
Chapter 5
Ranking and Result Aggregation

Thomas Bartz-Beielstein, Olaf Mersmann, and Sowmya Chandrasekaran

Abstract This chapter explores different methods to analyze the results of Hyper-
parameter Tuning (HPT) experiments. Four different scenarios and two different
approaches are presented. On the one hand, rankings and especially consensus rank-
ings are introduced to aggregate the results of many different HPT results. On the
other hand, statistical significance analysis and power analysis are used for a detailed
analysis of single algorithms and pairwise algorithm comparisons. This chapter dis-
cusses issues with sample size determination, power calculations, hypotheses, and
wrong conclusions from hypothesis testing. On top of the established methods, we
add and explain severity, a frequentist approach that extends the classical concept
of p-values. Mayo’s concept of severity offers one solution to these issues, and one
might achieve even better results by applying severity.

5.1 Comparing Algorithms

Aggregating the results of any kind of hyperparameter tuning or other large-scale
modeling experiment poses its own set of challenges. Generally, we can differentiate
between four settings (Bartz-Beielstein and Preuss 2011):

Definition 5.1 [Algorithm-Problem Designs]

Single Algorithm Single Problem (SASP): Analyzing the result of a single algo-
rithm or learner on a single optimization problem or data set.
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Single Algorithm Multiple Problem (SAMP): Comparing the results of a single
algorithm or learner on many different optimization problems or data sets.

Multiple Algorithm Single Problem (MASP): Comparing the results of multiple
algorithms or learners on a single optimization problem or data set.

Multiple Algorithm Multiple Problem (MAMP): Comparing the results of multi-
ple algorithms or learners on many different optimization problems or data sets.

The SASP setting is fundamentally different from the other three settings, because
we are not comparing results but merely analyzing them. That is, we are evaluating
the performance of an optimization algorithm A on a single problem instance π . In
the second scenario, we have multiple problem instances π1, …, πp. That means,
the second setting is a generalization of the first setting, where we might want to
check if our algorithm generalizes to different instances from the same domain or
even generalizes to different domains. The third setting generalizes the first by intro-
ducing more algorithms A1, …, Aa . Here, we want to compare the performance of
these algorithms on a single problem instance and more than likely choose a “best”
algorithm. Finally, the last scenario is a combination of the previous two, where we
have a algorithms being benchmarked on p problem instances.

For now, we will ignore the challenges posed by the SASP and SAMP settings
and focus on the comparison of multiple algorithms. We will denote the random
performance measure we use to evaluate an algorithm with Y . Even for deterministic
algorithms, it is justified to view this as a random variable since the result still heavily
depends on the initial starting parameters, etc. We will assume that we have collected
n Independent and Identically Distributed (IID) samples of our performancemeasure
Y for each algorithm and performance metric. These are denoted with y1, . . . , yn .

During all of the following discussions on comparing algorithms, we should
always remember that the No Free Lunch theorem (Wolpert and Macready 1997)
tells us there is no single best algorithm in both the learning and the optimization
setting. We are interested in comparing algorithms and choosing one that is fit for
purpose; we cannot hope to find a single “best” algorithm.

5.2 Ranking

When we are in the MASP setting, there are many established statistical frame-
works to analyze the observed performance metrics; see for example Chiarandini
and Goegebeur (2010) or Bartz-Beielstein (2015). Here, we will look at a somewhat
different approach based on rankings as described in Mersmann et al. (2015). The
advantage of ranking-based approaches is their scale invariance.

Consider the case where we have only two algorithms A1 and A2. For each
algorithm, we observe n values of our performance metric

Algorithm A1: yA1
1 , . . . , yA1

n

Algorithm A2: yA2
1 , . . . , yA2

n
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and we want to decide ifA1 is

1. “better than or equal to” A2 (denoted by A1 � A2);
2. “similar to”A2 (denoted by A1 � A2);
3. “worse than” A2 (denoted by A1 ≺ A2).

Saying A is worse than B is nothing more than saying B is better than or equal
toA:

A ≺ B ⇐⇒ B � A.

We can also simplify when we consider two algorithms to be similar. We say two
algorithms are similar if both are better than or equal to the other one:

A � B ⇐⇒ A � B ∧ B � A.

Therefore, it is enough to specify the binary relation � if we want to decide if some
algorithm dominates another algorithm. We call � the dominance relation for our
performancemetric. One waywould be using statistical hypothesis tests as discussed
in Sect. 5.6.1 but if n is large,1 it can be something as simple as the comparison of the
mean performance measure attained by each algorithm. It is also possible to think of
scenarios where wemight be more interested in a consistent result. In these cases, we
might compare the variance of the observed performance measures. Finally, if we are
really only interested in the absolute best performance the algorithm can deliver, we
should compare the minimal or maximal performance measure obtained. For a more
detailed description of the different choices available, see Mersmann et al. (2010b).
But for now, let’s just assume that we are able to define such a dominance relation.

Our dominance relation can have the following useful properties:

reflexive: A � A for all A under test. That is, every algorithm is better than or
equal to itself. This is a property we want in any dominance relation.

antisymmetric: A � B ∧ B � A =⇒ A � B. This is a weaker form of our
“similar to” definition above that suffices for our further reasoning.

transitive: A � B and B � C, then A � C.
complete: For all distinct pairs of algorithms, either A � B or B � A.

At a minimum, we want our relation to be reflexive and transitive. We call such
a relation a preorder and it is the first step toward a relation that induces an order,
i.e., gives us a meaningful comparison of all algorithms based on simple pairwise
comparisons. Next, we want antisymmetry which gives us a partial order and finally
if the partial order is complete, we get a linear order. A linear order has quite a few
requirements which must be fulfilled. Instead, we could ask ourselves what are the
minimum properties we would want? We would certainly want our relation to be
transitive since otherwise we won’t have a ranking, and we also want the relation

1 And see below for reasons why maybe it shouldn’t be too large.
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to be complete so that we can compare all algorithm pairs. An order with just these
properties is called a weak order and will become important later in our discussion
of rankings.

Let’s illustrate what we have so far with an example. Assume we have a = 5
algorithms and that we measured the performance of each algorithm n = 15 times.
We can store these results in a 5 × 15 matrix. Each row stores the results for one
algorithm and each column is one observation of the performance measure.

t(Y)

## A_1 A_2 A_3 A_4 A_5
## [1,] 11.25802 9.184456 10.91332 9.699683 9.533216
## [2,] 11.44358 9.227654 11.13609 9.632939 9.339878
## [3,] 11.49753 9.979770 10.69170 9.411786 9.480409
## [4,] 11.45181 9.654419 10.87821 9.883699 9.456854
## [5,] 11.34973 9.359485 10.86492 9.697134 9.416884
## [6,] 11.67326 9.681364 10.55226 9.586506 9.064084
## [7,] 11.35203 9.958682 11.04233 9.623864 9.254671
## [8,] 11.77464 10.094786 11.07630 9.704412 9.397412
## [9,] 11.35842 9.629653 10.96289 9.586520 9.082003
## [10,] 11.63193 9.664293 11.18674 8.969936 9.164142
## [11,] 11.82829 9.363114 10.88976 9.625530 9.388907
## [12,] 11.09319 9.807767 10.76145 9.495107 9.426344
## [13,] 11.31520 9.587748 11.12167 9.605600 9.365461
## [14,] 11.34429 9.806837 10.87282 9.684919 9.095553
## [15,] 11.49815 9.856715 11.32392 9.848501 9.052752

From these raw results, we could derive the incidence matrix of our dominance
relation by comparing the mean performance of each algorithm:

I <- matrix(0, nrow(Y), nrow(Y))
rownames(I) <- colnames(I) <- rownames(Y)
for (i in 1:nrow(Y)) {
for (j in 1:nrow(Y)) {
I[i, j] <- mean(Y[i, ]) >= mean(Y[j, ])

}
}
I

## A_1 A_2 A_3 A_4 A_5
## A_1 1 1 1 1 1
## A_2 0 1 0 1 1
## A_3 0 1 1 1 1
## A_4 0 0 0 1 1
## A_5 0 0 0 0 1
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And from that the dominance relation using the relations package (Meyer and
Hornik 2022):

r_mean <- relation(incidence = I)

We can now check if it is a preorder, partial order, or a linear order:

relation_is_preorder(r_mean)

## [1] TRUE

relation_is_partial_order(r_mean)

## [1] TRUE

relation_is_linear_order(r_mean)

## [1] TRUE

relation_is_weak_order(r_mean)

## [1] TRUE

Not surprisingly, we find that the relation is indeed a linear order. Using a small
helper function, we can pretty print the order

show_relation <- function(r) {
classes <- relation_classes(r)
class_names <- sapply(
classes,
function(x) paste0("{", paste(x, collapse = ", "), "}")

)
paste(class_names, collapse = " > ")

}

show_relation(r_mean)

## [1] "{A_1} > {A_3} > {A_2} > {A_4} > {A_5}"

As expected, algorithm A1 dominates all other algorithms since it has the highest
mean performance of 11.4580052.

