha, subsample, colsample, gamma, maxdepthx, and
minchild.

9.2 Data Description

The first step is identical to the step in the ranger example in Chap. 8, because the
Census-Income (KDD) Data Set (CID) will be used.1 So, the function
getDataCensus is called with the parameters from Table 8.3 to get the CID data
from Table 8.2. The complete data set, (X,Y) contains n = 299, 285 observations
with 41 features on demography and employment.

9.3 getMlConfig: Experimental Setup
and Configuration of the Gradient Boosting Model

Again, a subset with n = 1e4 samples that defines the subset (X,Y) ∈ (X,Y) is pro-
vided. The project setup is also similar to the setup described in Sect. 8.1. Therefore,
only the differences will be shown. The full script is available in Sect. 9.10.

The function getMlConfig is called with the same arguments as in Chap. 8,
with one exception: model is set to "xgboost". The function getMlConfig
defines the ML task, the model configuration, and the data split (generation of the
training and test data sets, i.e., (X,Y)(train)and (X,Y)(test).) To achieve this goal, the
functions getMlTask, getModelConf, and getMlrResample are executed.
As a result, the list cfg with 13 elements is available, see Table9.1.

model <- "xgboost"
cfg <- getMlConfig(
target = target,
model = model,
data = dfCensus,
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
prop = 2 / 3

)

1 The data from CID is historical. It includes wording or categories regarding people which do not
represent or reflect any views of the authors and editors.

http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8

9 Case Study II: Tuning of Gradient Boosting (xgboost) 223

Table 9.1 Result from the function getMlConfig: the cfg list

Parameter Type Value

learner chr "classif.xgboost"

tunepars chr [1:9] "nrounds" "eta" "lambda" "alpha" ..., see Table9.2

defaults num [1,
1:9]

0 -1.74 0 -10 1 ...

lower num [1:9] 0 -10 -10 -10 0.1 ...

upper num [1:9] 11 0 10 10 1 1 10 15 7

type chr [1:9] "numeric" "numeric" "numeric" "numeric" ...

fixpars list eval_metric: chr "logloss" and number of threads

factorlevels list()

transformations: List of 9 Transformation functions, see Table9.2

dummy logi TRUE

relpars list() Empty list (no parameters are relative to each other)

task List of 6 mlr task object

resample List of 5 Resample information

9.3.1 getMlrTask: Problem Design and Definition
of the Machine Learning Task

The problem design describes the target and task type, the number of observations,
as well as the number of factorial, numerical, and cardinal variables. It was described
in Sect. 8.3.2.1.

9.3.2 getModelConf Algorithm
Design—Hyperparameters of the Models

The function getModelConf, which is called from getMlConf, computes an
adequate XGBoost hyperparameter setting. Examples from literature shown in
Table 3.6 in Sect. 3.6 will be used as a guideline. These values were modified as
follows:

nrounds: An upper value (25), which is similar to the Random For-
est (RF) configuration, was chosen. This value is smaller
than the value used by Probst et al. (2019a), who used
5000.

colsample_bytree: The lower value was chosen as 1/getTaskNFeats
(task). This is aminor deviation from the settings used
in Probst et al. (2019a). The reason for this modification

http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_3
http://dx.doi.org/10.1007/978-981-19-5170-1_3

224 T. Bartz-Beielstein et al.

Table 9.2 XGBoost hyperparameter. NFeats denotes the output from getTaskNFeats(task)
Name Type Default Lower (mlr) Upper (mlr) Upper

(SPOT)
Lower
(SPOT)

Trans

nrounds integer – 1 Inf 0 5 2pow_round

eta numeric 0.3 0 1 –10 0 2pow

lambda numeric 1 0 Inf –10 10 2pow

alpha numeric 0 0 Inf –10 10 2pow

subsample numeric 1 0 1 0.1 1 id

colsample_bytree numeric 1 0 1 1/NFeats 1 id

gamma numeric 0 0 Inf –10 10 2pow

max_depth integer 6 0 Inf 1 15 id

min_child_weight numeric 1 0 Inf 0 7 2pow

is simple: a lower value of zero makes no sense, because
at least one feature should be chosen via colsample.

gamma: A lower value of −10 was chosen. This value is smaller
than the value chosen by Thomas et al. (2018). Accord-
ingly, a larger upper value (10) than by Thomas et al.
(2018) was selected.

