
Chapter 4
Hyperparameter Tuning Approaches

Thomas Bartz-Beielstein and Martin Zaefferer

Abstract This chapter provides a broad overview over the different hyperparameter
tunings. It details the process of HPT, and discusses popular HPT approaches and
difficulties. It focuses on surrogate optimization, because this is the most powerful
approach. It introduces Sequential Parameter Optimization Toolbox (SPOT) as one
typical surrogate method. SPOT is well established and maintained, open source,
available on Comprehensive R Archive Network (CRAN), and catches mistakes.
Because SPOT is open source andwell documented, the human remains in the loop of
decision-making. The introduction of SPOT is accompanied by detailed descriptions
of the implementation and program code. This chapter particularly provides a deep
insight in Kriging (aka Gaussian Process (GP) aka Bayesian Optimization (BO)) as
a workhorse of this methodology. Thus it is very hands-on and practical.

4.1 Hyperparameter Tuning: Approaches and Goals

The following HPT approaches are popular:

• manual search (or trial-and-error (Meignan et al. 2015)),
• simple Random Search (RS), i.e., randomly and repeatedly choosing hyperparam-
eters to evaluate,

• grid search (Tatsis and Parsopoulos 2016),
• directed, model free algorithms, i.e., algorithms that do not explicitly make use
of a model, e.g., Evolution Strategys (ESs) (Hansen 2006; Bartz-Beielstein et al.
2014) or pattern search (Lewis et al. 2000),
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• hyperband, i.e., a multi-armed bandit strategy that dynamically allocates resources
to a set of random configurations and uses successive halving to stop poorly per-
forming configurations (Li et al. 2016),

• Surrogate Model Based Optimization (SMBO) such as SPOT, (Bartz-Beielstein
et al. 2005, 2021).1

Manual search and grid search are probably the most popular algorithms for
HPT. Similar to suggestions made by Bartz-Beielstein et al. (2020a), we propose the
following recommendations for performing HPT studies:

(R-1) Goals: clearly state the reasons for performing HPT. Improving an existing
solution, finding a solution for a new, unknown problem, or benchmarking
two methods are only three examples with different goals. Each of these goals
requires a different experimental design.

(R-2) Problems: select suitable problems. Decide, how many different problems or
problem instances are necessary. In some situations, surrogates (e.g., Compu-
tational Fluid Dynamics (CFD) simulations) can accelerate the tuning (Bartz-
Beielstein et al. 2018).

(R-3) Algorithms: select a portfolio of ML and DL algorithms to be included in the
HPT experimental study. Consider base-line methods such as RS andmethods
with their default hyperparameter settings.

(R-4) Performance: specify the performance measure(s). See the discussion in
Sect. 2.2.

(R-5) Analysis: describe how the results can be evaluated. Decide, whether paramet-
ric or non-parametric methods are applicable. See the discussion in Chap. 5.

(R-6) Design: set up the experimental design of the study, e.g., how many runs
shall be performed. Tools from Design of Experiments (DOE) and Design
and Analysis of Computer Experiments (DACE) are highly recommended.
See the discussion in Sect. 5.6.5.

(R-7) Presentation: select an adequate presentation of the results. Consider the audi-
ence: a presentation for the management might differ from a publication in a
journal.

(R-8) Reproducibility: consider how to guarantee scientifically sound results and
how to guarantee a lasting impact, e.g., in terms of comparability. López-
Ibáñez et al. (2021a) present important ideas.

In addition to these recommendations, there are some specific issues that are caused
by the ML and DL setup.

We consider a HPT approach based on SPOT that focuses on the following topics:

Limited Resources. We focus on situations,where limited computational resources
are available. This may be simply due to the availability and

1 The acronym SMBO originated in the engineering domain (Booker et al. 1999; Mack et al. 2007).
It is also popular in theML community, where it stands for sequential model-based optimization.We
will use the terms sequential model-based optimization and surrrogate model-based optimization
synonymously.
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cost of hardware, or because confidential data has to be pro-
cessed strictly locally.

Understanding. In contrast to standard HPO approaches, SPOT provides sta-
tistical tools for understanding hyperparameter importance
and interactions between several hyperparameters.

Explainability. Understanding is a key tool for enabling transparency and
explainability, e.g., quantifying the contribution of ML and
DL components (layers, activation functions, etc.).

Replicablity. The software code used in this study is available in the open
source R software environment for statistical computing and
graphics (R) package SPOT via the CRAN. Replicability is
discussed in Sect. 2.7.2. SPOT is a well-established open-
source software, maintained for more than 15 years (Bartz-
Beielstein et al. 2005).

Furthermore, Falkner et al. (2018) claim that practical HPO solutions should fulfill
the following requirements:

• strong anytime and final performance,
• effective use of parallel resources,
• scalability, as well as robustness and flexibility.

For sure, we are not seeking the overall best hyperparameter configuration
that results in a method which outperforms any other method in every prob-
lem domain (Wolpert and Macready 1997). Results are specific for one problem
instance—their generalizability to other problem instances or even other problem
domains is not self-evident and has to be proven (Haftka 2016).

4.2 Special Case: Monotonous Hyperparameters

A special case is hyperparameters withmonotonous effect on the quality and run time
(and/or memory requirements) of the tuned model. In our survey (see Table 4.1), two
examples are included: num.trees (RF) and thresh (EN). Due to the mono-
tonicity properties, treating these parameters differently is a likely consideration. In
the following, we focus the discussion on num.trees as an example, since this
parameter is frequently discussed in literature and online communities (Probst et al.
2018).

