
Chapter 8
Case Study I: Tuning Random Forest
(Ranger)

Thomas Bartz-Beielstein, Sowmya Chandrasekaran, Frederik Rehbach,
and Martin Zaefferer

Abstract This case study gives a hands-on description of Hyperparameter Tuning
(HPT) methods discussed in this book. The Random Forest (RF) method and its
implementation ranger was chosen because it is the method of the first choice
in many Machine Learning (ML) tasks. RF is easy to implement and robust. It can
handle continuous as well as discrete input variables. This and the following two case
studies follow the sameHPTpipeline: after the data set is provided and pre-processed,
the experimental design is set up. Next, the HPT experiments are performed. The R
package SPOT is used as a “datascope” to analyze the results from theHPT runs from
several perspectives: in addition to Classification and Regression Trees (CART), the
analysis combines results from surface, sensitivity and parallel plots with a classical
regression analysis. Severity is used to discuss the practical relevance of the results
from an error-statistical point-of-view. The well proven R package mlr is used as
a uniform interface from the methods of the packages SPOT and SPOTMisc to
the ML methods. The corresponding source code is explained in a comprehensible
manner.
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8.1 Introduction

In this case study, the hyperparameters of the RF algorithm are tuned for a classi-
fication task. The implementation from the R package ranger will be used. The
data set used is the Census-Income (KDD) Data Set (CID).1

The R package SPOTMisc provides a unifying interface for starting the
hyperparameter-tuning runs performed in this book. The R package mlr is used
as a uniform interface to the machine learning models. All additional code is pro-
vided together with this book. Examples for creating visualizations of the tuning
results are also presented.

The hyperparameter tuning can be started as follows:

startCensusRun(model = "ranger")

This case study deals with RF. However, anyMLmethod from the set of available
methods that were discussed in Chap. 3, i.e., glmnet, kknn, ranger, rpart,
svm, and xgb, can be chosen. xgb will be analyzed in Chap. 9.

The function startCensusRun performs the following steps from Table8.1:

Table 8.1 Machine-learning hyperparameter-tuning pipeline

Step Description, Function Result Details

1 getDataCensus: Data
acquisition

dfCensus Downloading the data.
Compilation of a R data
frame

2.1 getMlConfig: ML
model and task
configuration

2.1.1 getMlrTask: Get ML
Task

task ml task

2.1.2 getModelConf: Model
configuration

cfg Model

2.1.3 getMlrResample:
Split Data into Training
and Test Data

data Partitioned data

2.2 getObjf: Objective
function

objf Objective function

3 spot: Hyperparameter
tuning

result Result list

4 evalParamCensus:
Evaluate on test data

Score Metrics

1 The data from CID is historical. It includes wording or categories regarding people which do not
represent or reflect any views of the authors and editors.

http://dx.doi.org/10.1007/978-981-19-5170-1_3
http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_9
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start

end

1 Data Acquisition

getDataCensus

2.1.1 Task

getMlrTask

2.1.2 Model

getModelConf

2.1.3 Train, Val, Test

getMlrResample

2.2 Objective Function

getObjf

3 Hyperparameter Tuning

spot

4 Evaluation

evalParamCensus

dfCensus (data.frame)

cfg (list)

cfg (list), objf (function)

result (list)

Fig. 8.1 Overview. The hyperparameter-tuning pipeline introduced in this chapter comprehends
four main steps. After the data acquisition (getDataCensus), the ML model is configured
(getMlConfig) and the objective function (getObjf) is specified. The hyperparameter tuner
SPOT is called (spot) and finally, results are evaluated (evalParamCensus). The ML con-
figuration via getMlConfig combines the results from three subroutines, i.e., getMlrTask,
getModelConf, and getMlrResample
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1 Data: Acquisition and preparation of the CID data set. The function
getDataCensus is called to perform these steps; see Sect. 8.2.1.

2.1 Design: The experimental design is set up. This step includes the spec-
ification of measures, the configuration of the hyperparameter
tuner, and the configuration of the ML model. Calling the func-
tion getMlConfig executes the subroutines 2.1.1 until 2.1.3:

2.1.1 Task: Definition of a ML task. The function getMlrTask performs this
step. It results in an mlr task object; see Sect. 8.3.2.1.

2.1.2 Config: Hyperparameter configuration. The functiongetModelConf sets
up the hyperparameters of the model; see Sect. 8.3.2.2.

2.1.3 Split: Generating training and test data.The functiongetMlrResample
is used here. It returns a list with the corresponding data sets;
see Sect. 8.3.2.3.

2.2 Objective: The objective function is defined via getObjf; see Sect. 8.4.4.
3 Tuning: The hyperparameter tuner, i.e., the function spot, is called. See

Sect. 8.5.
4 Evaluation: Evaluation on test data. To evaluate the results, the function

evalParamCensus can be used; see Sect. 8.6.2. These steps are
illustrated in Fig. 8.1.

8.2 Data Description

8.2.1 The Census Data Set

For the investigation, we choose the CID, which is made available, for example,
via the UCI ML Repository.2 For our investigation, we will access the version of
the data set that is available via the platform openml.org under the data record ID
45353 (Vanschoren et al. 2013). This data set is an excerpt from the current population
surveys of 1994 and 1995, compiled by the U.S. Census Bureau. It contains n =
299, 285 observations with 41 features on demography and employment. The data
set is comparatively large, has many categorical features with many levels, and fits
well with the field of application of official statistics.

The CID data set suits our research questions well since it is comparatively large
and has many categorical features. Several of the categorical features have a broad
variety of levels. The data set can be easily used to generate different classification
and regression problems.

The data preprocessing consists of the following steps:

• Feature 24 (instance weight MARSUPWT) is removed. This feature describes the
number of persons in the population who are represented by the respective obser-

2 https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD).

https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
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vation. This is relevant for data understanding, but should not be an input to the
ML models.

• Several features are encoded as numerical (integer) variables, but are in fact cate-
gorical. For example, feature 3 (industry code ADTIND) is encoded as an integer.
Since the respective integers represent discrete codes for different sectors of indus-
try, they have no inherent order and should be encoded as categorical features.

• The data set sometimes contains NA values (missing data). These NA values are
replaced before modeling. For categorical features, the most frequently observed
category is imputed (mode). For integer features, the median is imputed, and for
real-valued features the mean.

• As the only model investigated in this book, xgboost is not able to work directly
with categorical features. This becomes relevant for the experiments in Chap. 12.
In that case (only for xgboost), the categorical data features are transferred into
a dummy coding. For each category of the categorical feature, a new binary feature
is created, which specifies whether an observation is of the respective category or
not.

• Finally, we split the data randomly into test data (40% of the observations) and
training data (60%).