Hyperparameter transformations are shown in the column trans in Table9.2.
These transformations are similar to the transformations used by Probst et al. (2019a)
and Thomas et al. (2018) with one minor change: trans_2pow_round was
applied to the hyperparameter nrounds.

The ML configuration list cfg contains information about the hyperparameters
of the XGBoost model, see Table9.2.

Background: XGBoost Hyperparameters

The complete list of XGBoost hyperparameters can also be shown using the function
getModelConf. Note: the hyperparameter colsample_bytree is a relative
hyperparameter, i.e., it depends on the number of features (nFeatures), see the
discussion in Sect. 3.6. Hence, the value nFeatures must be determined before
the hyperparameter bounds can be computed.

nFeatures <- sum(task$task.desc$n.feat)
modelCfg <- getModelConf(
task.type = task.type,
model = model,
nFeatures = nFeatures

)

The list of hyperparameters is stored as the list elementtunepars, see Table9.2.

http://dx.doi.org/10.1007/978-981-19-5170-1_3

9 Case Study II: Tuning of Gradient Boosting (xgboost) 225

Furthermore, all factor features will be replaced with their dummy variables.
Dummy variables are recommended for XGBoost: internally, a model.matrix is
used and non-factor features will be left untouched and passed to the result. The seed
can be set to improve reproducibility. Finally, these settings are compiled to the list
cfg.

9.3.3 getMlrResample: Training and Test Data

The partition of the full data set is done as described in Sect. 8.3.2.3. rsample
specifies a training data set, which contains 2/3 of the data and a testing data set with
the remaining 1/3 of the data.

9.4 Objective Function (Model Performance)

Because the XGBoost method is more complex than RF, an increased computational
budget is recommended, e.g., by choosing a budget for tuning of 6 × 3,600 s or
six hours. The increased budget is used in the global study (Chap. 12). For the
experiments performed in the current chapter, the budget was not increased.

Before the hyperparameter tuner is called, the objective function is defined: this
function receives a configuration for a tuning experiment and returns an objective
function to be tuned via spot. A detailed description of the objective function can
be found in Sect. 8.4.4.

9.5 spot: Experimental Setup for the Hyperparameter
Tuner

TheR packageSPOT is used to perform the actual tuning (optimization). Because the
generic Sequential Parameter Optimization Toolbox (SPOT) setup was introduced
in Sect. 4.5, this section highlights the modifications of the generic setup that were
made for the xgboost hyperparameter tuning experiments.

The third step of the hyperparameter tuning pipeline as shown in Fig. 8.5 starts
the SPOT hyperparameter tuner.

result <- spot(
x = NULL,
fun = objf,
lower = cfg$lower,
upper = cfg$upper,
control = list(

http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_12
http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_4
http://dx.doi.org/10.1007/978-981-19-5170-1_8

226 T. Bartz-Beielstein et al.

types = cfg$type,
time = list(maxTime = timebudget / 60),
noise = TRUE,
OCBA = TRUE,
OCBABudget = 3,
seedFun = 123,
designControl = list(
replicates = Rinit,
size = initSizeFactor * length(cfg$lower)

),
replicates = 2,
funEvals = Inf,
modelControl = list(
target = "ei",
useLambda = TRUE,
reinterpolate = FALSE

),
optimizerControl = list(funEvals = 200 * length(cfg$lower)),
multiStart = 2,
parNames = cfg$tunepars,
yImputation = list(
handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
penaltyImputation = 3

)
)

)

The result is written to a file and can be accessed via

load("supplementary/ch09-CaseStudyII/xgboost00001.RData")

The full R code for running this case study is shown in the Appendix (Sect. 9.10).