It is known from the literature that larger values of num.trees generally lead
to better models. As the size increases, a saturation sets in, leading to progressively
lower quality gains. It should be noted that this is not necessarily true for every
quality measure. Probst et al. (2018), for example, show that this relation holds for
log-loss and Brier score, but not for Area Under the receiver operating characteristic
Curve (AUC).
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Table 4.1 Global hyperparameter overview. The column “Quality” shows all parameter, where a
monotonous relationship between parameter values andmodel quality is to be expected. (↑↑: quality
increases if parameter value increases, ↑↓: quality decreases if parameter value increases). Corre-
spondingly, the column “run time” shows the same information for the relationship of parameter
values and run time

Model Hyperparameter Quality Run time

KNN k ↑↑
p

EN alpha

lambda

thresh ↑↓ ↑↓
DT minsplit ↑↓

minbucket ↑↓
cp ↑↓
maxdepth ↑↑

RF num.trees ↑↑ ↑↑
mtry ↑↑
sample.fraction ↑↑
replace

respect.unordered.factors

xgBoost eta

nrounds ↑↑
lambda

alpha

subsample ↑↑
colsample_bytree ↑↑
gamma ↑↓
max_depth ↑↑
min_child_weight ↑↓

SVM kernel

degree

gamma

coef0

cost

epsilon

Because of this relationship, Probst et al. (2018) claim that num.trees should
not be optimized. Instead, it is recommended setting the parameter to a “computation-
ally feasible large number” (Probst et al. 2018). For certain applications, especially
for relatively small or medium-sized data sets, we support this assessment. However,
at least in perspective, the analysis in this book considers tuning hyperparameters
for very large data sets (many observations and/or many features). For this use case,
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we do not share this recommendation, because the required run time of the model
plays an increasingly important role and is not explicitly considered in the recom-
mendation. In this case, a “computationally feasible large number” is not trivial to
determine.

In total, we consider five solutions for handling monotonous hyperparameters:

(M-1) Set manually: The parameter is set to the largest possible value that is still
feasible with the available computing resources. This solution involves the
following risks:

a. Single evaluations during tuning waste time unnecessarily.
b. Interactions with parameters (e.g., mtry) are not considered.
c. The valuemay be unnecessarily large (from amodel quality point of view).
d. The determination of this value can be difficult, it requires detailed knowl-

edge regarding: size of the data set, efficiencyof themodel implementation,
available resources (memory/computer cores / time).

(M-2) Manual adjustment of the tuning: After a preliminary examination (as rep-
resented, e.g., by the initial design step of SPOT) a user intervention takes
place. Based on the preliminary investigation, a value that seems reasonable
is chosen by the user and is not changed in the further course of the tuning.
This solution involves the following risks:

a. The preliminary investigation itself takes too much time.
b. The decision after the preliminary investigation requires intervention by

the user (problematic for automation). While this is feasible for individual
cases, it is not practical for numerous experiments with different data (as
in the experiments of the study in Chap. 12). Moreover, this reduces the
reproducibility of the results.

c. Dependingon the scope and approachof the preliminary study, interactions
with other parameters may not be adequately accounted for.

(M-3) No distinction: parameters like num.trees are optimized by the tuning
procedure just like all other hyperparameters. This solution involves the fol-
lowing risks:

a. The upper bound for the parameter is set too low, so potentially good mod-
els are not explored by the tuning procedure. (Note: bounds set too tight for
the search space are a general risk that can affect all other hyperparameters
as well).

b. The upper bound is set too high, causing individual evaluations to use
unnecessary amounts of time during tuning.

c. The best found value may become unnecessarily large (from a model
quality point of view).

(M-4) Multi-objective: run time andmodel quality can be optimized simultaneously
in the context of multi-objective optimization. This solution involves the
following risks:
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a. Again, manual evaluation is necessary (selection of a sector of the Pareto
front) to avoid that from a practical point of view irrelevant (but possibly
Pareto-optimal) solutions are investigated.

b. This manual evaluation also reduces reproducibility.

(M-5) Regularization viaweighted sum: The number of trees (or similar parameters)
can be incorporated into the objective function. In this case, the objective
function becomes a weighted sum of model quality and number of trees (or
run time), with a weighting factor θ .

a. The new parameter of the tuning procedure, θ , has to be determined.
b. Moreover, the optimization of a weighted sum cannot find certain Pareto-

optimal solutions if the Pareto front is non-convex.

In the experimental investigation in Chap. 12, we use solution (M-3). That is, the
corresponding parameters are tuned but do not undergo any special treatment during
tuning. Due to the large number of experiments, user interventions would not be
possible and would also complicate the reproducibility of the results. In principle,
we recommend this solution for use in practice.

In individual cases, or if a good understanding of algorithms and data is available,
solution (M-2) can also be used. For this, SPOT can be interrupted after the first
evaluation step, in order to set the corresponding parameters to a certain value or to
adjust the bounds if necessary (e.g., if num.trees was examined with too low an
upper bound).

4.3 Model-Free Search

4.3.1 Manual Search

A frequently applied approach is that ML and DL methods are configured manu-
ally (Bergstra andBengio 2012).Users apply their own experience and trial-and-error
to find reasonable hyperparameter values.

In individual cases, this approach may indeed yield good results: when expert
knowledge about data, methods, and parameters is available. At the same time, this
approach has major weaknesses, e.g., it may require significant amount of work time
by the users, bias may be introduced due to wrong assumptions, limited options for
parallel computation, and extremely limited reproducibility. Hence, an automated
approach is of interest.
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4.3.2 Undirected Search

Undirected search algorithms determine new hyperparameter values independently
of any results of their evaluation. Two important examples are Grid Search and RS.

Grid Search covers the search space with a regular grid. Each grid point is evalu-
ated. RS selects new values at random (usually independently, uniform distributed)
in the search space.

Grid Search is a frequently used approach, as it is easy to understand and imple-
ment (including parallelization). As discussed by Bergstra and Bengio (2012), RS
shares the advantages of Grid Search. However, they show that RS may be prefer-
able to Grid Search, especially in high-dimensional spaces or when the importance of
individual parameters is fairly heterogeneous. They hence suggest to use RS instead
Grid Search if such simple procedures are required. Probst et al. (2019a) also use aRS
variant to determine the tunability of models and hyperparameters. For these reasons,
we employ RS as a baseline for the comparison in our experimental investigation in
Chap. 12.