Let’s see what happens if we use a more nuanced approach using hypothesis tests
to derive our dominance relation
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I <- matrix(0, nrow(Y), nrow(Y))
rownames(I) <- colnames(I) <- rownames(Y)
for (i in 1:nrow(Y)) {
for (j in 1:nrow(Y)) {
I[i, j] <- if (i != j) {
t.test(Y[i, ], Y[j, ],
paired = TRUE,
alternative = "less"

)$p.value > 0.05
} else {
1

}
}

}
r_ht <- relation(incidence = I)
show_relation(r_ht)

## [1] "{A_1} > {A_3} > {A_2, A_4} > {A_5}"

The resulting dominance relation is not a linear order, because it is not antisymmetric
since A2 � A4 but A2 �= A4. It is however still a weak order since it is complete
and transitive.

relation_is_preorder(r_ht)

## [1] TRUE

relation_is_partial_order(r_ht)

## [1] FALSE

relation_is_linear_order(r_ht)

## [1] FALSE

relation_is_weak_order(r_ht)

## [1] TRUE

While a ranking derived from a dominance relation does not give us as many
insights as some of the more advanced techniques based on ANOVA or multiple
comparison tests, it does extract the essential information we need. From a ranking,
we can derive clear preferences for some algorithm or see that a group of algorithms
performs similarly.

The real advantage of the ranking-based approach becomes apparent when we
leave the MASP setting and go over to the MAMP setting. We can view the MAMP



5 Ranking and Result Aggregation 127

setting as p2 MASP settings. For each problem instance πi , . . . , πp, we can derive
a ranking of the algorithms with the above methodology. This amounts to each
problem instance voicing its opinion about which algorithm is preferable.Why is this
advantageous when compared to direct performance measure calculations? Because
in most cases, the scale of our performance measure is specific to the problem
instance. We cannot compare the performance measure observed on one problem
instancewith that on another problem instance.Whatwecan compare are theobtained
ranks. The ranking is scale-invariant and allows us to aggregate the results of many
different MASP scenarios into one MAMP comparison.

5.3 Rank Aggregation

Before we dive into aggregation methods for rankings, let’s look at a motivating toy
example. An ice cream plant is trying to determine the favorite flavor of ice cream
for kids. They let three children rank the flavors based on how well they like them
and get the following result:

chocolate � vanilla � strawberry � cherry � blueberry

vanilla � strawberry � cherry � blueberry � chocolate

strawberry � cherry � blueberry � chocolate � vanilla

Here, the children are the “problem instances” and the ice cream flavors are the
“algorithms” being ranked. If we simply average the rank for each flavor and then
rank the flavors based on this average, we get the following (unsurprising) result:

vanilla � strawberry � cherry � chocolate � blueberry (5.1)

Since blueberries are expensive and kids seem to dislike them, they rank last. In fact,
we might have suspected that and not taken the flavor blueberry into account. If we
remove the blueberry flavor from all three rankings and again calculate the average
ranking, we get

vanilla � strawberry � chocolate � cherry (5.2)

Notice howdeleting the least liked flavor from the list resulted in cherry and chocolate
switching positions. Surely, this is not the kind of behavior we would want. But in
fact, if we remove the other fruit flavor (cherry), we get an average ranking of

vanilla � strawberry � chocolate (5.3)

There appears to be no clear preference anymore!

2 Remember p denotes the number of different problem instances in our MAMP setting.
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We could also view this as a “fruit conspiracy”. Strawberry, cherry, and blueberry,
full well knowing that only strawberry has any chance of winning, are in cahoots
and all enter the competition. By entering all three fruit flavors, the results seem to
be skewed in their favor.

We will see that this is an unfortunate side effect of any so-called Consensus
Method (CM) for rankings. We have seen in the previous section that, depending on
our choice of dominance relation, we arrive at different rankings of our algorithms
under test. This is to be expected, since we are ranking them based on different
definitions of what we consider to be a better algorithm. We will see that there are
different methods for deriving a consensus from our set of rankings and that methods
offer different trade-offs between properties that the consensus fulfills. So, before we
have seen the first consensus method, we need to accept the fact that from this point
forward, we cannot objectively define the best algorithm. Instead, our statement of
which algorithm is best depends on our subjective choice of a CM. But not all hope
is lost. What we can define are criteria we would want, an ideal CM to have, and
then make an informed choice about the trade-off between these criteria.

1. ACM that takes into account all rankings instead ofmimicking one predetermined
ranking is said to be non-dictatorial.

2. A CM that, given a fixed set of rankings, deterministically returns a complete
ranking is called a universal consensus method or is said to have a universal
domain.

3. A CM is independent of irrelevant alternatives, if given two sets of rankings
R = r1, . . . , rk and S = s1, . . . , sk inwhich for every i ∈ 1, . . . , k the order of two
algorithms A1 and A2 in ri and si is the same; the resulting consensus rankings
rank A1 and A2 in the same order. Essentially, this means that introducing a
further algorithm does not lead to a rank reversal between any of the already
ranked algorithms. While this might seem highly desirable (see the above ice
cream example), it is also a very strict requirement.

4. A CM which ranks an algorithm higher than another algorithm if it is ranked
higher in a majority of the individual rankings fulfills the majority criterion.

5. ACM is calledPareto efficient if given a set of rankings inwhich for every ranking
an algorithm ai is ranked higher than an algorithm aj, the consensus also ranks ai
higher than aj.

No consensus method can meet all of these criteria because the independence of
irrelevant alternatives (IIA) and the majority criterion are incompatible. But even
if we ignore the majority criterion, there is no consensus method which fulfills the
remaining criteria (Arrow 1950). So it is not surprising that if we choose different
criteria for our CM, we may get very different consensus rankings.

At this point, we might ask ourselves why bother finding a consensus if it is sub-
jective in the end. And to a certain extent that is true, but it still gives us valuable
insights into which algorithms might warrant further investigation and which algo-
rithms perform poorly. However, we have to take care that no accidental or intentional
manipulation of the consensus takes place. This can easily happen if the IIA is not
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fulfilled. Remember how introducing the irrelevant fruit flavors in our toy ice cream
example changed the consensus drastically. By adding many similar algorithms or
variants of one algorithm, we can skew our analysis and provoke unwanted rank
reversals.

Generally, we can differentiate between positional and optimization-based meth-
ods. Positional methods calculate sums of scores for each algorithm Ai over all
rankings. The final order is determined by the score obtained by each algorithm.
This amounts to

Ai � A j ⇐⇒ si >= s j, Ai � A j ⇐⇒ si = s j

with the score of algorithm Ai given by

si =
p∑

k=1

s(Ai , rπk ).

Here, s denotes a score function and rπk is the ranking inferred from problem instance
πk . The score function takes as arguments an algorithm and a ranking and returns
the score of the algorithm in that ranking.

The simplest score function we might use assigns a value of one to the best
algorithm in each ranking while all other algorithms get a value of zero. Although
this is somewhat intuitive, undesirable consensus rankings can occur. Consider the
situation with two different rankings of three algorithms:

A1 � A2 � A3 and A3 � A2 � A1.

Using the above score function, we would obtain the following scores:

s1 = 1 + 0 = 1 s2 = 0 + 0 = 0 s3 = 0 + 1 = 1

which leads to the consensus ranking

{A1 � A2} � A2.

This is counterintuitive since the two rankings are opposed and we’d expect them to
cancel out and give

{A1 � A2 � A2}.