9.6 Tunability

9.6.1 Progress

The function prepareProgressPlot generates a data frame that can be used
to visualize the hyperparameter tuning progress. The data frame can be passed to
ggplot. Figure9.1 visualizes the progress during the ranger hyperparameter
tuning process during the spot tuning procedure.

After 60min, 157 xgboost models were evaluated. Comparing the worst con-
figuration that was observed during the HPT with the best, a 66.3743% reduction
was obtained. After the initial phase, which includes 18 evaluations, the smallest
Mean Mis-Classification Error (MMCE) reads 0.1793641. The dotted red line in
Fig. 8.6 illustrates this result. The final best value reads 0.1724655, i.e., a reduction

http://dx.doi.org/10.1007/978-981-19-5170-1_8

9 Case Study II: Tuning of Gradient Boosting (xgboost) 227

xgboost

0 50 100 150

0.2

0.3

0.4

0.5

function evaluations

Va
lid

at
io

n
lo

ss

Fig. 9.1 XGB: Hyperparameter tuning progress. Validation loss plotted against the number of
function evaluations, i.e., the number of evaluated XGBoost models. The red dashed line denotes
the best value found by the initial designs to show the hyperparameter tuning progress. The blue
dashed line represents the best value from the whole run

of the MMCE of 3.8462%. These values, in combination with results shown in the
progress plot (Fig. 8.6), indicate that a quick HPT run is able to improve the quality
of the xgboost method. It also indicates that increased run times do not result in a
significant improvement of the MMCE.

•! Attention

These results do not replace a sound statistical comparison, they are only indicators,
not final conclusions.

http://dx.doi.org/10.1007/978-981-19-5170-1_8

228 T. Bartz-Beielstein et al.

Table 9.3 Comparison of the default and tuned hyperparameters of the XGBoost method.
colsample denotes colsample_bytree. Table shows transformed values. Note: the alpha
and gamma values are identical. They are computed as 2−10, which is the lower bound value,
because the theoretical default value 0 is infeasible. See also Table 3.8
Method nrounds eta lambda alpha subsample colsample gamma max_depth min_child_

weight

Default 1 0.3 1 0.001 1 1 0.001 6 1

Tuned 1873 0.058 155.3 2.46 0.992 0.408 0.004 13 1.83

Fig. 9.2 Comparison of
XGBoost methods with
default (D) and tuned (T)
hyperparameters.
Classification error (MMCE)
plotted on the horizontal
axis. Vertical lines in the
violin figures mark quantiles
(0.25, 0.5, 0.75) of the
corresponding distribution.
Numerical values are shown
in Table9.3

xgboostD

xgboostT

0.17 0.18 0.19 0.20 0.21 0.22
MMCED

ef
au

lt
(d

lD
),

tu
ne

d
(d

lT
) C

on
fig

s.

factor(name)
xgboostD
xgboostT

9.6.2 evalParamCensus: Comparing Default and Tuned
Parameters on Test Data

As a baseline for comparison, XGBoost was run with default hyperparameter values.
The corresponding R code for replicating the experiment is available in the code
folder. The best (minimum MMCE) result from thirty repeats is reported. The cor-
responding values are shown in Table9.3. The function evalParamCensus was
used to perform this comparison. By specifying the ML model, e.g., "xgboost"
and the runNr, the function evalParamCensus was called.

The result files can be loaded and the violin plot of the obtained MMCE can be
visualized (Fig. 9.2). It can be seen that the tuned solutions provide a better MMCE.
Default and tuned results for the rangermodel are available as rangerDefault
Evaluation.RData andxgboost00001Evaluation.RData, respectively.

The scores are stored as a matrix. Attributes are used to label the measures. The
following measures are calculated for each hyperparameter setting: accuracy, ce,
f1, logLoss, mae, precision, recall, and rmse. The comparison is based
on the MMCE that was defined in Eq. (2.2). Hyperparameters of the default and the
tuned configurations are shown in Table9.3. The full procedure, i.e., starting from
scratch, to obtain the default xgboost hyperparameters is shown in Sect. 9.10.