In addition to these general preprocessing steps, we change the properties of the
data set for individual experiments to cover our various hypotheses (esp. in Chap.
12). Arguably, we could have done this by using completely different data sets where
each set covers different objects of investigation (i.e., different numbers of features or
differentm). We decided to stick to a single data set and vary it instead of generating
new, comparable data sets with different properties. This allows us to reasonably
compare results between the individual variations. This way, we generate multiple
data sets that cover different aspects and problems in detail.While they all derive from
the same data set (CID), they all have different characteristics: Number of categorical
features, number of numerical features, cardinality, number of observations, and
target variable. These characteristics can be quantified with respect to difficulty as
discussed in Sect. 12.5.4.

In detail, we vary:

Target: The original target variable of the data set is the income class
(below/above 50000 USD). We choose age as the target vari-
able instead. For classification experiments, age will be dis-
cretized, into two classes: age < 40 and age >= 40. For
regression, age remains unchanged. This choice intends to
establish comparability between both experiment groups (clas-
sification, regression).

cardinality: The number of categories (cardinality). To create variants
of the data set with different cardinality of categorical features,
we merge categories into new, larger categories. For instance,
for feature 35 (country of birth self PENATVTY) the country of
origin is first merged by combining all countries from a specific
continent. This reduces the cardinality, with 6 remaining cate-

http://dx.doi.org/10.1007/978-981-19-5170-1_12
http://dx.doi.org/10.1007/978-981-19-5170-1_12
http://dx.doi.org/10.1007/978-981-19-5170-1_12
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gories (medium cardinality). For a further reduction (low cardi-
nality) to three categories, the data is merged into the categories
unknown, US, and abroad. Similar changes to other features are
documented in the source code. For our experiments, this pre-
processing step results in data sets with the levels of cardinality:
low (up to 15 categories), medium (up to 24 categories), and
high (up to 52 categories).

nnumericals: Number of numerical features (nnumericals). To change the
number of features, individual features are included or removed
from the data set. This is done separately for categorical and
numerical features and results in four levels for nnumericals
(low: 0, medium: 4, high: 6, complete: 7).

nfactors: Number of categorical features (nfactors). Correspondingly,
we receive four levels for nfactors (low: 0, medium: 8, high:
16, complete: 33). Note, that these numbers become somewhat
reduced, if cardinality is low (low: 0, medium: 7, high: 13, com-
plete: 27). The reason is that some featuresmight become redun-
dant when merging categories.

n: Number of observations (n). To vary n, observations are ran-
domly sampled from the data set. We test five levels on a log-
arithmic scale from 104 to 105: 10000, 17783, 31623, 56234,
and 100000. In addition, we conduct a separate test with the
complete data set, i.e., 299285 observations.

To keep results comparable, most case studies in this book (Chaps. 9, 10, and 12)
use the same data preprocessing of the CID data set. Only Chap. 12 considers several
variations of the CID data set simultaneously.

Background: Implementation Details

The function getDataCensus from the package SPOTMisc uses the functions
setOMLConfig and getOMLDataSet from the R package OpenML, i.e., the
CID can also be downloaded as follows:

OpenML::setOMLConfig(cachedir = "oml.cache")
dataOML <- OpenML::getOMLDataSet(4535)$data

While not strictly necessary, it is a good idea to set a permanent cache directory
for Open Machine Learning (OpenML) data set. Otherwise, every new experiment
will redownload the data set, taxing the OpenML servers unnecessarily.

Information about the 42 columns of the CID data set is shown in Table8.2.

http://dx.doi.org/10.1007/978-981-19-5170-1_9
http://dx.doi.org/10.1007/978-981-19-5170-1_10
http://dx.doi.org/10.1007/978-981-19-5170-1_12
http://dx.doi.org/10.1007/978-981-19-5170-1_12
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Table 8.2 CID data set
Var Type, factor levels Example data

V1: num: 73 58 18 9 10 48 42 28 47 34 ...

V2: Factor w/ 9 levels “Federal government”, ...: 4 7 4 4 4 5 5 5 2 5 ...

V3: num: 0 4 0 0 0 40 34 4 43 4 ...

V4: num: 0 34 0 0 0 10 3 40 26 37 ...

V5: Factor w/ 17 levels “10th grade”, ...: 13 17 1 11 11 17 10 13 17 17 ...

V6: num: 0 0 0 0 0 1200 0 0 876 0 ...

V7: Factor w/ 3 levels “College or university”, ...: 3 3 2 3 3 3 3 3 3 3 ...

V8: Factor w/ 7 levels “Divorced”, “Married-A F spouse
present”, ...:

7 1 5 5 5 3 3 5 3 3 ...

V9: Factor w/ 24 levels “Agriculture”, ...: 15 5 15 15 15 7 8 5 6 5 ...

V10: Factor w/ 15 levels “Adm support including clerical”, ...: 7 9 7 7 7 11 3 5 1 6 ...

V11: Factor w/ 5 levels “Amer Indian Aleut or Eskimo”, ...: 5 5 2 5 5 1 5 5 5 5 ...

V12: Factor w/ 10 levels “All other”, “Central or South
American”, ...:

1 1 1 1 1 1 1 1 1 1 ...

V13: Factor w/ 2 levels “Female”, “Male”: 1 2 1 1 1 1 2 1 1 2 ...

V14: Factor w/ 3 levels “No”, “Not in universe”, ...: 2 2 2 2 2 1 2 2 1 2 ...

V15: Factor w/ 6 levels “Job leaver”, ...: 4 4 4 4 4 4 4 2 4 4 ...

V16: Factor w/ 8 levels “Children or Armed Forces”, ...: 3 1 3 1 1 2 1 7 2 1 ...

V17: num : 0 0 0 0 0 ...

V18: num : 0 0 0 0 0 0 0 0 0 0 ...

V19: num : 0 0 0 0 0 0 0 0 0 0 ...

V20: Factor w/ 6 levels “Head of household”, ...: 5 1 5 5 5 3 3 6 3 3 ...

V21: Factor w/ 6 levels “Abroad”, “Midwest”, ...: 4 5 4 4 4 4 4 4 4 4 ...

V22: Factor w/ 51 levels “?”, “Abroad”, ...: 37 6 37 37 37 37 37 37 37 37 ...

V23: Factor w/ 38 levels “Child <18 ever marr not in subfamily”,
...:

30 21 8 3 3 37 21 36 37 21 ...

V24: Factor w/ 8 levels “Child 18 or older”, ...: 7 5 1 3 3 8 5 6 8 5 ...

V25: num: 1700 1054 992 1758 1069 ...

V26: Factor w/ 10 levels “?”, “Abroad to MSA”, ...: 1 4 1 6 6 1 6 1 1 6 ...