The Borda count method (de Borda 1781) solves this issue and assigns an algorithm
one point for each algorithm that is not better than

sBC(Ai , r) =
∑

i �= j

I(Ai � A j ).
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In the case of no ties, it reduces the ranks of the data. For our example rankings
above, we get

s1 = 2 + 0 = 2 s2 = 1 + 1 = 2 s3 = 0 + 2 = 2

and the consensus ranking
{A1 � A2 � A2}

which is more intuitive than the previous result. Unfortunately, the Borda method
does not fulfill the majority or the IIA criterion. It is still a popular consensus method
because it can be easily implemented and understood. The main criticism voiced in
the literature is that it implicitly, like all positional consensus methods, assumes a
distance between the positions of a ranking.

A completely different approach is to frame the CM as an optimization problem
where we want to find a ranking that minimizes a function of the distances to all
of the individual rankings. Cook and Kress (1992) give a gentle introduction to this
line of thought and present a wide variety of possible distance functions. Central
to this is a notion of betweenness, expressed by pairwise comparisons. Here, we
will focus on the axiomatically motivated symmetric difference distance function3

originally proposed by Kemeny and Snell (1962), but the general procedure is the
same regardless of the distance function chosen. First, we pick a set C of admissable
consensus rankings. This could be the set of all linear or weak orderings of our
algorithms. Then, we solve the following optimization problem:

argmin
c∈C L(c) = argmin

c∈C

p∑

i=1

d(c, rπi )
�, � ≥ 1.

Setting � = 1 results in what is called a median consensus ranking and � = 2 results
in a mean consensus ranking.

Let’s revisit the ice cream example and see what the consensus is according to
Borda or using the symmetric difference.

show_relation(child1)

## [1] "{chocolate} > {vanilla} > {strawberry} > {cherry} > {blueberry}"

show_relation(child2)

## [1] "{vanilla} > {strawberry} > {cherry} > {blueberry} > {chocolate}"

show_relation(child3)

## [1] "{strawberry} > {cherry} > {blueberry} > {chocolate} > {vanilla}"

3 The symmetric difference counts the number of cases where Ai � A j is contained in one of the
relations but not the other.
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The Borda consensus among the three children is

ranks <- relation_ensemble(child1, child2, child3)
r_borda <- relation_consensus(ranks, "Borda")
show_relation(r_borda)

## [1] "{strawberry} > {vanilla} > {cherry} > {chocolate} > {blueberry}"

and the symmetric difference-based consensus among all linear orderings of the
flavors is

r_sd <- relation_consensus(ranks, "symdiff/L")
show_relation(r_sd)

## [1] "{vanilla} > {strawberry} > {cherry} > {blueberry} > {chocolate}"

We see that the Borda consensus falls into the “fruit-gang trap” and ranks the
strawberry flavor first. The symmetric difference-based consensus on the other hand
ranks vanilla higher than strawberry because in two out of three rankings, it ranks
higher than strawberry.

Unfortunately,we cannot give a general recommendation regarding the introduced
consensus methods as each method offers a different trade-off of the consensus
criteria (Saari and Merlin 2000). The symmetric difference combined with linear or
weak orderings meet the majority criterion and thus cannot meet the IIA criterion
simultaneously. However, on real data, as seen in the ice cream example, they rarely
result in rank reversals if algorithms are added or dropped. The Borda count method
does not fulfill either of these criteria. Saari and Merlin (2000) however showed that
both methods always rank the respective winner above the loser of the other method.

Finally, it is important to note that consensus rankings generally do not admit
nesting in a hierarchical structure. For example, separate consensus rankings could
be of interest for problem instances with specific features. While this certainly is a
valid and meaningful approach, one has to keep in mind that an overall consensus of
these separate consensus rankings does not necessarily have to equal the consensus
ranking directly generated based on all individual rankings.

5.4 Result Analysis

Many of theMachine Learning (ML) andDeepLearning (DL)methods are stochastic
in nature as there is randomness involved as a part of optimization or learning. Hence,
thesemethods could yield different results to the samedata for every run.To access the
performance of themodel, one single evaluationmay not be sufficient. To statistically
evaluate the variance of the obtained results, multiple repeats have to be performed
and the summary statistics of the performance measure are to be reported.

Generally, the performance of the ML and DLmethods can be analyzed consider-
ingmodel quality and runtime. Themodel quality is determined using the RootMean
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Squared Error (RMSE) for the regression models and the Mean Mis-Classification
Error (MMCE) for the classification models as discussed in Sect. 2.2.

Often, these quality metrics are compared among different algorithms to analyze
their performances.Hence, the tuners aim tominimize thesemetrics. As thesemetrics
can be affected by the algorithm’s and tuner’s stochastic nature, the experiment has to
be repeated for a specific number of times. It enables better estimation of the model
quality parameter using descriptive and Exploratory Data Analysis (EDA) tools.
Also, statistical inference is highly recommended in understanding the underlying
distribution of the model quality parameters.

EDA is a statistical methodology for analyzing data sets to summarize their main
characteristics (Tukey 1977; Chambers et al. 1983). The EDA tools are employed to
analyze and report the performance of theMLmodels. This includes both descriptive
and graphical tools. The numerical measures include reporting the mean, median,
best, worst, and standard deviation of the performance measures of the algorithms
obtained for certain number of repeats. They measure the central tendency and the
variability of the results. The graphical tools like histograms, and box and violin
plots provide information about the shape and the distribution of the performance
measures, respectively. These statistics are necessary, but are not always sufficient
to evaluate the performances. Kleijnen (1997), Bartz-Beielstein et al. (2010), Myers
et al. (2016),Montgomery (2017), andGramacy (2020) are good startingpoints.More
information about various techniques and best practices in analyzing the performance
measures can be found in Bartz-Beielstein et al. (2020b).

5.5 Statistical Inference

Statistical inferencemeans drawing conclusions frompartial information of a popula-
tion about thewhole population usingmethods based on data analysis and probability
theory. Statistical inference is recommended in making decisions about identifying
the best algorithm and tuner. The key ingredient of statistical inference is hypothesis
testing (Neyman 1950). As a part of pre-data analysis, the null hypothesis H0 can be
formulated as “There is no statistically significant difference between the compared
algorithms”, while the alternative hypothesis H1 states that there exists a statistically
significant difference between the compared algorithms. Hypothesis testing will be
outlined in Sect. 5.6.1.

The hypothesis testing can be classified into parametric and non-parametric tests.
For the case of parametric tests, the distributional assumptions have to be satisfied,
one of which is Normal, Independent and Identically Distributed (NIID) data. If
the distributional assumptions are not met, non-parametric tests are employed. For
the case of single pairwise comparison, the most commonly used parametric test is
the t-test (Sheskin 2003) and its non-parametric counter-part is the Wilcoxon-rank
sum test (Hart 2001). And in case of multiple comparisons, one commonly used
parametric test is the one-way ANOVA (Lindman 1974), while its non-parametric

http://dx.doi.org/10.1007/978-981-19-5170-1_2
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test counter-part is the Kruskal-Wallis rank sum test (Kruskal and Wallis 1952). The
following sections analyze parametric tests.

5.6 Definitions

5.6.1 Hypothesis Testing

Generally, hypothesis testing can be either one-sided or two-sided:
H0 : τ ≤ 0 versus H1 : τ > 0 (one-sided) or H0 : τ = 0 versus H1 : τ �= 0 (two-
sided), where H0 and H1 denote the corresponding hypotheses that will be explained
in this section. For the purpose of performance comparison of the two methods,
we consider a one-sided test and question whether method A is better than method
B. Let p(A) and p(B) represent the performance of method A and B, respec-
tively. If we consider a minimization problem, the smaller the values the bet-
ter the performance of the method. For method A to be better than method B,
p(A) < p(B) ⇔ p(B) − p(A) > 0 ⇔ τ > 0.

To state properties of the hypothesis, the symbol μ will be used for the mean,
whereas the symbol τ denotes the difference between two means. For example,
τ = μ1 − μ0 or variations of the mean, e.g., τ = μ + �.

Definition 5.2 (One-sided Hypothesis Test) The hypothesis is then formulated as

H0 : τ ≤ 0 versus H1 : τ > 0, (5.4)

where τ denotes the range of possible values.

Definition 5.3 (Test Statistic) The test statistic d(Y ) reflects the distance from H0

in the direction of H1. Assuming the data follow a normal distribution, i.e., Y ∼
N(μ0, σ

2), the test statistic reads

d(Y ) = √
n(Ȳ − μ0)/σ. (5.5)

In the remainder of this chapter, we assume that data are NIID.

Definition 5.4 (Cut-off Point: c1−α) The c1−α is a threshold value or the cut-off
point.