Next, the hyperparameters of the tuned xgboost methods are shown.

http://dx.doi.org/10.1007/978-981-19-5170-1_3
http://dx.doi.org/10.1007/978-981-19-5170-1_2

9 Case Study II: Tuning of Gradient Boosting (xgboost) 229

9.7 Analyzing the Gradient Boosting Tuning Process

The analysis and the visualizations are based on the transformed values.
To analyze effects and interactions between hyperparameters of the xgboost

Model, a simple regression tree as shown in Fig. 9.3 and Fig. 9.4 can be used.

alpha < 6.7

gamma < 5.5

nrounds >= 3.3

0.2
100%

0.19
93%

0.19
88%

0.18
82%

0.22
6%

0.26
5%

0.34
7%

yes no

Fig. 9.3 Regression tree. Case study II. XGBoost

alpha < 107

gamma < 52

nrounds >= 10

0.2
100%

0.19
93%

0.19
88%

0.18
82%

0.22
6%

0.26
5%

0.34
7%

yes no

Fig. 9.4 Regression tree. Case study II. XGBoost. Hyperparameters are transformed values

230 T. Bartz-Beielstein et al.

0.0

0.4

0.8

1.2

x1 x2 x3 x4 x5 x6 x7 x8 x9
variable

va
lu

e
bestPercent

>=0%
>=25%
>=50%
>=75%

Fig. 9.5 Best configurations in green

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00
x

y

name
alpha
colsample_bytree
eta
gamma
lambda
max_depth
min_child_weight
nrounds
subsample

Fig. 9.6 Sensitivity plot (best). Too large alpha values result in poor results

Same tree with the transformed values:
The regression tree supports the observations that hyperparameter values for alpha,

lambda, gamma, and nrounds have the largest effect on the MMCE.

alpha lambda gamma nrounds subsample eta colsample_bytree

1 0.23112227 0.04431784 0.04039483 0.014028719 0.012203015 0.009397272 0.0028057437

alpha is the most relevant hyperparameter.
To perform a sensitivity analysis, parallel and sensitivity plots can be used

(Figs. 9.5 and 9.6).

9 Case Study II: Tuning of Gradient Boosting (xgboost) 231

10

20

30

40

y

−10 −5 0 5

−10

−5

0

5

x4

x7

Fig. 9.7 Surface plot: x3 plotted against x1. This surface plot indicates that alpha has a large
effect. Too large alpha values result in poor results

Results from the spot run can be passed to the function plotSenstivity,
which generates a sensitivity plot as shown in Fig. 8.10. Sensitivity plots were intro-
duced in Sect. 8.6. Contour plots are shown in Fig. 9.7.

Finally, a simple linear regression model can be fitted to the data. Based on the
data from SPOT’s result list, the summary is shown below.

##
Call:
lm(formula = y ˜ ., data = df)
##
Residuals:
Min 1Q Median 3Q Max
-0.073397 -0.015307 -0.008367 0.001629 0.223535
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2561669 0.0184896 13.855 < 2e-16 ***
nrounds -0.0032016 0.0012827 -2.496 0.01366 *
eta -0.0003031 0.0016994 -0.178 0.85870
lambda 0.0021936 0.0007939 2.763 0.00646 **
alpha 0.0072423 0.0007848 9.228 2.77e-16 ***
subsample -0.1033194 0.0137081 -7.537 4.55e-12 ***
colsample_bytree 0.0050479 0.0132658 0.381 0.70411
gamma 0.0010887 0.0009034 1.205 0.23007
max_depth 0.0023106 0.0010527 2.195 0.02974 *
min_child_weight 0.0082803 0.0025515 3.245 0.00145 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.04047 on 147 degrees of freedom
Multiple R-squared: 0.5222, Adjusted R-squared: 0.493
F-statistic: 17.85 on 9 and 147 DF, p-value: < 2.2e-16

http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8

232 T. Bartz-Beielstein et al.

Although this linear model requires a detailed investigation (a misspecification
analysis is necessary) it also is in accordance with previous observations that hyper-
parameters alpha, lambda, gamma, nrounds have significant effects on the loss
function.