Next toGridSearch andRS, there are other undirected searchmethods.Hyperband
is an extension of RS, which controls the use of certain resources (e.g., iterations,
training time) (Li et al. 2018). Another relevant set of methods is the Design of
Experiments methods, such as Latin Hypercube Designs (Leary et al. 2003).

•! Attention: Random Search Versus Grid Search

Interestingly, Bergstra and Bengio (2012) demonstrate empirically and show theo-
retically that randomly chosen trials are more efficient for HPT than trials on a grid.
Because their results are of practical relevance, they are briefly summarized here: In
grid search the set of trials is formed by using every possible combination of values,
grid search suffers from the curse of dimensionality because the number of joint
values grows exponentially with the number of hyperparameters.

A Gaussian process analysis of the function from hyper-parameters to validation set per-
formance reveals that for most data sets only a few of the hyper-parameters really matter,
but that different hyper-parameters are important on different data sets. This phenomenon
makes grid search a poor choice for configuring algorithms for new data sets (Bergstra and
Bengio 2012).

Let � denote the space of hyperparameter response functions.
Bergstra and Bengio (2012) claim that RS is more efficient in ML than grid search
because a hyperparameter response function ψ ∈ � usually has a low effective
dimensionality (see Definition 2.25), i.e., ψ is more sensitive to changes in some
dimensions than others (Caflisch et al. 1997).

The observation that only a few of the parameters matter can also be made in
the engineering domain, where parameters such as pressure or temperature play a
dominant role. In contrast to DL, this set of important parameters does not change
fundamentally in different situations. We assume that the high variance in the set of
important DL hyperparameters is caused by confounding.
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Due to its simplicity, it turns out in many situations that RS is the best solu-
tion, especially in high-dimensional spaces. Hyperband should also be mentioned in
this context, although it can result in a worse final performance than model-based
approaches, because it only samples configurations randomly and does not learn
from previously sampled configurations (Li et al. 2016). Bergstra and Bengio (2012)
note that RS can probably be improved by automating what manual search does, i.e.,
using SMBO approaches such as SPOT.

HPT is a powerful technique that is an absolute requirement to get to state-of-
the-art models on any real-world learning task, e.g., classification and regression.
However, there are important issues to keep in mind when doing HPT: for example,
validation-set overfitting can occur, because hyperparameters are usually optimized
based on information derived from the validation data.

4.3.3 Directed Search

One obvious disadvantage of undirected search is that a large amount of the com-
putational effort may be spent on evaluating solutions that cover the whole search
space. Hence, only a comparatively small amount of the computational budget will
be spent on potentially optimal or at least promising regions of the search space.

Directed search on the other hand may provide a more purposeful approach. Basi-
cally any gradient-free, global optimization algorithm could be employed. Prominent
examples are Iterative Local Search (ILS) (Hutter et al. 2010b) and Iterative Racing
(IRACE) (López-Ibáñez et al. 2016). Metaheuristics like Evolutionary Algorithms
(EAs) or Swarm Optimization are also applicable (Yang and Shami 2020). In com-
parison to undirected search procedures, directed search has two frequent drawbacks:
an increased complexity that makes implementation a larger issue, and being more
complicated to parallelize.

We employ a model-based directed search procedure in this book, which is
described in the following Sect. 4.4.

4.4 Model-Based Search

A disadvantage of model-free, directed search procedures is that they may require a
relatively large number of evaluations (i.e., long run times) to approximate the values
of optimal hyperparameters.

Tuning ML and DL algorithms can become problematic if complex methods are
tuned on large data sets, because the run time for evaluating a single hyperparameter
configuration may go up into the range of hours or even days. Model-based search
is one approach to resolve this issue. These search procedures use information gath-
ered during the search to learn the relationship between hyperparameter values and
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performance measures (e.g., misclassification error). The model that encodes this
learned relationship is called the surrogate model or surrogate.

Definition 4.1 (Surrogate Optimization) The surrogate optimization uses two
phases.

Construct Surrogate Generate (random) solutions. Evaluate the (expensive) objec-
tive function at these points. Construct a surrogate, S, of the objective function,
e.g., by building a GP aka Kriging model (surrogate).

Search for Minimum Search for a minimum of the objective function on the
(cheap) surrogate. Choose the best point as a candidate. Evaluate the objective
function at the best candidate point. This point is called an infill point. Update the
surrogate using this value and search again.

The advantage of this surrogate optimization is that a considerable part of the
evaluation burden (i.e., the computational effort) can be shifted from real evaluations
to evaluations of the surrogate, which should be faster to evaluate.

In HPT, mixed optimization problems are common, i.e., the variables are con-
tinuous or discrete (Cuesta Ramirez et al. 2022). Bartz-Beielstein and Zaefferer
(2017) provide an overview of metamodels that have or can be used in optimization.
They show how it was made possible by the realization that GP kernels (covariance
functions) in mixed variables can be created by composing continuous and discrete
kernels. In this case, the infill criterion (acquisition function) is defined over the
same space as the objective function. Therefore maximizing the acquisition function
is also a mixed variables problem.

One variant of model-based search is SPOT (Bartz-Beielstein 2005), which be
will described in Sect. 4.5.

4.5 Sequential Parameter Optimization Toolbox

SMBO methods are common approaches in simulation and optimization. SPOT has
been developed, because there is a strong need for sound statistical analysis of sim-
ulation and optimization algorithms. SPOT includes methods for tuning based on
classical regression and analysis of variance techniques; tree-based models such as
Classification and Regression Trees (CART) and random forest; BO (Gaussian pro-
cessmodels, akaKriging), and combinations of differentmeta-modeling approaches.

Basic elements of the Kriging-based surrogate optimization such as interpolation,
expected improvement, and regression are presented in the Appendix, see Sect. 4.6.
The Sequential Parameter Optimization (SPO) toolbox implements a modified ver-
sion of this method and will be described in this section.

SPOT implements key techniques such as exploratory fitness landscape analysis
and sensitivity analysis. SPOT can be used for understanding the performance of
algorithms and gaining insight into algorithm’s behavior. Furthermore, SPOT can be
used as an optimizer and for automatic and interactive tuning.