Definition 5.5 (Upper-tail of the StandardNormalDistribution: u1−α) u1−α denotes
the value of the normal distribution which cuts off the upper-tail probability of α.

Based on the test statistic from Eq.5.5, we can calculate the cut-off point
c1−α: d(Y ) = √

n(Ȳ − μ0)/σ = u1−α ⇔ Ȳ = μ0 + (u1−α)σ/
√
n = c1−α. When a

test statistic is observed beyond the cut-off point, d(Y ) > c1−α , we reject the H0 at
a significance level α. Otherwise the H0 is not rejected.

This hypothesis test can lead to two kinds of errors based on the decision taken.
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Fig. 5.1 Hypothesis test

Definition 5.6 (Type I and II Errors) They are the Type I and the Type II errors,
which are pre-specified before the experiment is carried out.

1. A Type I error occurs while incorrectly rejecting the null hypothesis when it is
true. The probability of committing a Type I error is called the significance level
and is denoted as α. In other words, α is the acceptable probability for Type I
error to occur, which is decided by the user. The Type I error can be represented
as shown in Fig. 5.1. α = PH0(d(Y ) > c1−α).

2. AType II error occurs while incorrectly rejecting the alternative hypothesis, when
it is true: β = PH1(d(Y ) ≤ c1−α).

The notation PH (y) represents the probabilistic assignments under a model, i.e.,
the probability of y under the hypothesis H . The power (1 − β) is the probability of
correctly rejecting the null hypothesis when it is false.

Definition 5.7 (Paired Samples) Two samples X1 and X2 are considered paired, if
there is a relation that assigns each element in X1 uniquely to one element in X2.

Example: Paired Samples

Therefore, we consider results from running deterministic optimization methods A
and B paired, if they are using the same starting points (the starting points can be
used for indexing the sample points). The starting points are randomly generated,
using the same seed for each sample.
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Example: Conjugate Gradient versus Nelder-Mead

We will consider the performance differences between two optimization methods.
To enable replicability, we have chosen two optimization methods (optimizers) that
are available “out of the box” in every R installation via the optim function. They
are described in the R help system as follows (R Core Team 2022):

1. Method Conjugate Gradient (CG) is a conjugated gradients method based
on Fletcher and Reeves (1964). Conjugate gradient methods will generally be
more fragile than the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method,
but as they do not store a matrix they may be successful in much larger optimiza-
tion problems.

2. Method Nelder and Mead Simplex Algorithm (NM) uses only function values
and is robust but relatively slow (Nelder and Mead 1965). It will work reasonably
well for non-differentiable functions.

CG andNMwill be tested on the two-dimensional Rosenbrock function (Rosenbrock
1960). The function is defined by

f (x1, x2) = (1 − x1)
2 + 100(x2 − x21 )

2. (5.6)

It has a global minimum at (x1, x2) = (1, 1). To keep the discussion focused, assume
that results from n = 100 runs of each method are available, i.e., in total, 200 runs
were performed. Let yi, j denote the result of the j th repetition of the i th method,
i.e., the vector y1,· represents 100 results of the CG runs.

We will consider the performance differences d j = y1, j − y2, j , j = 1, . . . , n,
with corresponding mean d̄ = 9.02. Based on

Sd =
(∑n

j=1(d j − d)2

n − 1

)1/2

(5.7)

we can calculate the sample standard deviation of the differences as Sd = 30.73.
As d̄ is positive, we can assume that method NM is superior. We are interested to

see whether the difference in means is smaller or larger than μ0 and formulate the
test problem as

H0 : μ ≤ μ0 versus H1 : μ > μ0,

in our case: μ0 = 0. And, if H0 is rejected then it signifies that NM outperforms CG
for the given test function.

We will use the test statistic as defined in (5.5) which follows a standard normal
distribution if H0 is true (μ ≤ μ0). Then

P

(
Y − μ0

σ/
√
n

> u1−α

)
≤ α, otherwise P

(
Y − μ0

σ/
√
n

> u1−α

)
> α, (5.8)

where u1−α denotes the cut-off point; see Definition 5.5.
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The test T (α) results in rejecting the null hypothesis H0 if d(y) > u1−α and in
not rejecting H0 otherwise. For α = 0.025 and u1−α = 1.96, we get d(y) = (y −
μ0)/(σ/

√
n) = 2.93 > 1.96 = u1−α , i.e., H0 will be rejected.

A sample size of n = 100 was chosen without any statistical justification: it
remains unclear whether ten samples might be sufficient or whether one thousand
samples should have been used. The power calculation, which will be discussed next,
provides a proven statistical tool to determine adequate sample sizes for planned
experimentation.

5.6.2 Power

The power function that is used to calculate the power for several alternatives μ1 is
defined as

Definition 5.8 (Power Function)

Pow(μ1) = Pμ=μ1

(
Y − μ0

σ/
√
n

> u1−α

)
= 1 − 	

(
u1−α − μ1 − μ0

σ/
√
n

)
(5.9)

where μ1 = μ0 + � and � denotes the relevant difference.

In our example, we set up a one-sided test with H0 : μ0 = 0 and the following
parameters:

1. significance level: α = 0.025
2. beta (1-power): β = 1 − 0.8 = 0.2
3. relevant difference: � = 10
4. between-sample standard deviation: σ = 30.73.

The relationship between power and sample size is illustrated in Fig. 5.2.

5.6.3 p-Value

The p-value quantifies how strongly the data contradicts the null hypothesis, and
it allows others to make judgments based on the significance level of their choice
(Mayo 2018; Senn 2021).

Definition 5.9 (p -value) A p-value is the probability of observing an outcome as
extreme or more extreme than the observed outcome ȳ if the null hypothesis is true.
It is defined as the α′ value with
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Fig. 5.2 Power for n = 100 (black) and n = 200 (red) for varying μ1 values. This figure illustrates
that larger sample sizes result in higher power

d(Y ) > u1−α′ ⇔ α′ = 1 − 	
(√

n(ȳ − μ0)/σ
)
,

under the assumption that H0 is true.

If an effect τ measures the true difference between the performance of two methods
and y is a statistic used to measure the difference between methods, a one-sided
p-value can be defined as

Pτ=0(y ≥ ȳ) (5.10)

where ȳ is the observed value of the statistic if H0 is true. The p value can be used
for going beyond the simple decision reject or not reject.

Senn (2002) claims that p-values are a perfectly reasonable way for scientists to
communicate the results of a significance test, even when making decisions rather
than conclusions. Small p-values indicate that either H0 is not true or a very unlikely
event has occurred (Fisher 1925).

Example: CG versus NM continued

Considering the CG versus NM example (Sect. 5.6.1), the observed difference d̄ =
9.02, and the corresponding p-value of 0.0017 is obtained.

5.6.4 Effect Size

The effect size is an easy scale-free approach to quantifying the size of the perfor-
mance difference between the two methods.

Definition 5.10 (Effect size) The effect size is the standardized mean difference
between the two methods, say A and B (Cohen 1977):
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Cohen’s d = ȳA − ȳB
Sp

(5.11)

Sp =
√

(nB − 1)s2B + (nA − 1)s2A
nA + nB − 2

, (5.12)

where ȳA and ȳB is the sample mean of the method A and B, respectively. The Sp

is the pooled standard deviation, nA, nB are the sample size of each method, and
sA, sB are the standard deviation of each method. As a guideline, Cohen suggested
effect size as small (0.2), medium (0.5), and large (0.8) but with a strong caution to
the applicability in different fields.

Hedges and Olkin (1985) identified that Cohen’s d is biased and it slightly over-
estimates the standard deviation and introduced a correction measure as

Hedge’s g = 1 − 3

4(nA + nB) − 9
× Cohen’s d. (5.13)

Example: CG versus NM continued

Again, considering the CG versus NM example (Sect. 5.6.1), Cohen’s d and Hedge’s
g, which are the standardized mean difference between the two methods, can be
calculated using (5.11) and (5.13) as d = 0.415 and g = 0.4134, respectively. Both
values indicate that the observed mean difference is of a smaller magnitude.

5.6.5 Sample Size Determination and Power Calculations

Adequate sample size is essential for comparing algorithms. Even for deterministic
optimizers, it is recommended to perform several runs with varying starting points
instead of using results from one run of each algorithm. But “the more the merrier” is
not efficient in this context, because additional runs incur additional costs. Statistical
inference provides tools for tackling this trade-off between cost and effectiveness.