V27: Factor w/ 9 levels “?”, “Abroad”, ...: 1 9 1 7 7 1 7 1 1 7 ...

V28: Factor w/ 10 levels “?”, “Abroad”, ...: 1 10 1 8 8 1 8 1 1 8 ...

V29: Factor w/ 3 levels “No”, “Not in universe under 1year old”,
...:

2 1 2 3 3 2 3 2 2 3 ...

V30: Factor w/ 4 levels “?”, “No”, “Not in universe”, ...: 1 4 1 3 3 1 3 1 1 3 ...

V31: num: 0 1 0 0 0 1 6 4 5 6 ...

V32: Factor w/ 5 levels “Both parents present”, ...: 5 5 5 1 1 5 5 5 5 5 ...

V33: Factor w/ 43 levels “?”, “Cambodia”, ...: 41 41 42 41 41 32 41 41 41 41 ...

V34: Factor w/ 43 levels “?”, “Cambodia”, ...: 41 41 42 41 41 41 41 41 41 41 ...

V35: Factor w/ 43 levels “?”, “Cambodia”, ...: 41 41 42 41 41 41 41 41 41 41 ...

V36: Factor w/ 5 levels “Foreign born- Not a citizen of U S”, ...: 5 5 1 5 5 5 5 5 5 5 ...

V37: num: 0 0 0 0 0 2 0 0 0 0 ...

V38: Factor w/ 3 levels “No”, “Not in universe”, ...: 2 2 2 2 2 2 2 2 2 2 ...

V39: num: 2 2 2 0 0 2 2 2 2 2 ...

V40: num: 0 52 0 0 0 52 52 30 52 52 ...

V41: num: 95 94 95 94 94 95 94 95 95 94 ...

V42: Factor w/ 2 levels “–50000.”, “50000+.”: 1 1 1 1 1 1 1 1 1 1 ...
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8.2.2 getDataCensus: Getting the Data from OML

The CID data set can be configured with respect to the target variable, the task,
and the complexity of the data (e.g., number of samples, cardinality). The following
variables are defined:

target <- "age"
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"

These variables will be passed to the function getDataCensus to obtain the
data frame dfCensus (Fig. 8.2). The function getDataCensus is used to get
the OML data (from cache or from server). The arguments target, task.type,
nobs, nfactors, nnumericals, cardinality and cachedir can be used,
see Table8.3.

dfCensus <- getDataCensus(
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
cachedir = cachedir,
target = target

)

The dfCensus data set used in the case studies has 10000 observations of 23
variables, which are shown in Table8.4.

Table 8.3 Parameters used to get the CID data set. A detailed description can be found in Sect. 8.2.1

Parameter Value used in the
case studies

Description

Target “age” Target variable. Age smaller or larger 40years

Cachedir “oml.cache” Location of the cached data

task.type “classif” Classification task. The target is used for defining the classes

Nobs 1e4 The complete data set has 299, 285 observations. nobs
observations are randomly sampled

nfactors “high” Number of categorical features

nnumericals “high” Number of numerical features

Cardinality “high” Number of categories

data.seed 1 Seed used for sampling nobs observations
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Table 8.4 The dfCensus data set

Parameter Type Storage
levels

Mode, Example Description

Capital_gains Num Double 0 min: 0. max:
9.9999 × 104. 3.56 %
have capital gains

Capital_losses Num Double 0 min: 0. max: 3900.
1.66 % have capital
losses

Sivdends_from_stocks Num Double 0 min: 0. max:
9.9999 × 104. 9.96 %
have dividends from
stock

Num_persons_-
worked_for_employer

Num Integer 0 min: 0. max: 6.

Wage_per_hour Num Double 0 min: 0. max: 6800.

Weeks_worked_in_year Num Integer 0 min: 0. max: 52.

Class_of_worker Factor 9 “Federal government”

Industry_code Factor 51 “0”

Occupation_code Factor 47 “0”

Education Factor 17 “10th grade”

Marital_status Factor 7 “Divorced”

Major_industry_code Factor 24 “Agriculture”

Major_occupation_code Factor 15 “Adm support
including clerical”

Race Factor 5 “Amer Indian Aleut
or Eskimo”

Hispanic_origin Factor 10 “All other”

Sex factor 2 “Female”, “Male”

Tax_filer_status Factor 6 “Head of household”

Detailed_household_and-
_family_stat

Factor 29 “Child < 18 ever
marr not in
subfamily”

Detailed_household_
summary_in_household

Factor 8 “Child 18 or older”

Country_of_birth_self factor 42 “?”, “Cambodia”

Citizenship Factor 5 “Foreign born- Not a
citizen of U S”

Income_class Factor 2 “–50000.”, “50000+.”

Target Factor 2 “FALSE”, “TRUE”
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•! Attention: Outliers and Inconsistent Data

• Target: The values of the target variable are not equally balanced, because 61.27%
of the values are TRUE, i.e., older than 40years.

• The numerical variables num_persons_worked_for_employer and
weeks_worked_in_year can be treated as an integers.

• The factor income_class can be treated as a logical value.
• Summaries of the numerical variables:

summary(dfCensus[,sapply(dfCensus, is.numeric)])

## wage_per_hour capital_gains capital_losses divdends_from_stocks
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 0.0 Median : 0.00 Median : 0.0
## Mean : 51.46 Mean : 452.1 Mean : 31.22 Mean : 202.2
## 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 0.00 3rd Qu.: 0.0
## Max. :6800.00 Max. :99999.0 Max. :3900.00 Max. :99999.0
## num_persons_worked_for_employer weeks_worked_in_year
## Min. :0.000 Min. : 0.00
## 1st Qu.:0.000 1st Qu.: 0.00
## Median :1.000 Median : 6.00
## Mean :1.922 Mean :22.75
## 3rd Qu.:4.000 3rd Qu.:52.00
## Max. :6.000 Max. :52.00

• capital_gains and divdends_from_stocks share the same upper limit:
9.9999 × 104, which appears to be an artificial upper limit.

• Wage per Hour: There is one entry with 6800, but income class –50000.

start

1 Data Acquisition

getDataCensus

dfCensus:
'data.frame': 1e4 obs. of  23 variables:

$ class_of_worker: Factor w/ 7 levels " Federal government",..: 4 4 5 4 5 4 4 4 1 5 ...
$ industry_code: Factor w/ 24 levels "0","4","5","7",..: 1 1 3 1 11 1 1 1 16 19 ...
$ occupation_code: Factor w/ 26 levels "0","1","2","3",..: 1 1 7 1 3 1 1 1 9 16 ...