9.8 Severity: Validating the Results

Now, we utilize hypothesis testing and severity to analyze the statistical significance
of the achieved performance improvement. Considering the results from the pre-
experimental runs, the difference is x̄ = 0.0199. Since this value is positive, for the
moment, let us assume that the tuned solution is superior. The corresponding standard
deviation is sd = 0.0081. Based on Eq. 5.14, and with α = 0.05, β = 0.2, and � =
0.01, let us identify the required number of runs for the full experiment using the
getSampleSize() function.

Table 9.4 Case study II: result analysis

p-value Decision power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.9999999 2.3978067 2.3666664 � ≤ 0.015 are
well supported

−0.010 0.000 0.010 0.020

0
50

10
0

15
0

20
0

25
0

τ

D
en

si
ty

c 1
−α x

0.000 0.010 0.020

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Δ

Se
ve

rit
y

p−value

Fig. 9.8 Tuning XGB. Severity of rejecting H0 (red), power (blue), and error (gray). Left: The
observed mean x̄ =0.0199 is larger than the cut-off point c1−α =0.0024 Right: The claim that the
true difference is as large or larger than 0.01 is well supported by severity. However, any difference
larger than 0.015 is not supported by severity

http://dx.doi.org/10.1007/978-981-19-5170-1_5

9 Case Study II: Tuning of Gradient Boosting (xgboost) 233

For a relevant difference of 0.01, approximately 8 runs per algorithm are required.
Hence, we can proceed to evaluate the severity and analyze the performance improve-
ment achieved through tuning the parameters of the xgboost.

The summary result statistics is presented in Table 9.4. The decision based on
p-value is to reject the null hypothesis, i.e., the claim that the tuned parameter setup
provides a significant performance improvement in terms of MMCE is supported.
The effect size suggests that the difference is of a larger magnitude. For the chosen
� =0.01, the severity value is at 1 and thus it strongly supports the decision of reject-
ing the H0. The severity plot is shown in Fig. 9.8. Severity shows that performance
differences smaller than 0.015 are well supported.

9.9 Summary and Discussion

The analysis indicates that hyperparameter alpha has the greatest effect on the algo-
rithm’s performance. The recommended value of alpha is 7.2791, which is much
larger than the default value.

This case study demonstrates how functions from the R packages mlr and SPOT
can be combined to perform a well-structured hyperparameter tuning and analysis.
By specifying the time budget via maxTime, the user can systematically improve
hyperparameter settings. Before applying ML algorithms such as XGBoost to com-
plex classification or regression problems, HPT is recommended. Wrong hyperpa-
rameter settings can be avoided. Insight into the behavior of ML algorithms can be
obtained.

9.10 Program Code

Program Code

target <- "age"
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"

dfCensus <- getDataCensus(
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,

234 T. Bartz-Beielstein et al.

cardinality = cardinality,
data.seed = data.seed,
cachedir = cachedir,
target = target

)
task <- getMlrTask(
dataset = dfCensus,
task.type = "classif",
data.seed = 1

)

model <- "xgboost"
cfg <- getMlConfig(
target = target,
model = model,
data = dfCensus,
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
prop = 2 / 3

)
transformX(cfg$defaults, cfg$transformations)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 0.3 1 0.0009765625 1 1 0.0009765625 6 1

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	9 Case Study II: Tuning of Gradient Boosting (xgboost)
	9.1 Introduction
	9.2 Data Description
	9.3 getMlConfig: Experimental Setup and Configuration of the Gradient Boosting Model
	9.3.1 getMlrTask: Problem Design and Definition of the Machine Learning Task
	9.3.2 getModelConf Algorithm Design—Hyperparameters of the Models
	9.3.3 getMlrResample: Training and Test Data

	9.4 Objective Function (Model Performance)
	9.5 spot: Experimental Setup for the Hyperparameter Tuner
	9.6 Tunability
	9.6.1 Progress
	9.6.2 evalParamCensus: Comparing Default and Tuned Parameters on Test Data

	9.7 Analyzing the Gradient Boosting Tuning Process
	9.8 Severity: Validating the Results
	9.9 Summary and Discussion
	9.10 Program Code