5.6.5.1 Five Basic Factors

Theusual point of view is that the sample size is the determined function of variability,
statistical method, power, and difference sought. We consider a one-sided test as
defined in Eq.5.4.

Definition 5.11 (Five basic factors) While discussing sample size requirements,
Senn (2021) introduced the following conventions regarding symbols:

α: the probability of a type I error, given that the null hypothesis is true.
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β: the probability of a type II error, given that the alternative hypothesis is true.
�: the difference sought. In most cases, one speaks of the “relevant difference” and

this in turn is defined “as the difference one would not like to miss”. Notation:
In hypothesis testing, � denotes a particular value within the range of possible
values τ .

σ : the presumed standard deviation of the outcome.
n: the number of runs of each method. Because two methods are compared; the

total number is 2 × n.

5.6.5.2 Sample Size

Based on the definition of the type II error rate for 1 − β for μ1, the sample size can
be calculated for the type II error rate, i.e.,

	

(
u1−α − μ1 − μ0

σ/
√
n

)
= β ⇔ n = σ 2

(μ1 − μ0)2
(u1−α − uβ)2 = σ 2

�2
(u1−α − uβ)2,

which gives an estimate of the required sample size n = n(α, β, σ, μ0, μ1) =
n(α, β, σ,�).

Any four factors from Definition 5.11 are enough to determine the fifth factor
uniquely. First, we consider the formula for sample size, n as a function of α, β, �,
and σ . For a one-sided test of size α, the (approximate) formula for sample size is

n ≈ 2 × (u1−α + u1−β)2σ 2/�2, (5.14)

where u1−α denotes the value of the normal distribution which cuts off the upper-tail
probability of α.

Hence, for the CG versus NM example (Sect. 5.6.1), if the relevant difference is
� = 10 then approximately 148 completing runs per method are required.

Example: Sample size determination

Compare two optimization methods, say A = CG and B = NM. Therefore, we set
up a one-sided test with the following parameters:

1. significance level: α = 0.05
2. beta (1-power): β = 1 − 0.8 = 0.2
3. relevant difference: � = 200
4. between-sample standard deviation: σ = 450.

We will use the function getSampleSize from the R package SPOT to determine
the sample size n. All calculations shown in this chapter are implemented in this
package.
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library("SPOT")
nsamples <- round(getSampleSize(
mu0 = 0, mu1 = 200,
alpha = 0.05, beta = 0.2,
sigma = 450,
alternative = "one.sided"

), 0)

Based on Eq. 5.14, approximately n = 63 completing runs per method are
required.

Although sample size calculation appears to be transparent and simple, there are
several issues with this approach that will be discussed in the following.

5.6.6 Issues

In this section, we will consider issues with sample size determination, with power
calculations, and with hypotheses and wrong conclusions from hypothesis testing.
Our presentation (and especially the examples) is based on the discussion in Senn
(2021).

Issues with sample size determination can be caused by the computation of the
standard deviation, σ : This computation is a chicken or egg dilemma, because the
between-sample standard deviationwill be unknownuntil the result of the experiment
is known. But the experiment must be planned before it can be run. Furthermore,
Eq. 5.14 is only an approximate formula, because it is based on the assumption that
the standard deviation is known. The experiments we use are based on using an
estimate obtained from the examined sample.

There is no universal standard for a relevant difference �. This creates another
problem in determining sample size, since significant differences are application-
dependent.

Errors can cause issues with sample size determination, because the levels of α

and β are relative: α is an actual value used to determine significance in analysis,
while β is a theoretical value used for planning (Senn 2021). Frequently, the error
values are chosen as α = 0.05 and β = 0.20. However, in some cases, the value of β
ought to be much lower, but if only a very small number of experiments are feasible,
a very low value of β might not be realistic. The same considerations are true for α,
because α and β cannot be reduced simultaneously without increasing the sample
size.

In practice, sample size calculation might be flawed. For example, n = 10 or
n = 100 are popular sample sizes, but they are often chosenwithout any justification.
Some authors justify their selection by claiming that “this is done by everyone”.
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In some situations, there is enough knowledge to plan an experiment, i.e., the
number of experiments to be performed is known. Nuclear weapons tests are an
extreme example of this situation.

Furthermore, Senn (2021) claims that the sample size calculation can be “an
excuse for a sample size and not a reason”. In practice, there is a usually undesirable
tendency to “adjust” certain factors, notably the difference sought and sometimes
the power, in light of practical sample size requirements.

Tip: Sample Size Determination

Perform pre-experimental runs to compute the (approximate) sample size before the
full experiment is started.

In addition to issues with sample size determination, also issues with power cal-
culations might arise. The fact that a sample size has been chosen which seemingly
has 80% power does not guarantee that there is an 80% chance that there is an effect
(alternative H1 is true) (Senn 2021). Even if the whole experimental setup and pro-
cess are correct, external failures can happen and that is outside of the experimenter’s
control: The methods or the algorithm may not work. Importantly, if an algorithm
does not work we must recognize this; see the example in Sect. 5.8.2.1. But even if
the algorithm is successful, it may not produce a relevant difference. Or, looking at
another extreme, the algorithm might be better than planned for—so the sample size
could have been chosen smaller. In addition, experimental errors might occur that
are not covered by the assumptions made for the power (sample size) calculation.
The calculations are made under the assumption that the experiment is performed
correctly. Or, as Senn (2021) states: Sample size calculation does not allow for “acts
of God” or dishonest or incompetent investigators. Thus, although we can affect the
probability of success by adjusting the sample size, we cannot fix it.

Finally, there are issues with hypotheses and wrong conclusions based on hypoth-
esis testing. Selecting the correct hypothesis pair, e.g., H0 : τ ≤ 0 versus H1 : τ > 0
(one-sided) or H0 : τ = 0 versus H1 : τ �= 0 (two-sided) is not always obvious.

In the context of clinical testing, Senn (2021) states that the following statement
is a surprisingly widespread piece of nonsense:

If we have performed a power calculation, then upon rejecting the null hypothesis, not only
may we conclude that the treatment is effective but also that it has a clinically relevant effect.

Consider, for example, the comparison of an optimization method, A with a
second one, say method B, based on a two-sided test. Let τ be the true difference in
performance (A versus B). We then write the two hypotheses,

H0 : τ = 0 versus H1 : τ �= 0. (5.15)
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Fig. 5.3 Power as a function of the relevant difference � for a two-parallel-group experiment
(black = 40, red = 80, and green = 160 runs). If the relevant difference � is 200, n = 80 runs per
method are needed for 80% power

By rejecting the null hypothesis, we are in favor of the alternative, H1, which states
that there is a non-zero difference. The sign of this difference might indicate whether
A is superior or inferior to B.

Replacing Eq.5.15 with

H0 : τ = 0 versus H1 : τ ≥ � (5.16)

would imply that we know one algorithm is better than the other before the exper-
iments are performed. But this is usually not known prior to the experiment—the
whole point of the experiment is to determine which algorithm performs better.
Therefore, we will consider a one-sided test as specified in Eq. 5.4. This procedure
will be exemplified in Sect. 5.8.

Wehave highlighted some important issueswith sample size determination, power
calculations, and hypotheses tests. Senn (2021) mentions many more, and the reader
is referred to his discussion.

Tips

Plotting the power function for an experiment is recommended. This is illustrated in
Fig. 5.3.

Last but not the least, issues with the “large n problem”, i.e., the topic “large
versus small samples”, should be considered. Senn (2021), Sect. 13.2.8 states:

1. other things being equal, significant results are more indicative of efficacy if
obtained from large experiments rather than small experiments.
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2. But consider: if the sample size is increased, not only is the power of finding
a relevant difference, �, increased, but the smallest detectable difference also
decreases.

5.7 Severity

5.7.1 Motivation

Severity has been proposed as an approach to tackle the issues discussed in Sect. 5.6.6
by philosopher of science Mayo (1996). To explain the concept of severity, we start
with an example that was taken from (Senn 2021).

Example: High Power

Consider an algorithm comparison using a one-sided test with α = 0.025 but with a
very high power, say 99%, for a target relevant difference of � = 200. The standard
deviation of the differences in themean is taken to be 450. Note, except for drastically
reducing the error of the second kind from β = 0.2 down to β = 0.01, this example
is similar to the Example “Sample Size Determination” in Sect. 5.6.5. A one-sided
hypothesis test as specified in Eq. 5.4 with the following parameters is performed:

1. significance level: α = 0.025
2. power: 1 − β = 0.99
3. relevant difference: � = 200
4. between-sample standard deviation: σ = 450.