80 T. Bartz-Beielstein and M. Zaefferer

Details of SPOT and its application in practice are given by Bartz-Beielstein et al.
(2021). SPOT was originally developed for the tuning of optimization algorithms.
The requirements and challenges of algorithm tuning in optimization broadly reflect
those of tuning machine learning models. SPOT uses the following approach (outer
loop).

Setup: In a first step, several candidate solutions (here: different combinations of
hyperparameter values) are created. These are steps (S-1) and (S-2) in the function
spot, see Fig. 4.1.

Evaluate: All new candidate solutions are evaluated (here: training the respective
ML or DL model with the specified hyperparameter values and measuring the
quality / performance). This is step (S-3).

Termination: Checkwhether a termination criterion has been reached (e.g., number
of iterations, evaluations, run time, or a satisfying solution has been found). These
are steps (S-4) to (S-9).

Select: Samples for building the surrogate Sare selected. This is step (S-10).
Training: The surrogate Swill be trained with all data derived from the evaluated

candidate solutions, thus learning how hyperparameters affect model quality. This
is step (S-11).

Surrogate search: The trainedmodel is used to perform a search for new, promising
candidate solutions. These are steps (S-12) and (S-16).

Budget: Optimal Computing Budget Allocation (OCBA) is used to determine the
number of repeated evaluations. This is step (S-17).

Evaluation The new solutions are evaluated on the objective function, e.g., the loss
is determined. These are steps (S-18) to (S-22).

Exploit: An optimizer is used to perform a local search on Sto refine the best
solution found. These are steps (S-23) and (S-24). Whereas optimization on the
surrogate in the main loop is a weighted combination of exploration and exploita-

(S-01) (S-02)

Setup,
Initial Design

(S-03) to (S-08);

(S-18) to (S-21)

Evaluate.
Impute,

Check, Log

(S-09)

Terminate?

(S-10)

Select Subset

(S-11, S-12)

Build Surrogate 
Model

Surrogate 
Objective Function

(S-13) to (S16)

Get Start Points,
Search Surrogate,
Compile Results,

Handle Duplicates

(S-17)

OCBA

(S-22)

OCBA Select

(S-23),(S-24)

Starting Point,
Direct 

Optimization

yes

no

Fig. 4.1 Visual representation of model-based search with SPOT
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tion, using Expected Improvenment (EI) as a default weighting mechanism, this
final optimization step is purely exploitative.

Note, that it can be useful to allow for user interaction with the tuner after the
evaluation step. Thus, the user may affect changes of the search space (stretch or
shrink bounds on parameters, eliminate parameters). However, we will consider an
automatic search in our experiments.

Weuse theR implementationofSPOT, as providedby theRpackageSPOT (Bartz-
Beielstein et al. 2021, 2021c). The SPOTworkflowwill be described in the following
sections.

In the remainder of this book, SPOT will refer to the general method, whereas
spot denotes the function from the R package SPOT.

Steps, subroutines and data of the spot process are shown in Fig. 4.2.

4.5.1 spot as an Optimizer

spot uses the same syntax as optim, R’s general-purpose optimization based
on Nelder-Mead, quasi-Newton, and conjugate-gradient algorithms (R Core Team
2022). spot can be called as shown in the following example.

Example: spot

SPOT comes with many pre-defined functions from optimization, e.g., Sphere,
Rosenbrock, or Branin. These implementations use the prefix “fun”, e.g.,
funSphere is the name of the sphere function. The package SPOTMisc pro-
vides funBBOBCall, an interface to the real-parameter Black-Box Optimization
Benchmarking (BBOB) function suite (Mersmann et al. 2010a). Furthermore, users
can also specify their own objective functions.

Searching for theoptimumof the (two-dimensional) sphere functionfunSphere,
i.e., f (x) = ∑2

i=1 x
2
i , on the interval between (−1,−1) and (1, 1) can be done as

follows:

library("SPOT")
spot(x = NULL, fun = funSphere, lower = c(-1, -1), upper = c(1, 1))

Four arguments are passed to spot: no explicit starting point for the optimization
is used, because the parameter x was set to NULL, the function funSphere, and
the lower and upper bounds. The length of the lower bound argument defines the
problem dimension n.
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Fig. 4.2 Steps, functions and variables of the spot function
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Table 4.2 SPOT parameters. This table shows the mandatory parameters. The list control can
be used to pass additional parameters to spot. Additional arguments to the objective function fun
can be passed via “...”, similar to the varargs method in other programming languages

Parameter Default value Description

x NULL Starting point

fun Objective function, e.g., funSphere, or as
described in Sect. 8.44

lower Lower bound, defines the problem dimension n

upper Upper bound

control List See description in Table 4.3

... Used to pass those additional arguments on to the
objective function fun

•> Mandatory Parameters

The argumentsx,fun,lower, andupper aremandatory forspot, they are shown
in Table 4.2.

Additional arguments can be passed tospot. They allow a very flexible handling,
e.g., for passing extra arguments to the objective function fun. To improve the
overview, parameters are organized as lists. The “main” list is called control, see
Table 4.3. It collects spot’s parameters, some of them are organized as lists. They
are shown in Table 4.4.

Thecontrol list is used formanagingSPOT’s parametrization, e.g., for defining
hyperparameter types and ranges.

4.5.2 spot’s Initial Phase

The initial phase consists of five steps (S-1) to (S-5). The corresponding R code is
shown in Sect. 4.7.

(S-1) Setup. After performing an initial check on the control list, the control list
is completed.
The control list contains the parameters from Table 4.3.