Fig. 8.2 Step 1 of the hyperparameter-tuning pipeline introduced in this chapter: the data acqui-
sition (getDataCensus) generates the data set dfCensus, which is a subset of the full CID
data set presented in Table8.2, because the parameter setting nobs = 1e4, nfactors = “high”,
nnumericals = “high”, and cardinality = “high” was chosen
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8.3 Experimental Setup and Configuration of the Random
Forest Model

8.3.1 getMlConfig: Configuration of the ML Models

Since we are considering a binary classification problem (age, i.e., young versus
old), the mlr task.type is set to classif. Random forests (“ranger”) will
be used for classification.

model <- "ranger"
cfg <- getMlConfig(
target = target,
model = model,
data = dfCensus,
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
prop = 2 / 3

)

As a result from calling getMlConfig, the list cfg is available. This list has
13 entries, that are summarized in Table8.5.

Table 8.5 Configuration list with 13 entries as a result from calling getMlConfig

Parameter Value Description

Learner “classif.ranger” Learner

Tunepars “num.trees”, “mtry”,
“sample.fraction”, “replace”, and
“respect.unordered.factors”

The hyperparameters of the model

Defaults Default hyperparameter settings of
the tunepars

Lower Lower bounds of the hyperparameters

Upper Upper bounds of the hyperparameters

Type “numeric”, “integer”, or “factor” Hyperparameter variable types

Fixpars – Fixed hyperparameters

Factorlevels Levels of each factor variable

Transformations Applied transformations

Dummy Dummy encoding Used by xgboost

Relpars – Parameters relative to others

Task mlr task object

Resample Resampling strategy from mlr
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8.3.2 Implementation Details: getMlConfig

The function getMlConfig combines results from the following functions

• getMlrTask
• getModelConf
• getMlrResample

The functions will be explained in the following (Fig. 8.3).

8.3.2.1 getMlrTask: Problem Design and Definition of the Machine
Learning Task

The target variable of the data set is age (age below or above 40years). The problem
design describes target and task type, the number of observations, as well as the
number of factorial, numerical, and cardinal variables. The data seed can also be
specified here.

task <- getMlrTask(dataset = dfCensus,
task.type = "classif",

2.1.1 Task

getMlrTask

2.1.2 Model

getModelConf

2.1.3 Train, Val, Test

getMlrResample

dfCensus (data.frame)

cfg: List of 13
 $ learner: chr "classif.ranger"
 $ tunepars: chr [1:5] "num.trees" "mtry" "sample.fraction" "replace" ...
 $ defaults: num [1:5] 8.97 4 1 2 1
 $ lower: num [1:5] 0 1 0.1 1 1
 $ upper: num [1:5] 11 22 1 2 2
 $ type: chr [1:5] "numeric" "integer" "numeric" "factor" ...

 $ factorlevels: List of 2
 $ transformations: List of 5
 $ dummy: logi FALSE
 $ relpars: list()
 $ task: List of 6
 $ resample: List of 5 

Fig. 8.3 Step 2of the hyperparameter-tuning pipeline introduced in this chapter: the data acquisition
(getMlConfig) generates the list cfg
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data.seed = 1)

The function getMlrTask is an interface to the function makeClassifTask
from the mlr package. The resulting task “encapsulates the data and specifies—
through its subclasses—the type of the task. It also contains a description object
detailing further aspects of the data.” (Bischl et al. 2016).

Background: getMlrTask Implementation

The data set dfCensus is passed to the function getMlrTask, which computes
an mlr task as shown below:

getMlrTask <- function(dataset,
task.type = "classif",
data.seed = 1) {

target <- "target"
task.nobservations <- nrow(dataset)
task.nfeatures <- ncol(dataset)
task.numericals <- lapply(dataset, class) != "factor"
task.numericals[target] <- FALSE
task.factors <- lapply(dataset, class) == "factor"
task.factors[target] <- FALSE
task.nnumericals <- sum(task.numericals)
task.nfactors <- sum(task.factors)
task.nlevels <-
as.numeric(lapply(dataset, function(x) {
length(unique(x))

}))
task.nlevels[!task.factors] <- 0
task.nlevels.max <- max(task.nlevels)
task <- makeClassifTask(data = dataset, target = target)
task <- impute(task,
classes = list(
factor = imputeMode(),
integer = imputeMedian(),
numeric = imputeMean()

)
)$task
return(task)

}

Because the functiongetMlrTask generates an mlrTask instance, its elements
can be accessed with mlr methods, i.e., functions from mlr can be applied to the
Tasktask. For example, the feature names that are based on the data can be obtained
with the mlr function getTaskFeatureNames as follows:
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head(getTaskFeatureNames(task))

## [1] "class_of_worker" "industry_code" "occupation_code" "education"
## [5] "wage_per_hour" "marital_status"

TheTasktask provides the basis for the the information that is needed to perform
the hyperparameter tuning. Additional information is generated by the functions
getModelConf, that is presented next.

8.3.2.2 getModelConf: Algorithm Design—Hyperparameters
of the Models

The function getModelConf generates a list with the entries learner,
tunepars, defaults, lower, upper, type, fixpars, factorlevels,
transformations, dummy, relpars, task, and resample that are sum-
marized in Table8.5.

The ML configuration list modelCfg contains information about the hyperpa-
rameters of the ranger model; see Table8.6.

nFeatures <- sum(task$task.desc$n.feat)
modelCfg <- getModelConf(
task.type = task.type,
model = model,
nFeatures = nFeatures

)

Background: Model Information from getModelConf

The information about the ranger hyperparameters, their ranges and types, is com-
piled as a list. It is accessible via the function getModelConf. This function man-
ages the information about the ranger model as follows:

Table 8.6 Ranger hyperparameter. NFeats denotes the output from getTaskNFeats(task)

Variable Name Type Default Upper Lower Trans

x1 num.trees Numeric 8.965784 0 11 2pow_round

x2 mtry Integer 4 1 22 id

x3 sample.fraction Numeric 1 0.1 1 id

x4 Replace Factor 2 1 2 id

x5 respect.unordered.factors Factor 1 1 2 id
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learner <- paste(task.type, "ranger", sep = ".")
tunepars <- c(
"num.trees",
"mtry",
"sample.fraction",
"replace",
"respect.unordered.factors"

)
defaults <- c(
log(500, 2), floor(sqrt(nFeatures)), 1,
2, 1

)
lower <- c(0, 1, 0.1, 1, 1)
upper <- c(11, nFeatures, 1, 2, 2)
type <- c(
"numeric", "integer", "numeric", "factor",
"factor"

)
fixpars <- list(num.threads = 1)
factorlevels <-
list(
respect.unordered.factors = c(
"ignore",
"order", "partition"

),
replace = c(FALSE, TRUE)

)
transformations <- c(
trans_2pow_round, trans_id, trans_id,
trans_id, trans_id

)
dummy <- FALSE
relpars <- list()

Similar information is provided for everyMLmodel.Note: This list is independent
from mlr, i.e., it does not use any mlr classes.