A standard power calculation, see Eq. 5.14, suggests n ≈ 186 samples for each
configuration, which we round up to 2 × 200 = 400 in total. This value gives a
standard error for the difference of 450 × √

2/200 = 45.
We run the experiments (assuming unpaired, i.e., independent samples) and the

result is significant, i.e., we have observed a difference of ȳ = 90.We get the p-value
0.0231.

How canwe interpret the results from this experiment, e.g., the p-value?Although
the p-value of 0.0231 is statistically significant, i.e., p-value < α, we cannot con-
clude that the H1 is true. The probability of occurrence of a type I error has to be
acknowledged. The situation is shown in Fig. 5.4. Observing a ȳ = 90 is more likely
under H0 than under H1. This is evident by comparing the height of the density curve
at ȳ = 90 both under the H0 and H1, respectively. Hence, this is more likely to be
the case of a type I error. Although the power is relatively high (1 − β = 0.99), it
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Fig. 5.4 Severity (red), type I error rate (gray), and power (blue). Since ȳ is larger than c1−α , the
null hypothesis is rejected

would be an error to claim that the experiment has an effect � = μ1 − μ0 = 200.4

There are two reasons:

1. This test did not make extensive use of ȳ, the actual difference observed. The
actual difference observed is only used to calculate the test statistic and to decide
whether the null hypothesis should be rejected.

2. Going beyond the simple decision reject or not reject, the p value can be used.
The actual difference observed, ȳ = 90, is closer to 0 than to 200. Because 90 is
farther away from 200 than from 0, this is far from good evidence that the true
difference is as large as the relevant difference of 200.

Senn (2021) proposed ways for solving this problem, e.g., using a so called point-
estimate of the true difference together with associated confidence limits, or using
an irrelevant difference approach, or using severity.

5.7.2 Severity: Definition

Severity is a measure of the plausibility of a result which considers the decision and
the data: after the decision is made, the severity of rejecting or not rejecting the null
hypothesis can be calculated. It uses post-data information and provides means for
answering the question:

How can we ensure that the results are not only statistically but also scientifically relevant?

The concept of Severity was introduced by Mayo and Spanos (2006) (see also Mayo
2018):

4 Note: μ0 + � = μ1.



5 Ranking and Result Aggregation 145

Table 5.1 Power (1 − β), significance level (α), p-value, and severity. PH0 denotes the probability
under the assumption that H0 is true, whereas PH1 denotes the probability under the assumption
that H1 is true

1 − β α p-value Severity

PH1 (Y > c1−α) PH0 (Y > c1−α) PH0 (Y > ȳ) Snr : PH1 (Y > ȳ)

Sr : PH1 (Y ≤ ȳ)

PH1 (d(Y ) > u1−α) PH0 (d(Y ) > u1−α) PH0 (d(Y ) > d(ȳ)) Snr :
PH1 (d(Y ) > d(ȳ))

Sr : PH1 (d(Y ) ≤ d(ȳ))

The result that hypothesis H is not rejected is severe only if it is very unlikely that this result
will also occur if H is false.

Severity offers a meta-statistical principle for evaluating the proposed statistical
conclusions. It shows how well-tested (not how likely) hypotheses are. It is therefore
an attribute of the entire test procedure. The severity of the test and the resulting
outcome can be evaluated.

Definition 5.12 (Severity) Severity is defined separately for the non-rejection (Snr )
and the rejection (Sr ) of the null hypothesis as in (5.17).

Snr = PH1(d(Y ) > d(y))

Sr = PH1(d(Y ) ≤ d(y)). (5.17)

The Snr values increasemonotonically from 0 to 1 as a function of τ . The Sr values
decrease monotonically from 1 to 0 as a function of τ . The closer the value is to 1,
the more reliable is the decision made with the hypothesis test. The key difference
between power and severity is that severity depends on the data and the test statistic,
i.e., d(y) instead of c1−α .

The severity is an analogous probability to Eq. 5.10 that considers non-zero τ

values. The severity of rejection, which considers values in the other direction, y ≤ ȳ
is calculated as

Sr (τ
′) = Pτ=τ ′(y ≤ ȳ), (5.18)

if H0 is rejected and Snr (τ ′) = Pτ=τ ′(y ≥ ȳ), otherwise. Table 5.1 shows the relations
between power (1 − β), significance level (α), p-value, and severity.

Example: High Power (Continued)

Figure 5.5 plots the severity for the given example against every possible value of
the true difference in the performance τ (Senn 2021).

Labeled on the graph are values of τ = ȳ, the observed difference, for which the
severity is 0.5, and τ = �, the value used for planning. The severity of rejecting H0

is only 0.0075 for this value. Figure 5.5 exhibits that τ > 200 has a very low severity.
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Fig. 5.5 Severity of rejecting H0, SR as a function of � = μ1 − μ0. SR(0) = 1 − p

The p-value, here 0.0231, is smaller than α = 0.025. Note, in case of rejection
H0, severity is 1 − p for � = μ1 − μ0 = 0. The severity of not rejecting the null
hypothesis is the same as the p-value for � = 0.

Example: Conjugate Gradient versus Nelder-Mead (Continued)

Let us now revisit the CG versus NM example (Sect. 5.6.1) and calculate the severity.
Given the observed difference 9.02 and sample size n=100, the decision based on the
p-value of 0.0017 is to reject H0. Considering a target relevant difference of� = 10,
the severity of rejecting H0 is 0.37 and is shown in the left panel in Fig. 5.6. The
right panel in Fig. 5.6 shows the severity of rejecting H0 as a function of τ . Based
on the result of the hypothesis test for the given data, NM seems to outperform CG.
And, claiming that the true difference is as large as or larger than 10 has a very low
severity, whereas differences smaller than 7 are well supported by severity.

5.7.3 Two Examples

We will use two illustrative examples for severity calculations that are based on the
discussions in Mayo (2018), Bönisch and Inderst (2020), and Senn (2021). In each
example, 100 samples from a N(μ, σ 2)-distributed random variables are drawn,
but with different means. The first example represents a situation in which the true
difference is small compared to the variance in the data, whereas the second example
represents a situation in which the difference is relatively large. The first example
uses the sample mean μ1 = 1e − 6 (data set I), the second sample μ2 = 3 (data set
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Fig. 5.6 Left: Severity of rejecting H0 (red), power (blue) for a target relevant difference � = 10.
Right: Severity of rejecting H0 as a function of τ
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Fig. 5.7 Data sets I and II. Histograms showing artificial data. Left: mean = 1e-6; right: mean =
3. Standard deviation σ = 10 in both cases

II). The same standard deviation (σ = 10) is used in both cases. Histograms of the
data are shown in Fig. 5.7.

In both examples, a one-sided test is performed as defined in (5.4) with the fol-
lowing parameters:

1. significance level: α = 0.05
2. power: 1 − β = 0.8
3. relevant difference: � = 2.5
4. between-sample standard deviation: σ = 10.
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Fig. 5.8 Severity of not rejecting the null for a target relevant difference � = 2.5. Right: Severity
of not rejecting H0 as a function of τ

Example: Data set I: Severity of not rejecting the null hypothesis

First, using data set I (100 samples from a N(μ1, σ
2) distributed random variable,

with μ1 = 1e − 6 and σ = 10), the severity of not rejecting the null hypothesis
is analyzed. Assume, the value ȳ = 1.0889 was observed, i.e., a statistically not
significant difference (p-value 0.1381046 > 0.05) is observed. But it would be a
mistake to conclude from this result that the size of the difference is zero.

Figure 5.8 illustrates this situation by applying the concept of severity. The right
panel in Fig. 5.8 provides a graphic depiction of answers to the following question
for different values of τ : if the actual difference is at least τ , what is the probability
of the observed estimate being higher than the actually observed value of ȳ = 1.089?

The greater this probability, the stronger the observed evidence is against that
particular τ value. For two numbers, the answer is already known: for τ = 0, namely
0.14, which is the p-value, and for τ = ȳ, which is 50%. The p-value indicates that
the null hypothesis of “no difference” cannot be rejected for α = 0.05.