(S-2) Initial design. The parameter seedSPOT is used to set the seed for spot
before the initial design X is generated. The design type is specified via
control$design. The recommended design function is designLHD,
i.e., a Latin Hypercube Design (LHD), which is also the default configura-
tion.
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Table 4.3 SPOT: parameters of the control list

Parameter Default value, type Description

design designLHD,
function

The design function is used to generate the initial
design (see spot) and to generate multiple start
points (see getMultiStartPoints)

directOpt optimNLOPTR,
function

Optimizer used for direct optimization after SMBO is
done

funEvals 20 Number of objective function (fun) evaluations

infillCriterion NULL, function A function defining an infill criterion to be used while
optimizing a model

model buildKriging,
function

A function that builds a statistical model of the
observed data

multiStart 1 (no multi starts),
integer

Number of restarts of the optimizer on the
surrogate model

noise FALSE, logical

OCBA paramFALSE, logical Use OCBA

OCBABudget 3, integer Budget for OCBA

optimizer function Optimizer on surrogate model

parNames character, paste0 (“x”,
1:dimension)

Hyperparameter names

plots paramFALSE, logical Show progress plots

progress paramFALSE, logical Show numerical information about the progress

replicateResults paramFALSE, logical Evaluate configuration(s), do not perform SMBO

replicates integer Number of replicates

returnFullControlList logical Return the full control list

seedFun seed function for
objective function

seedSPOT seed used for spot

subsetSelect selectAll Subset used for fitting the surrogate model

tolerance numerical Sqrt(.Machine$double.eps)

transformFun vector Variable transformation

types rep (“numeric”,
dimension)

Hyperparameter types

verbosity integer Verbosity

xNewActualSize integer Number of new design points proposed by the
surrogate model

designControl list Parameters used by the design function

directOptControl list Parameters used by the direct function

modelControl list Parameters used by the surrogate model

optimizerControl list Parameters used by the optimizer

subsetControl list Parameters used by the subsetSelect function

time list Time related parameters

yImputation list List of functions to determine imputations,
handleNAsMethod
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Fig. 4.3 Initial design. The
first ten points created by
designLHD

−0.5
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Ten initial design points are available now, because the default value of the param-
eter designControl$size, which specifies the initial design size, is set to 10 if
the function designLHD is used (Fig. 4.3).

Program Code: Steps (S-1) and (S-2)

Steps (S-1) and (S-2) are implemented as follows:

## (S-1) Setup:
fun <- funNoise
lower <- c(-1, -1)
upper <- c(1, 1)
control <- list(
OCBA = TRUE,
OCBABudget = 3,
replicates = 2,
noise = TRUE,
multiStart = 2,
designControl = list(replicates = 2)

)
control <- spotFillControlList(control, lower, upper)
## (S-2) Initial design:
set.seed(control$seedSPOT)
x <- control$design(
x = NULL,
lower = lower,
upper = upper,
control = control$designControl

)
x <- repairNonNumeric(x, control$types)
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Example: Modifying the initial design size

Arbitrary initial design sizes can be generated by modifying the size argument of
the designControl list:

control$designControl$size <- 5

Here is the full code for starting spot with an initial design of size five:

spot(
x = NULL,
fun = funSphere,
lower = c(-1, -1), upper = c(1, 1),
control = list(designControl = list(size = 5))

)

Because the lower bound was set to (-1, -1), a two-dimensional problem is
defined, i.e., f (x1, x2) = x21 + x22 . The result from this spot run is stored as a list
in the variable return.

Variable types are assumed to be numeric, which is the default type if no other
type is specified.Type information,which is available fromconfig$types, is used
to transform the variables. The function spot can handle the data types numeric,
integer, andfactor. The functionrepairNonNumericmaps non-numerical
values to integers.

(S-3) Evaluation of the Initial Design. Using objectiveFunction
Evaluation, the objective function fun is evaluated on the initial design
matrix x.
In addition to xnew, a matrix of already known solutions, to determine
whether Random Number Generator (RNG) seeds for new solutions need
to be incremented, can be passed to the function objectiveFunction
Evaluation.

•! Transformation of Variables

If variable transformation functions are defined, the function transformX is
applied to the parameters during the execution of the function
objectiveFunctionEvaluation.

The function objectiveFunctionEvaluation returns the matrix y.

(S-4) Imputation: Handling Missing Values. The feasibility of the y-matrix is
checked. Methods to handle NA and infinite y-values are applied, which are
available via the function imputeY.
The spot loop starts after the initial phase. The function spotLoop is called.
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Program Code: Steps (S-3) and (S-4)

Steps (S-3) and (S-4) are implemented as follows:

## (S-3) Eval initial design:
y <- objectiveFunctionEvaluation(
x = NULL,
xnew = x,
fun = fun,
control = control

)
## (S-4) Imputation:
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}

4.5.3 The Function spotLoop

(S-5) Calling the spotLoop function. After the initial phase is finished, the func-
tion spotLoop is called, which manages the main loop. It is implemented
as a stand-alone function, because it can be called separately, e.g., to continue
interrupted experiments. With this mechanism, spot provides a convenient
way for continuing experiments on different computers or extending existing
experiments, e.g., if the results are inconclusive or a pre-experimental study
should be performed first.

Example: Continue existing experiments

The studies in Sects. 5.8.1, 5.8.2, and 5.8.3 start with a relatively small pre-
experimental design. Results from the pre-experimental tests are combined with
results from the full experiment.

(S-6) Consistency Check and Initialization. Because the spotLoop can be used to
continue an interrupted spot run, it performs a consistency check before the
main loop is started.

(S-7) Imputation. The function defined by the argument
control$yImputation$handleNAsMethod is called to handle NA s,
Inf s, etc. This is necessary here, because spotLoop can be used as an
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entry point to continue an interrupted spot optimization run. How to con-
tinue existing spot runs is explained in the spotLoop documentation.