8.3.2.3 getMlrResample: Training and Test Data

The functiongetMlrResample is the third and last subroutine used by the function
getMlConfig. It takes care of the partitioning of the data into training data, X (train),
and test data, X (test), based on prop. The function getMlrResample from the
package SPOTMisc is an interface to the mlr function makeFixedHoldout
Instance, which generates a fixed holdout instance for resampling.
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rsmpl <- getMlrResample(task=task,
dataset = dfCensus,
data.seed = 1,
prop = 2/3)

rsmpl specifies the training data set, X (train), which contains prop= 2/3 of the
data and the testing data set, X (test) with the remaining 1 − prop = 1/3 of the data.
It is implemented as a list, the central components are lists of indices to select the
members of the corresponding train or test data sets.

Background: getMlrResample

Information about the data split are stored in the cfg list as cfg$resample. They
can also be computed directly using the function getMlrResample. This function
computes an mlr resample instance generated with the function
makeFixedHoldoutInstance.

getMlrResample <- function(task,
dataset,
data.seed = 1,
prop = NULL) {

set.seed(data.seed)
train.id <- sample(1:getTaskSize(task),

size = getTaskSize(task) * prop,
replace = FALSE)

test.id <- (1:getTaskSize(task))[-train.id]
rsmpl = makeFixedHoldoutInstance(train.id,

test.id,
getTaskSize(task))

return(rsmpl)

The functiongetMlrResample instantiated an mlr resampling strategy object
from the class makeResampleInstance. This mlr class encapsulates training
and test data sets generated from the data set for multiple iterations. It essentially
stores a set of integer vectors that provide the training and testing examples for each
iteration. (Bischl et al. 2016). The first entry, desc, describes the split between
training and test data and its properties, e.g., what to predict during resampling:
“train”, “test” or “both” sets. The second entry, size, stores the size of
the data set to resample. The third and fourth elements are lists with the training
and test indices, i.e., for 6666 indices for the X (train)data set and 3334 indices for
the X (test)data set. These indices will be used for all iterations. The last element
is optional and encodes whether specific iterations “belong together” (Bischl et al.
2016).
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str(rsmpl)

## List of 5 ## $
desc :List of 7 ## ..$ split : num 0.667 ## ..$ id : chr
"holdout" ## ..$ iters : int 1 ## ..$ predict : chr "test"
## ..$ stratify : logi FALSE ## ..$ fixed : logi FALSE ##
..$ blocking.cv: logi FALSE ## ..- attr(*, "class")= chr [1:2]
"HoldoutDesc" "ResampleDesc" ## $ size : int 10000 ## $
train.inds:List of 1 ## ..$ : int [1:6666] 1017 8004 4775 9725
8462 4050 8789 1301 8522 1799 ... ## $ test.inds :List of 1 ## ..$
: int [1:3334] 1 10 11 12 13 17 20 23 25 28 ... ## $ group : Factor
w/ 0 levels: ## - attr(*, "class")= chr "ResampleInstance"

•> Important: Training and Test Data

mlr’s function resample requires information about the test data, because it
manages the train and test data partition internally. Usually, it is considered “best
practice” inMLnot to pass the test set to theMLmodel. To the best of our knowledge,
this is not possible in mlr.

Therefore, the full data set (training and test data) with nobs= 104 observations
is passed to the resample function. Because mlr is an established R package, we
trust the authors that mlr keeps training and test data separately.

An additional problem occurs if the test data set, X (test), contains data with
unknown labels, i.e., factors with unknown levels. If these unknown levels are passed
to the trained model, predictions cannot be computed.

8.4 Objective Function (Model Performance)

8.4.1 Performance Measures

The evaluation of hyperparameter values requires a measure of quality, which deter-
mines how well the resulting models perform. For the classification experiments, we
useMeanMis-Classification Error (MMCE) as defined in Eq. (2.2). The hyperparam-
eter tuner Sequential Parameter Optimization Toolbox (SPOT) uses these MMCE on
the test data set to determine better hyperparameter values.

In addition to MMCE, we also record run time (overall run time of a model
evaluation, run time for prediction, run time for training). To mirror a realistic use
case, we specify a fixed run time budget for the tuner. This limits how long the tuner
may take to find potentially optimal hyperparameter values.

For a majority of the models, the run time of a single evaluation (training +
prediction) is hard to predict and may easily become excessive if parameters are

http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_2
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chosen poorly. In extreme cases, the run time of a single evaluation may exceed
drastically the planned run time. In such a case, there would be insufficient time
to test different hyperparameter values. To prevent this, we specify a limit for the
run time of a single evaluation, which we call timeout. When the timeout is
exceeded by the model, the evaluation will be aborted. During the experiments, we
set the timeout to a twentieth of the tuner’s overall run time budget.

timebudget <- 60 ## secs
timeout <- timebudget / 20

Exceptions are the experiments with Decision Tree (DT) (rpart): Since rpart
evaluates extremely quickly, (in our experiments: usually much less than a second)
the timeout is not required. In fact, using the timeout would add considerable
overhead to the evaluation time in this case.

The HPT task can be parallelized by specifying nthread values larger than
one. Only one thread was used in the experiment. In addition to Root Mean Squared
Error (RMSE) and MMCE, we also record run time (overall run time of a model
evaluation, run time for prediction, run time for training). Several alternative metrics
can be specified.

Example: Changing the loss function

For example, logloss can be selected as follows:

if (task.type == "classif") {
fixpars <- list(
eval_metric = "logloss",
nthread = 1

)
} else {
fixpars <- list(
eval_metric = "rmse",
nthread = 1

)
}

8.4.2 Handling Errors

If the evaluation is aborted (e.g., due to timeout or in case of some numerical
instability), we still require a quality value to be returned to the tuner, so that the
search can continue. This return value should be chosen, so that, e.g., additional
evaluations with high run times are avoided. At the same time, the value should
be on a similar scale as the actual quality measure, to avoid a deterioration of the
underlying surrogate model. To achieve this, we return the following values when
an evaluation aborts.
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• Classification: Model quality for simply predicting the mode of the training data.
• Regression: Model quality for simply predicting the mean of the training data.

8.4.3 Imputation of Missing Data

The imputation of missing values can be implemented using built-in methods from
mlr. These imputations are based on the hyperparameter types: factor variables
will use imputeMode, integers use imputeMedian, and numerical values use
imputeMean.

•! Important: Imputation

There are two situations when imputation can be applied:

1. Missing data, i.e., CID data are incomplete. This imputation can be handled by
the mlr methods described in this section.

2. Missing results, i.e., performance values of the ML method such as loss or accu-
racy. This imputation can be handled by spot.