Because of the high variance in the data, the histogram is relatively broad (see
the left panel in Fig. 5.7). This is now directly reflected in the assessment of other
possible τ values (other initial hypotheses for a difference). For example, the severity
of the evidence only crosses the threshold of 80% at a τ -value of approximately 2.
This can be seen on the vertical axis in the right panel in Fig. 5.8. Therefore, if
the actual difference was at least 2, then there would be a probability of 80% of
estimating a value higher than the observed value 1.09. Even if the null hypothesis
is not rejected, it cannot be concluded that the magnitude of the difference is zero.
With high severity (80%), it can be concluded that the differences larger than 2 are
unlikely. The right panel in Fig. 5.8 shows the severity of evidence (vertical axis) for
all initial hypotheses (horizontal axis).
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Table 5.2 Data set I: result analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0.14 H0 not
rejected

0.8037649 0.1212286 0.1212286 � ≥ 2 are
well supported

The result statistic is presented in Table 5.2. The effect size suggests that the
difference is of a smaller magnitude.

Example: Data set II: Severity of rejecting the null hypothesis

Data set II, with μ2 = 3 and σ = 10, is used to analyze the severity of rejecting the
null hypothesis, i.e., the statistically significant estimate of ȳ = 2.62, resulting in the
null hypothesis (of “there is no difference”) being rejected, is considered.

Asserting this is evidence for a difference of exactly ȳ = 2.62 is not justified.
Besides the null hypothesis, no further hypotheses were tested, e.g., “is the difference
exactly 2.62?” or “is the difference at least 2.62?”. Statistically, it was shown that
there is a very low probability that there is no positive difference. So the evidence
strongly (“severely”) argues against the lack of an effect.

In the following, the test result is used to evaluate further hypotheses, e.g., that
the difference is “not higher than at most τ ,” where τ represents a possible difference
of, say, ȳ = 4 or ȳ = 5. The central question in this context is: How strongly does
the experimental evidence speak against such an alternative null hypothesis, i.e., a
difference of at most τ? This situation is comparable to the question of whether the
null hypothesis can be rejected with sufficient certainty. This question can only be
answered with a probability of error that can be estimated.

The following results were inspired by Bönisch and Inderst (2020), who present a
similar discussion in the context of “damage estimation”. For τ = 0, the probability
that the observed estimate is less than the observed value ȳ = 2.62 is 1 − p = 99.56
%. Applying these results to other hypotheses about the value of τ leads to results
shown in Fig. 5.9: For example, if τ = 1.75, the probability of observing a value
smaller than ȳ is 80.84%. For τ = 2.5, the probability would decrease to 54.85%.
Consider—similar to the power value of 0.8—an 80% threshold as a minimum
requirement for severity, then an estimate of ȳ = 2.62 that there is a sufficient severity
against a difference up to τ = 1.75 is obtained (Table5.3).
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Fig. 5.9 Severity of rejecting H0 (red), power (blue), and error (gray) for a target relevant difference
� = 2.5. Right: Severity of rejecting H0 as a function of τ

Table 5.3 Data set II: result analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.8037649 0.2737213 0.2737213 � ≤ 2 are
well supported

5.7.4 Discussion of the 80% Threshold

Although a threshold of 80% was used in Fig. 5.9, it remains unclear at which
threshold the level should be set. Demanding a severity of 90% has the consequence
that even the assumption of a difference of at least 1.9 is not supported. Given that
severity should also take into account domain-specific knowledge, a general value
cannot be recommended. Visualizations such as Fig. 5.9 can help to get objective and
rational results.

5.7.5 A Comment on the Normality Assumption

Wediscussed the extended classical hypothesis testingmechanismwithMayo’s error
statistics. Central tool in error statistics is severity, which allows a post-data analysis.
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Severity can be applied to inferential statistics, no matter what the underlying
distribution is Spanos (1999). We have discussed the normal distribution, because
we will apply severity analysis to benchmarking (Sect. 5.8). In this context, the
normality assumption holds, because most of the examples in this chapter use 50 or
even more samples. The normality assumption is sometimes misunderstood: it does
not require the population to resemble a normal distribution. It requires the sampling
distribution of the mean difference should be approximately normal. In most cases,
the central limit theoremwill impart normality to the (hypothetical) distribution. This
happens even to moderate n values, when the underlying population is not extremely
asymmetric, e.g., caused by extreme outliers.

5.8 Severity: Application in Benchmarking

Now thatwehave the statistical tools available, i.e., power analysis plus error statistics
(severity), we can evaluate their adequacy for scenarios in algorithm benchmarking.

The following experiments demonstrate how to perform a comparison of two
algorithms. Our goal is not to provide a full comparison of many algorithms on
many problems, i.e., MAMP, but to highlight important insights gained by severity.
Therefore, two algorithms and three optimization problems were chosen. To cover
the most important scenarios, three independent MASP studies will be performed.
Each study compares two algorithms, say A and B, on one problem instance.

The function makeMoreFunList from the R package SPOTMisc generates
a list of functions presented in More et al. (1981), which is one of the most cited
benchmark suites in optimization with more than 2000 citations. This list can be
passed to the runOptim function, which performs the optimization. runOptim
uses the arguments from Table 5.4.

We will compare the optimization methods CG and NM on the Rosenbrock, the
Freudenstein and Roth, and Powell’s Badly Scaled test function that were defined in
More et al. (1981).

Table 5.4 runOptim arguments

Parameter Description Default value

fl Function list

method The method used by optim: “Nelder-Mead”, “BFGS”,
“CG”, “L-BFGS-B”, “SANN”, or “Brent”.

“Nelder-Mead”

n Repeats. If n > 1, different start points (randomized) will
be used

2

k Subset of benchmark functions All implemented
functions

verbosity Level of information to be shown 0
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5.8.1 Experiment I: Rosenbrock

5.8.1.1 Pre-experimental Planning

In our first experiment, we will use the Rosenbrock function; see Eq.5.6. This is
the first function in More et al. (1981)s study, so we will pass the argument k = 1
to the runopt() function. To estimate the number of function evaluations, a few
pre-experimental runs of the algorithms are performed. These pre-experimental runs
are also necessary for testing numerical instabilities, expected behavior, and correct
implementations. In our case, n = 20 pre-experimental runs were performed.

library("SPOT")
set.seed(1)
k <- 1 # More function no. 1
n0 <- 20 # Pre-experimental runs
moreFl <- makeMoreFunList()
resCG0 <- runOptim(
fl = moreFl,
method = "CG",
n = n0,
k = k

)
resNM0 <- runOptim(
fl = moreFl,
method = "Nelder-Mead",
n = n0,
k = k

)

A data.frame with 20 observations is available for each algorithm, e.g., for CG:

str(resCG0)

## ’data.frame’: 20 obs. of 3 variables:
## $ f: num 1 1 1 1 1 1 1 1 1 1 ...
## $ r: num 1 2 3 4 5 6 7 8 9 10 ...
## $ y: num 0.10644 0.0686 0.00577 0.08434 3.65499 ...

Looking at the summary of the results is strongly recommended. R’s summary
is the first choice.

summary(resCG0$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000939 0.068510 0.080510 0.549287 0.119892 3.654986

summary(resNM0$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.900e-08 5.740e-07 1.439e-06 1.622e-04 3.233e-06 3.206e-03
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The summaries indicate that NM is superior and that CG has some outliers. A
graphical inspection is shown in Fig. 5.10. Taking care of extreme outliers is recom-
mended in further analysis.

We are interested in the mean difference in the methods’ performances. The pre-
experimental runs indicate that the difference is ȳ = 0.55. Because this value is
positive, we can assume that method NM is superior. The standard deviation is sd =
1.14. Based on Eq. 5.14, and with α = 0.05, β = 0.2, and� = 0.5, we can determine
the number of runs for the full experiment with the getSampleSize() function.

For a relevant difference of 0.5, approximately 65 completing runs per algorithm
are required. Figure 5.11 illustrates the situation for various � and three n values.
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Fig. 5.10 Results from CG on Rosenbrock. Histogram to inspect outliers
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Fig. 5.11 Rosenbrock (function 1). Power as a function of the relevant difference � for a two-
parallel-group experiment (black = 40, red = 80, and green = 160 runs). If the relevant difference
is 0.5, n = 160 runs per algorithm are needed for 80% power
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Although we do not know any “true” relevant difference for artificial (dimension
less) test functions, we consider the distance � = 0.5 as relevant and, to play safe,
choose n = 80 algorithm runs for the full experiment.