(S-8) Counter and Log Data. Furthermore, counters and logging variables are ini-
tialized. The matrix yBestVec stores the best function value found so far. It
is initialized with the minimum value of the objective function on the initial
design. Note, ySurr, which keeps track of the objective function values on
the surrogate S, has NA s, because no surrogate was built so far:

Program Code: Steps (S-5) to (S-8)

## (S-5) Enter spotLoop:

## (S-6) Initial check:
initialInputCheck(x, fun, lower, upper, control, inSpotLoop = TRUE)
dimension <- length(lower)
con <- spotControl(dimension)
con[names(control)] <- control
control <- con
rm(con)
control <- spotFillControlList(control, lower, upper)

## (S-7) Imputation:
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(

x = x,
y = y,
control = control

)
}

## (S-8) Counter and logs:
count <- nrow(y)
modelFit <- NA
ybestVec <- rep(min(y[, 1]), count)
ySurr <- matrix(NA, nrow = 1, ncol = count)

4.5.4 Entering the Main Loop

(S-9) Termination Criteria, Conditions. The main loop is entered as follows:

while ((count < control$funEvals) &
(difftime(Sys.time(), control$time$startTime, units = ’mins’)
< control$time$maxTime))
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Two termination criteria are implemented:

a. the number of objective function evaluations must be smaller than
funEvals and

b. the time must be smaller than maxTime.

(S-10) Subset Selection for the Surrogate. Surrogates can be built with the full or a
reduced set of available x- and y-values. A subset selection method, which is
defined via control$subsetSelect, can be used before the surrogate
Sis built. If subsetSelect is set to selectAll, which is the default, all
points are used. Fitting the surrogate Swith a subset of the available points
only appears to be counterintuitively, but can be reasonable, e.g., if the sample
points are too close to each other or if the problem changes dynamically.

(S-11) Fitting the Surrogate.SPOTcanuse arbitrary regressionmodels as surrogates,
e.g., RF or GP models (Kriging).

The arguments x and y are mandatory for the function model. The model
function must return a fit object that provides a predict method. A Gaussian
process model, which performs well in many situations and can work well with
discrete and continuous hyperparameters, is SPOT’s default model. Random forest
is less suited as a surrogate for continuous parameters, as it has to approximate
said parameters in a step-wise constant manner. The function control$model
is applied to the x- and y-matrices. A default model is fitted to the data with the
function buildKriging.

Program Code: Steps (S-9) to (S-11)

Steps (S-9) to (S-11) are implemented as follows:

## (S-9) Termination (while loop):

## (S-10) Subsect select:
selectRes <- control$subsetSelect(
x = x,
y = y[, 1, drop = FALSE],
control = control$subsetControl

)

## (S-11) Surrogate fit:
modelFit <- control$model(
x = selectRes$x,
y = selectRes$y,
control = control$modelControl

)
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Table 4.5 Surrogates in spot require two arguments, x and y. The return values of the build*
functions are shown below

Return Value Type Description

x matrix x values

y matrix y values

fit object Fitted model

pNames character Names of the independent variables

yName character Name of the dependent variable

class character Name of the model class

Background: Surrogates

There is a naming convention for surrogates in spot: functions names should start
with the prefix “build”. Surrogates in spot use the same interface. They accept
the arguments x, y, which must be matrices, and the list control. They fit a model,
e.g.,buildLM uses thelm, which provides amethodpredict. Eachmodel returns
an object of the corresponding model class, here: "spotLinearModel", with a
predict method. The return value is implemented as a list with the entries from
Table 4.5.

Note, buildLM is a very simple model. SPOT’s workhorse is a Kriging model,
that is fitted via Maximum Likelihood Estimation (MLE). buildKriging is
explained in Sect. 4.6.5.

(S-12) Objective Function on the Surrogate (Predict). After building the surrogate,
themodelFit (surrogatemodel) is available. It is used to define the function
funSurrogate, which works as an objective function on the surrogate
S: funSurrogate does not evaluate solutions on the original function
f , but on the surrogate S. Thus, spot searches for the hyperparameter
configuration that is predicted to result in the best possible model quality.
Therefore, an objective function is generated based on the modelFit via
predict.

Program Code: Step (S-12)

Step (S-12) is implemented as follows:

## (S-12) Surrogate optimization function:
funSurrogate <- evaluateModel(
modelFit,
control$infillCriterion,
control$verbosity

)



92 T. Bartz-Beielstein and M. Zaefferer

Background: Surrogate and Infill Criteria

The function evaluateModel generates an objective function that predicts func-
tion values on the surrogate. Some surrogate optimization procedures do not use the
function values from the surrogate S—they use an infill criterion instead.

Definition 4.2 (Infill Criterion, Acquisition Function) Infill criteria are methods that
guide the exploration of the surrogate. They combine information from the predicted
mean and the predicted variance generated by the GPmodel. In BO, the term “acqui-
sition function” is used for functions that implement infill criteria.

For example, the function buildKriging provides three return values that
can be used to generate elementary infill criteria. These return values are specified
via the argument target, which is a vector of strings. Each string specifies a
value to be predicted, e.g., "y" for mean, "s" for standard deviation, and "ei"
for expected improvement. In addition to these elementary values, spot provides
the function infillCriterion to specify user-defined criteria. The function
evaluateModel that manages the infill criteria in spot is shown below.

evaluateModel <-
function(object,

infillCriterion = NULL) {
evalModelFun <- function(x) {
res <- predict(object = object, newdata = x)[object$target]
return(res)

}
if (is.null(infillCriterion)) {
return(function(x) {
res <- evalModelFun(x)
return(res)

})
} else {
return(function(x) {
return(infillCriterion(evalModelFun(x), object))

})
}

}

Example: Expected Improvement

EI is a popular infill criterion, which was defined in Eq. (4.10). It is calcu-
lated as shown in Eq. (4.11) and can be called from evaluateModel via
modelControl = list(target = c("ei"). The following code shows
an EI implementation that returns a vector with the negative logarithm of the
expected improvement values,− log10(EI). The functionexpectedImprovement
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is called, if the argument "ei" is selected as a target, e.g., spot
(,fun,l,u,control=list(modelControl=list(target="ei"))).

expectedImprovement <- function(mean, sd, min) {
EITermOne = (min - mean) * pnorm((min - mean) / sd)
EITermTwo = sd * (1 / sqrt(2 * pi))

* exp(-(1 / 2) * ((min - mean) ˆ 2 / (sd ˆ 2)))
- log10(EITermOne + EITermTwo + (.Machine$double.xmin))

}

(S-13) Multiple Starting Points. If the current best point is feasible, it is used as
a starting point for the search on the surrogate S. Because the surrogate
can be multi-modal, multiple starting points are recommended. The func-
tiongetMultiStartPoints implements amulti-startmechanism.spot
provides the function getMultiStartPoints.
In addition to the current best point further starting points can be used. Their
amount can be specified by the value of multiStart. If multiStart >

1, then additional starting points will be used. The design function, which
was used for generating the initial design in Sect. 4.5.2, will be used here to
generate additional points.