8.4.4 getObjf: The Objective Function

After the ML configuration is compiled via getMlConfig, the objective function
has to be generated.

objf <- getObjf(
config = cfg,
timeout = timeout

)

The getObjf compiles information from the cfg and information about the
budget (timeout) (Fig. 8.4).

Background: getObjf as an Interface to mlr’s resample function

Note, in addition to hyperparameter information,cfg includes information about the
mlr task. getObjf calls the mlr function makeLearner. The information is
used to execute the resample function, which fits a model specified by learner
on a task. Predictions and performance measurements are computed for all training
and testing sets specified by the resampling method (Bischl et al. 2016).

A simplifiedversion that implements the basic elements of the functiongetObjf,
is shown below. After the parameter names are set, the parameter transformations are
performed and the complete set of parameters is compiled: this includes converting
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Fig. 8.4 Step 3 of the
hyperparameter-tuning
pipeline introduced in this
chapter: (getObjf)
generates the function objf 2.2 Objective Function

getObjf

cfg (list)

objf:
function (x, seed)  

integer levels to factor levels for categorical parameters, setting fixed parameters
(which are not tuned, but are also not set to default value), and setting parame-
ters in relation to other parameters (e.g., minbucket relative to minsplit). Next, the
learner lrn is generated via mlr’s function makeLearner, and the measures are
defined. Here, the fixed set mmce, timeboth, timetrain, and timepredict
are used. After setting the RandomNumber Generator (RNG) seed, the mlr function
resample is called. The function resample fits a model specified by the learner
on a task and calculates performance measures for all training sets, X (train), and all
test sets, X (test), specified by the resampling instance config$resample that was
generated with the function getMlrResample as described in Sect. 8.3.2.3.

getObjf <- function(config, timeout = 3600) {
objfun <- function(x, seed) {
params <- as.list(x)
names(params) <- config$tunepars
for (i in 1:length(params)) {
params[[i]] <- config$transformations[[i]](params[[i]])

}
params <- int2fact(params, config$factorlevels)
params <- c(params, config$fixpars)
nrel <- length(config$relpars)
for (i in 1:nrel) {
params[names(config$relpars)[i]] <-
with(params, eval(config$relpars[[i]]))

}
lrn <- makeLearner(config$learner, par.vals = params)
measures <- list(mmce, timeboth, timetrain, timepredict)
set.seed(seed)
res <- resample(lrn,
config$task,
config$resample,
measures = measures
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)
timestamp <- as.numeric(Sys.time())
return(matrix(c(res$aggr, timestamp), 1))

}
objvecf <- function(x, seed) {
res <- NULL
for (i in 1:nrow(x)) {
res <- rbind(res, objfun(x[i, , drop = FALSE], seed[i]))

}
return(res)

}
}

The return value, res, of the objective function generated with getObjf was
evaluated on the test set, X (test).

names(res$aggr)

## [1] "mmce.test.mean" "timeboth.test.mean" "timetrain.test.mean"
## [4] "timepredict.test.mean"

No explicit validation set, X (val), is defined during the HPT procedure.
Importantly, randomization is handled by spot by managing the seed via

spot’s seedFun argument. The seed management guarantees that two different
hyperparameter configurations, λi and λ j , are evaluated on the same test data X (test).
But if the same configuration is evaluated a second time, it will receive a new test
data set.

8.5 spot: Experimental Setup for the Hyperparameter
Tuner

The R package SPOT is used to perform the actual hyperparameter tuning (optimiza-
tion). The hyperparameter tuner itself has parameters such as kind and size of the
initial design, methods for handling non-numerical data (e.g., Inf, NA, NaN), the
surrogate model and the optimizer, search bounds, number of repeats, methods for
handling noise.

Because the generic SPOTsetupwas introduced inSect. 4.5, this section highlights
the modifications of the generic setup that were made for the ML runs.

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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The third step of the hyperparameter-tuning pipeline as shown in Fig. 8.5 starts
the SPOT hyperparameter tuner.

result <- spot(
x = NULL,
fun = objf,
lower = cfg$lower,
upper = cfg$upper,
control = list(
types = cfg$type,
time = list(maxTime = timebudget / 60),
noise = TRUE,
OCBA = TRUE,
OCBABudget = 3,
seedFun = 123,
designControl = list(
replicates = Rinit,
size = initSizeFactor * length(cfg$lower)

),
replicates = 2,
funEvals = Inf,
modelControl = list(
target = "ei",
useLambda = TRUE,
reinterpolate = TRUE

),
optimizerControl = list(funEvals = 200 * length(cfg$lower)),
multiStart = 2,
parNames = cfg$tunepars,
yImputation = list(
handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
penaltyImputation = 3

)
)

)

The result from the spot run is the result list, which can be written to a
file. The full R code for running this case study is shown Sect. 8.10 and the SPOT
parameters are listed in Table8.7.

Background: Implementation details of the function spot

The initial design is created by Latin Hypercube Sampling (LHS) (Leary et al. 2003).
The size of that design (number of sampled configurations of hyperparameters) cor-
responds to 2 × k. Here, k is the number of hyperparameters.
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3 Hyperparameter Tuning

spot

cfg (list), objf (function)

result (list)
List of 12

 $ xbest: num [1, 1:5] 6.566 19 0.116 2 2
 $ ybest: num [1, 1] 0.174
 $ x: num [1:35, 1:5] 2.16 7.31 4.62 5.89 10.46 ...
 $ xt: logi NA
 $ y: num [1:35, 1] 0.205 0.19 0.199 0.182 0.216 ...
 $ logInfo: num [1:35, 1:4] 0.085 0.282 0.162 0.208 3 ...
 $ count: int 35
 $ msg: chr "budget exhausted"
 $ modelFit:List of 33
 $ ybestVec: num [1:35] 0.182 0.182 0.182 0.182 0.182 ...
 $ ySurr: num [1:35] NA NA NA NA NA NA NA NA NA NA ...
 $ control: List of 35

Fig. 8.5 The hyperparameter-tuning pipeline: the hyperparameter tuner SPOT is called (spot)

Table 8.7 SPOT parameters used forML hyperparameter tuning. Parameters, that are implemented
as lists are described in Table8.8. This table shows only parameters that were modified for the ML
and DL hyperparameter-tuning tasks. The full list is shown in Table 4.2

Parameter Value Description

x x0 Starting point

fun objf Objective function as
described in Sect. 8.4.4

lower cfg$lower Lower bound

upper cfg$upper Upper bound

control list See description in Table8.8

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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Table 8.8 SPOT control list parameters used for ML hyperparameter tuning. This table shows
only parameters that were modified for the ML and DL hyperparameter-tuning tasks. The full list
is shown in Table 4.2

Parameter Value Description

funEvals Inf

multiStart 2

noise Noise

parNames cfg$tunepars

seedFun 123

Time List (maxTime =
timebudget/60)

Convert to minutes

transformFun cfg$transformations

Types cfg$type

designControl Replicates Rinit

Size initSizeFactor *
length(cfg$lower)

yImputation List

modelControl funEvals multFun * length(cfg$lower)

optimizerControl funEvals multFun * length(cfg$lower)

8.6 Tunability

The following analysis is based on the results from the spot run, which are stored
in the data folder of this book. They can be loaded with the following command:

load("supplementary/ch08-CaseStudyI/ranger00001.RData")

Now the information generated with spot, which was stored in the result list
as described in Sect. 8.5, is available in the R environment.