5.8.1.2 Performing the Experiments on Rosenbrock

The full experiments can be conducted as follows. The 20 results from the pre-
experimental runs will be “recycled”, only 60 additional runs must be performed.
How to combine existing results with new ones was discussed in Sect. 4.5.3. The
corresponding code is similar to the code that was used for the pre-experimental
experiments in Sect. 5.8.1.1.

summary(resCG$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000053 0.037231 0.079467 0.681190 0.107427 4.332730

summary(resNM$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.000e-09 1.430e-07 8.260e-07 8.207e-05 2.686e-06 3.206e-03

Figure 5.12 shows a histogram of the results.
The numerical summary of these results is

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000052 0.037222 0.079464 0.681108 0.107421 4.332730
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Fig. 5.12 Rosenbrock: Difference between CG and NM results (y = CG - NM)

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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Table 5.5 Experiment I: result analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.961397 0.7348167 0.7313231 � ≤ 0.5 are
well supported

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Δ

Se
ve

rit
y

yμ1

Fig. 5.13 Rosenbrock. Severity for rejecting H0. Given data from the experiment, claiming that
the true difference is as large or larger than 1.0 has a very low severity, whereas differences as large
as 0.5 are well supported by severity

The sample mean of the differences is ȳ = 0.68. Obviously, NM is superior
and there is a difference in performance. The question remains: how large is this
difference? To answer this question, we will analyze results from these runs with
severity.

The summary result statistic is presented in Table 5.5. The effect size suggests that
the difference is of medium magnitude. The corresponding severity plot is shown in
Fig. 5.13.

5.8.1.3 Discussion

Results indicate that the NMmethod is superior. Beyond the classical analysis based
on EDA tools and hypothesis tests, severity allows further conclusions: It shows that
performance differences smaller than 0.5 are well supported. Although the situation
is clear, the final choice is up to the experimenter. They might include additional
criteria such as run time, costs, and robustness in their final decision. And last but
not the least: The question of whether a difference of 0.5 is of practical relevance is
highly dependent on external factors.
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5.8.2 Experiment II: Freudenstein-Roth

The two-dimensional Freudenstein and Roth Test Function (Freudenstein and Roth
1963), which is number k = 2 in More et al. (1981)s list, will be considered next.
The function is defined as

f (x1, x2) = (x1 − 13 + ((5 − x2)x2 − 2)x2)
2 + (x1 − 29 + ((1 + x2)x2 − 14)x2)

2.

5.8.2.1 Pre-experimental Planning: Freudenstein and Roth

Similar to the study of the Rosenbrock function, 20 pre-experimental runs are per-
formed. We take a look at the individual results.

summary(resCG0$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3928 19.6811 77.9517 57.7497 81.2694 86.3797

summary(resNM0$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 48.98 48.98 48.98 48.98 48.98 48.98

The summaries indicate that NM is not able to find improved values. A floor effect
occurred (Bartz-Beielstein 2006). The experiment is too difficult for NM. No further
experiments will be performed, because NM is not able to find improvements. A
re-parametrization of the NM (via hyperparameter tuning) is recommended, before
additional experiments are performed.

Although CG appears to be superior and can find values as small as 0.3928, it has
problems with outliers as can be seen in Fig. 5.14.

5.8.2.2 Discussion

An additional, experimental performance analysis (that focuses on the mean) is not
recommended in this case, because the result is clear: CG outperforms NM.

5.8.3 Experiment III: Powell’s Badly Scaled Test Function

Powell’s two-dimensional Badly Scaled Test function, which is number k = 3 in
More et al. (1981)s list, will be considered next.
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Fig. 5.14 Results from method CG on Freudenstein Roth. Histogram to inspect outliers

The function is defined as

f (x1, x2) = f 21 + f 22

with
f1 = 1e4x1x2 − 1 and f2 = exp(−x1) + exp(−x2) − 1.0001.

5.8.3.1 Pre-experimental Planning: Powell’s Badly Scaled Test
Function

First, we take a look at the individual results. The summaries do not clearly indicate
which algorithm is superior. A graphical inspection is shown in Fig. 5.15. Both
methods are able to find improvements, but both are affected by outliers. The pre-
experimental runs indicate that the difference is ȳ = −0.21. Because this value is
negative,wewill continue the analysis under the assumption (hypothesis) thatmethod
CG is superior.

We are interested in the mean difference in the algorithms’ performances.
The standard deviation is sd = 1.5. Based on Eq. 5.14, and with α = 0.05, β =

0.2, and � = 0.5, we can determine the number of runs for the full experiment.
For a relevant difference of 0.5, approximately 112 completing runs per algorithm

are required. Figure 5.16 illustrates the situation for various � and three n values.
Although we do not know any “true” relevant difference for artificial (dimension

less) test functions, we consider a distance � = 0.5 as relevant and choose n = 120
algorithm runs for the full experiment.
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Fig. 5.15 Results from CG and NM on Powell’s badly scaled test function. Histograms to inspect
outliers
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Fig. 5.16 Powell’s badly scaled test function: Power as a function of the relevant difference �

for a two-parallel-group experiment (black = 40, red =80, and green = 120 runs). If the relevant
difference is 0.5, n = 120 runs per algorithm are needed for 80% power

5.8.3.2 Performing the Experiments: Powell’s Badly Scaled Test
Function

The full experiments can be conducted as follows. Results from the pre-experimental
runs will be “recycled”, only 100 additional runs must be performed.

A graphical inspection is shown in Fig. 5.17, which shows a histogram of the
results. As expected, both algorithms are able to find improvements, but are affected
by outliers.

Figure 5.18 shows a histogram of the differences. The numerical summary of
these results is
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## [1] "CG"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.003772 0.094777 0.323066 0.998882 0.710185 22.565737
## [1] "NM"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000026 0.110220 0.329906 0.757107 1.040480 8.932574
## [1] "diff"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.81704 -0.25991 -0.02496 0.24177 0.36554 21.58666
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Fig. 5.17 Results from CG and NM on Powell’s badly scaled test function (n = 120). Histograms
to inspect outliers
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Fig. 5.18 Powell’s badly scaled test function: Difference between CG and NM results (y = CG–
NM)
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Table 5.6 Experiment III: Result Analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0.17 H0 not
rejected

0.6274005 0.1184404 0.1180668 � ≥ 0.5 are
well supported
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Fig. 5.19 Powell’s badly scaled test function: Left: Severity of not rejecting H0 (red), power (blue)
for a target relevant difference of � = 0.5. Right: Severity of not rejecting H0 as a function of �

The summary result statistic is presented in Table 5.6. The effect size suggests
that the difference is of a smaller magnitude. For the chosen � =0.5, the severity
value is at 0.85 and thus it strongly supports the decision of not rejecting the H0.

5.8.3.3 Discussion

Results from these runs can be analyzed using severity. The sample mean of the
differences is ȳ = 0.24, so method NM might be superior. However, the median is
negative. It is not obvious, which method is superior. The corresponding severity
plot is shown in Fig. 5.19.

5.9 Summary and Discussion

Simply proving that there is a difference between the performance of the methods,
e.g., by performing a one-sided test, is in many situations not sufficient: one needs
to show that this difference is relevant. Severity was introduced as one way to tackle
this problem.
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A research question is necessary, e.g., if we are facing a real-world problem that
has similar structural properties (discovered by landscape analysis; see Mersmann
et al. 2011) as the artificial test function. Then, it might be interesting to see whether a
gradient-based method (CG) is superior compared to a gradient-free method (NM).
Even when theoretical results are available, they should be validated (numerical
instabilities, dependencies on starting points, etc.).

Finally, at the end of this chapter, we may ask: Why severity? An optimization
algorithm, e.g.,A+, has achieved a high success ratewith a test problem: the optimum
can be determined in 96.3% of the cases. Consider the following situations:

• Let us first assume that an algorithm, say A−, which has no domain knowledge,
only achieves such a high success rate asA+ in very rare exceptional cases. Is this
score a good indication thatA+ is well suited to solve this problem? In this case,
based on the test results of A+ and A−, the conclusion would be justified.

• Next, suppose that AlgorithmA−, which does not use domain knowledge, would
have no problem having a score of up to 96%.Again, we can ask the same question:
is this 96.3% score good evidence that A+ is well suited for this test problem?
Based on information about the results ofA+ andA−, in this case the conclusion
would rather not be justified.

The severity provides a meta-statistical concept to identify these effects, which are
also known in the literature as floor and ceiling effects (Cohen 1995).
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