(S-14) Optimization on the Surrogate. The search on the surrogate Scan be per-
formed next. The simplest objective function is optimLHD, which selects
the point with the smallest function value from a relatively large set of
LHD points. Other objective functions are available, e.g., optimLBFGS
or optimDE. To find the next candidate solution, the predicted value of
the surrogate is optimized via Differential Evolution (Storn and Price 1997).
Other global optimization algorithms can be used as well. Even RS would be
a feasible strategy.

•> Mandatory Parameters

Optimization functions must use the same interface as spot, i.e., function(x,
fun,lower,upper,control=list(),...). The arguments fun, lower,
and upper are mandatory for optimization functions. This is similar to the interface
of R’s general-purpose optimization function optim.

As described in Sect. 4.5.4, the optimization on the surrogate Scan be performed
with or without pre-defined starting points. We describe a search without starting
points first.
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(S-14a) Search Without Starting Points. If no starting points for the search are pro-
vided, the optimizer, which is specified via control$optimizer, is
called.
The result from this optimization is stored in the list optimResSurr. The
optimal value from the search on the surrogate isoptimResSurr$xbest,
the corresponding y-value is optimResSurr$ybest. Alternatively, the
search on the surrogate can be performed with starting points.

(S-14b) Search With Starting Points. If starting points are used for the optimiza-
tion on the surrogate, these are passed via x = x0 to the optimizer.
Several starting points result in several optimResSurr$xbest and
optimResSurr$ybest values from which the best, i.e., the point with
the smallest y-value, is selected.
For example, if multiStart = 2 is selected, the current best and one
random point will be used.
The optimization on the surrogateS is performed separately for each starting
point and the matrix xnew is computed.
xnew is determined based on the multi-start results.

(S-15) Compile Results from the Search on the Surrogate. The function value of
xnew (from (S-14a) or (S-14b)) is saved as ySurrNew. Note, this function
values can be modified using control$modelControl$target, e.g.,
"y", "s2, or "ei", i.e., the optimization on the surrogate can be based on
the predicted new value "y", a combination of "y" and the variance or the
EI "ei".

(S-16) Noise, Repeats, and Consistency Checks for New Points. After the new
solution candidate xnew and its associated function value on the surro-
gate ySurrNew have been determined, spot checks for duplicates and
determines the number of replicates. This step treats noisy and determinis-
tic objective functions in a different way.
If control$noise == TRUE, then replicates are allowed, i.e., a single
solution x canbe evaluated several times. Ifcontrol$noise == FALSE,
then every solution is evaluated only once.

Program Code: Steps (S-13) to (S-16)

Steps (S-13) to (S-16) are implemented as follows:

## (S-13) Random starting points for optimization on the surrogate
x0 <- getMultiStartPoints(x, y, control)
resSurr <- matrix(NA, nrow = nrow(x0), ncol = ncol(x0) + 1)

## (S-14b) Search on the surrogate with starting point/s x0:
for (i in 1:nrow(x0)) {
optimResSurr <- control$optimizer(

x = x0[i, , drop = FALSE],
funSurrogate,
lower,
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upper,
control$optimizerControl

)
resSurr[i, ] <- c(optimResSurr$xbest, optimResSurr$ybest)

}

## (S-15) Compile surrogate results:
m <- which.min(resSurr[, ncol(x) + 1])
## Determine xnew based on multi start results
xnew <- resSurr[m, 1:ncol(x), drop = FALSE]
## value on the surrogate (can be "y", "s2, "ei", "negLog10ei" etc.)
ySurrNew <- resSurr[m, ncol(x) + 1]

## (S-16) Duplicate handling:
xnew <- duplicateAndReplicateHandling(xnew, x, lower, upper, control)
# Repair non-numeric results
xnew <- repairNonNumeric(xnew, control$types)

Background: Duplicates and Replicates

The function duplicateAndReplicateHandling checks whether the new
solution xnew has been evaluated before. In this case, it is taken as it is and no addi-
tional evaluations are performed. If xnew was not evaluated before, it will be evalu-
ated. The number of evaluations is defined via control$replicates. Duplicate
and replicate handling in spot depends on the setting of the parameter noise. If
the value is TRUE then a test whether xnew is new or has been evaluated before is
performed. If xnew is new (was not evaluated before), then it should be evaluated
replicates times. Assume, control$replicates < − 3, i.e., three initial
replicates are required and xnewwas not evaluated before. Then two additional eval-
uations should be done, i.e., xtmp contains two entries which are combined with
one already existing entry in xnew.

control$replicates <- 3
xtmp <- NULL
for (i in 1:nrow(xnew)) {
if (!any(apply(x, 1, identical, xnew[i, ]))) {
xtmp <- rbind(xtmp, xnew[rep(i, control$replicates - 1), ])

}
}
xnew <- rbind(xnew, xtmp)
xnew

## [,1] [,2]

## [1,] -0.01292055 -0.02666901

## [2,] -0.01292055 -0.02666901

## [3,] -0.01292055 -0.02666901
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If the parameter noise has the value FALSE, two cases have to be distinguished.
First, if xnew was not evaluated before, then it should be evaluated once (and not
replicates times), because additional evaluation is useless. They would deter-
ministically generate the same result.

for (i in 1:nrow(xnew)) {
if (any(apply(x, 1, identical, xnew[i, ]))) {
warning("Duplicate is replaced by random solution.")
control$designControl$replicates <- 1
control$designControl$size <- 1
xnew[i, ] <-
designUniformRandom(, lower, upper, control$designControl)

}
}
xnew

## [,1] [,2]

## [1,] -0.01292055 -0.02666901

## [2,] -0.01292055 -0.02666901

## [3,] -0.01292055 -0.02666901

Second, if xnew was evaluated before, then a warning is issued and a randomly
generated solution for each entry in xnew will be used.