8.6.1 Progress

The function prepareProgressPlot generates a data frame that can be used
to visualize the hyperparameter-tuning progress. The data frame can be passed to
ggplot. Figure8.6 visualizes the progress during the ranger hyperparameter-
tuning process described in this study.

After 60min, 582 rangermodels were evaluated. Comparing the worst config-
uration that was observed during the HPT with the best, a 25.8442 % reduction was
obtained. After the initial phase, which includes 20 evaluations, the smallest MMCE
reads 0.179964. The dotted red line in Fig. 8.6 illustrates this result. The final best
value reads 0.1712657, i.e., a reduction of the MMCE of 4.8333%. These values, in

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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Fig. 8.6 Ranger: Hyperparameter-tuning progress. The red dashed line denotes the best value
found by the initial design. The blue dashed line represents the best value from the whole run

combination with results shown in the progress plot (Fig. 8.6) indicate that a quick
HPT run is able to improve the quality of the rangermethod. It also indicates, that
increased run times do not result in a significant improvement of the MMCE.

•! Attention

These results do not replace a sound statistical comparison, they are only indicators,
not final conclusions.

8.6.2 evalParamCensus: Comparing Default and Tuned
Parameters on Test Data

As a comparison basis, an additional experiment for the ranger model where
all hyperparameter values remain at the model’s default settings and an additional
experiment where the tuned hyperparameters are used, is performed. In these cases,
a timeout for evaluation was not set. Since no search takes place, the overall run
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time for default values is anyways considerably lower than the run time of spot.
The final comparison is based on the classification error as defined in Eq. (2.2).
The motivation for this comparison is a consequence of the tunability definition; see
Definition 2.26.

To understand the impact of tuning, the best solution obtained is evaluated for
n repeats and compared with the performance (MMCE) of the default settings. A
power analysis, as described in Sect. 5.6.5 is performed to estimate the number of
repeats, n.

The corresponding values are shown in Table8.9. The function
evalParamCensus was used to perform this comparison. Results from the eval-
uations on the test data for the default and the tuned hyperparameter configurations
are saved to the corresponding files.

Default and tuned results for the ranger model are available in the supplemen-
tary data folder as rangerDefaultEvaluation.RData and
ranger00001Evaluation.RData, respectively.

•> Important:

As explained in Sect. 8.4.4, no explicit validation set, X (val), is defined during the
HPT procedure. The response surface function ψ(test) is optimized. But, since we
can generate new data sets, (X,Y ) randomly, the comparison is based on several,
randomly generated samples.

Background: Additional Scores

The scores are stored as amatrix.Attributes are used to label themeasures. In addition
to mmce, the following measures are calculated for each repeat: accuracy, f1,
logLoss, mae, precision, recall, and rmse. These results are stored in the
corresponding RData files.

Hyperparameters of the default and the tuned configurations are shown in
Table8.9.

Table 8.9 Comparison of default and tuned hyperparameters of the “ranger” model. r.u.f.
denotes respect.unordered.factors and s.f sample.fraction
Hyperparam. num.trees mtry s.f Replace r.u.f Min. 1st

Qu.
Median Mean 3rd

Qu.
Max.

Default 8.966 4 1.0 2 1 0.1803 0.1879 0.1929 0.1913 0.1952 0.1998

Tuned 9.305 20.000 0.142 2.000 2.000 0.1737 0.1809 0.1872 0.1856 0.1889 0.1986

Tuned OCBA 9.305 20.000 0.142 2.000 2.000 0.1737 0.1809 0.1872 0.1856 0.1889 0.1986

http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_2
http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_2
http://dx.doi.org/10.1007/978-981-19-5170-1_5
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Fig. 8.7 Comparison of
ranger algorithms with
default (D) and tuned (T)
hyperparameters.
Classification error
(MMCE). Vertical lines
mark quantiles (0.25, 0.5,
0.75) of the corresponding
distribution. Numerical
values are shown in Table8.9
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The corresponding R code for replicating the experiment is available in the code
folder. The result files can be loaded and the violin plot of the obtained MMCE can
be visualized as shown in Fig. 8.7. It can be seen that the tuned solutions provide a
better MMCE on the holdout test data set (X,Y )(test).

8.7 Analyzing the Random Forest Tuning Process

To analyze effects and interactions between hyperparameters of the rangermodel
as defined in Table8.6, a simple regression tree as shown in Fig. 8.8 can be used.

sample.fraction < 0.48

respect.unordered.factors >= 2

num.trees >= 7.7

num.trees >= 6.7

0.18
100%

0.18
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Fig. 8.8 Regression tree. Case study I. Ranger
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The regression tree supports the observations, that hyperparameter values for
sample.fraction, num.trees, and respect.unordered.factors, have the largest effect on
the MMCE.

b!
sample.fraction num.trees respect.unordered.factors mtry replaRce

1 0.010297452 0.006007073 0.0015083938 0.0013354262 0.00015087878

Parallel plots visualize relations between hyperparameters. The SPOTMisc func-
tion ggparcoordPrepare provides an interface from the data frame result,
which is returned from the function spot, to the function ggparcoord from
the package GGally. The argument probs specifies the quantile probabilities
for categorizing the result values. In Fig. 8.9, quantile probabilities are set to
c(0.25, 0.5, 0.75). Specifying three values results in four categories with
increasing performance, i.e., the first category (0–25%) contains poor results, the sec-
ond and the third categories, 25–50 % and 50 to 75%, respectively, contain mediocre
values, whereas the last category (75–100%) contains the best values.

In addition to labeling the best configurations, the worst configurations can also
be labeled.

Results from the spot run can be passed to the function plotSenstivity,
which generates a sensitivity plot as shown in Fig. 8.10. There are basically two
types of sensitivity plots that can be generated with plotSenstivity: using
the argument type = “best”, the best hyperparameter configuration is used.
Alternatively, using type = “agg”, simulations are performed over the range of
all hyperparameter settings.Note, the second option requires additional computations
and depends on the simulation output, which is usually non-deterministic. Output
from the second option is shown in Fig. 8.11.

Fig. 8.9 Parallel plot of results from the ranger hyperparameter-tuning process. num.trees (x1),
mtry (x2), sample.fraction (x3), replace (x4), and respect.unordered.factors (x5) are shown. Best
configurations in green
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Fig. 8.10 Sensitivity plot (best). num.trees (x1), mtry (x2), sample.fraction (x3), replace (x4), and
respect.unordered.factors (x5) are shown
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Fig. 8.11 Ranger: Sensitivity plot (aggregated). num.trees (x1), mtry (x2), sample.fraction (x3),
replace (x4), and respect.unordered.factors (x5) are shown

If the results from using the argument type = “best” and type = “agg”
are qualitatively similar, only the plot based on type = “best” will be shown in
the remainder of this book. Parallel plots will be treated in a similar manner. Source
code for generating all plots is provided.

SPOT provides several tools for the analysis of interactions. Highly recommended
is the use of contour plots as shown in Fig. 8.12.

Finally, a simple linear regression model can be fitted to the data. Based on the
data from SPOT’s result list, the hyperparameters replace and respect.
unordered.factors are converted to factors and the R function lm is
applied. The summary table is shown below.
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Fig. 8.12 Surface plot: x3 (sample.fraction) plotted against x1 (numtrees)

##
## Call:
## lm(formula = y ˜ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0122996 -0.0013971 -0.0000444 0.0014070 0.0162966
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.991e-01 1.198e-03 166.275 <2e-16 ***
## num.trees -2.220e-03 1.052e-04 -21.115 <2e-16 ***
## mtry 3.907e-05 3.647e-05 1.071 0.2845
## sample.fraction 1.716e-02 1.038e-03 16.533 <2e-16 ***
## replaceTRUE 1.431e-03 5.580e-04 2.564 0.0106 *
## respect.unordered.factorsTRUE -6.276e-03 6.378e-04 -9.840 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.0026 on 576 degrees of freedom
## Multiple R-squared: 0.7682, Adjusted R-squared: 0.7662
## F-statistic: 381.7 on 5 and 576 DF, p-value: < 2.2e-16

Although this linear model requires a detailed investigation (a mispecification
analysis is necessary), it also is in accordance with previous observations that hyper-
parameters sample.fraction, num.trees, and respect.unordered.factors have signifi-
cant effects on the loss function.

Results indicate that sample.fraction is the dominating hyperparameter. Its setting
has the largest impact on ranger’s performance. For example, the sensitivity plot
Fig. 8.10 shows that small sample.fraction values improve the performance. The
larger values clearly improve the performance. The regression tree analysis (see
Fig. 8.8) supports this hypothesis, because sample.fraction is the root node of the
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Table 8.10 Case study I: result analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.9999941 1.0329001 1.0194859 � ≤ 0.005 are
well supported

tree and values smaller than 0.48 are recommended. Furthermore, the regression tree
analysis indicates that additional improvements can be obtained if the num.trees is
greater equal 2. These observations are supported by the parallel plots and surface
plots, too. The linear model can be interpreted in a similar manner.

8.8 Severity: Validating the Results

Now, let us proceed to analyze the statistical significance of the achieved performance
improvement. The results from the pre-experimental runs indicate that the difference
is x̄ = 0.0057. As this value is positive, for the moment, let us assume that the tuned
solution is superior. The corresponding standard deviation is sd = 0.0045. Based on
Eq. 5.14, and with α = 0.05, β = 0.2, and � = 0.005 let us identify the required
number of runs for the the full experiment using the getSampleSize function.

For a relevant difference of 0.005, approximately 10 runs per algorithm are
required. Since, we evaluated for 30 repeats, we can now proceed to evaluate the
severity and analyse the performance improvement achieved through tuning the
parameters of the ranger.

The summary result statistics is presented in Table 8.10. The decision based on
p-value is to reject the null hypothesis, i.e., the claim that the tuned parameter setup
provides a significant performance improvement in terms of MMCE is supported.
The effect size suggests that the difference is of larger magnitude. For the chosen
� = 0.005, the severity value is at 0.8 and thus it strongly supports the decision
of rejecting the H0. The severity plot is shown in Fig. 8.13. Severity shows that
performance difference smaller than or equal to 0.005 are well supported.

8.9 Summary and Discussion

The analysis indicates that hyperparameter sample.fraction has the greatest effect on
the algorithm’s performance. The recommended value of sample.fraction is 0.1416,
which is much smaller than of 1.

This case study demonstrates how functions from the R packages mlr and SPOT
can be combined to perform a well-structured hyperparameter tuning and analysis.
By specifying the time budget via maxTime, the user can systematically improve
hyperparameter settings. Before applying ML algorithms such as RF to complex

http://dx.doi.org/10.1007/978-981-19-5170-1_5
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Fig. 8.13 Tuning Random Forest. Severity of rejecting H0 (red), power (blue), and error (gray).
Left: the observed mean x̄ = 0.0057 is larger than the cut-off point c1−α = 0.0014 Right: The claim
that the true difference is as large 0.005 are well supported by severity. However, any difference
larger than 0.005 is not supported by severity

classification or regression problems, HPT is recommended. Wrong hyperparameter
settings can be avoided. Insight into the behavior of ML algorithms can be obtained.

8.10 Program Code

Program Code

library("SPOT")
library("SPOTMisc")

target <- "age"
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"

dfCensus <- getDataCensus(
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
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nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
cachedir = cachedir,
target = target

)

model <- "ranger"
cfg <- getMlConfig(
target = target,
model = model,
data = dfCensus,
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
prop = 2 / 3

)

task <- getMlrTask(
dataset = dfCensus,
task.type = "classif",
data.seed = 1

)

nFeatures <- sum(task$task.desc$n.feat)
cfg <- getModelConf(
task.type = task.type,
model = model,
nFeatures = nFeatures

)

rsmpl <- getMlrResample(
task = task,
dataset = dfCensus,
data.seed = 1,
prop = 2 / 3

)

timebudget <- 60 ## secs
timeout <- timebudget / 20

cfg <- append(cfg, list(
task = task,
resample = rsmpl

))

objf <- getObjf(
config = cfg,
timeout = timeout

)
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result <- spot(
x = NULL,
fun = objf,
lower = cfg$lower,
upper = cfg$upper,
control = list(
types = cfg$type,
time = list(maxTime = timebudget / 60),
noise = TRUE,
seedFun = 123,
designControl = list(
replicates = 2,
size = length(cfg$lower)

),
replicates = 2,
funEvals = Inf,
optimizerControl = list(funEvals = 200 * length(cfg$lower)),
multiStart = 2,
parNames = cfg$tunepars,
yImputation = list(
handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
penaltyImputation = 3

)
)

)
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