# xnew has two already known solutions:
xnew <- x[1:2, ]
for (i in 1:nrow(xnew)) {
if (any(apply(x, 1, identical, xnew[i, ]))) {
warning("Duplicate is replaced by random solution.")
control$designControl$replicates <- 1
control$designControl$size <- 1
xnew[i, ] <-
designUniformRandom(, lower, upper, control$designControl)

}
}
xnew

## [,1] [,2]

## [1,] 0.6704420 0.1762307

## [2,] 0.5094811 0.3023359

A type check is performed, i.e., all non-numeric values produced by the optimizer
are rounded.

(S-17) OCBA for Known Points. OCBA is called next if OCBA and noise are both
set to TRUE: the function repeatsOCBA returns a vector that specifies how
often each known solution should be re-evaluated (or replicated). This func-
tion can spend a budget of control$OCBABudget additional evaluations.
The solutions proposed by repeatsOCBA are added to the set of new x can-
didates xnew. Because OCBA calculates an estimate of the variance, it is
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based on evaluated solutions and their function values, i.e., x and y values
respectively.

Program Code: Step (S-17)

Step (S-17) is implemented as follows:

## (S-17) OCBA:
if (control$noise &
control$OCBA) {
xnew <- rbind(xnew, repeatsOCBA(x, y[, 1, drop = FALSE], control$OCBABudget))

}

Background: Optimal Computational Budget Allocation

OCBAis a very efficient solution to solve the “general ranking and selection problem”
if the objective function is noisy (Chen 2010;Bartz-Beielstein et al. 2011). It allocates
function evaluations in an uneven manner to identify the best solutions and to reduce
the total optimization costs.

Theorem 4.1 Given a total number of optimization samples N to be allocated to k
competing solutions whose performance is depicted by random variables with means
ȳi (i = 1, 2, . . . , k), and finite variances σ 2

i , respectively, as N → ∞, the Approx-
imate Probability of Correct Selection (APCS) can be asymptotically maximized
when

Ni

N j
=

(
σi/δb,i

σ j/δb, j

)2

, i, j ∈ {1, 2, . . . , k}, and i �= j �= b, (4.1)

Nb = σb

√
√
√
√

k∑

i=1,i �=b

N 2
i

σ 2
i

, (4.2)

where Ni is the number of replications allocated to solution i , δb,i = ȳb − ȳi , and
ȳb ≤ mini �=b ȳi (Chen 2010).

(S-18) Evaluating New Solutions. To avoid exceeding the available budget of objec-
tive function evaluations, which is specified via control$funEvals, a
check is performed. Solution candidates are passed to the function
objectiveFunctionEvaluation, which calculates the associated
objective function values ynew on the function fun.

(S-19) Imputation. Because the evaluation of solution candidates might result in
infinite Inf or Not-a-Number NaN ynew values, the function imputeY,
which handled non-numeric values, is called.
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(S-20) Update Counter and Log Data.Next, counters count and ySurr, informa-
tion about the function values on the surrogate S, are updated.
Calculation of the progress and preparation of progress plots conclude the
main loop. The last step of the main loop compiles the list return, which
is returned to the spot function.

(S-21) Reporting after the While-Loop. After the while loop is finished, results are
compiled. Some objective functions return several values (Multi Objective
Optimization (MOO)). The corresponding values are stored as logInfo,
because the default spot function uses only one objective function value.
This mechanism enables spot handling MOO problems. The values of the
transformed parameters are stored as xt. Important for noisy optimization
is the following feature: OCBA can be used for the selection of the best
value. The function ocbaRanking computes the best x and y values,
xBestOcba andyBestOcba, respectively.yBestOcba is themean value
of the corresponding x-parameter setting xBestOcba.

Program Code: Steps (S-18) to (S-22)

Steps (S-18) to (S-22) are implemented as follows:

## (S-18) Evaluate xnew:
ynew <- tryCatch(
expr = {
objectiveFunctionEvaluation(
x = x,
xnew = xnew,
fun = fun,
control = control

)
},
error = function(e) {
if (!is.null(control$yImputation$handleNAsMethod)) {
n <- nrow(xnew)
m <- ncol(y)
return(matrix(rep(NA, m * n), nrow = n))

}
}

)
## (S-19) Impute:
colnames(xnew) <- colnames(x)
x <- rbind(x, xnew)
y <- rbind(y, ynew)
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}
## (S-20) Update counter, logs, etc.:



4 Hyperparameter Tuning Approaches 99

ySurr <- c(ySurr, ySurrNew)
count <- count + nrow(ynew)
indexBest <- which.min(y[, 1, drop = FALSE])
ybestVec <- c(ybestVec, y[indexBest, 1, drop = FALSE])
## END while loop
## (S-21) Reporting after while loop in spotLoop
if (ncol(y) > 1) {
logInfo <- y[, -1, drop = FALSE]

} else {
logInfo <- NA

}
if (length(control$transformFun) > 0) {
xt <- transformX(xNat = x, fn = control$transformFun)

} else {
xt <- NA

}
# (S-22) OCBA-best selection:
if (control$noise & control$OCBA) {
ocbaRes <- ocbaRanking(
x = x,
y = y,
fun = fun,
control = control

)
control$xBestOcba <- ocbaRes[1, 1:(ncol(ocbaRes) - 1)]
control$yBestOcba <- ocbaRes[1, ncol(ocbaRes)]

}
# Compile results in spotLoop
result <- list(
xbest = x[indexBest, , drop = FALSE],
ybest = y[indexBest, 1, drop = FALSE],
xBestOcba = matrix(control$xBestOcba, ncol = length(lower)),
yBestOcba = matrix(control$yBestOcba, ncol = length(lower)),
x = x,
xt = xt,
y = y[, 1, drop = FALSE],
logInfo = logInfo,
count = count,
msg = "budget exhausted",
modelFit = modelFit,
ybestVec = ybestVec,
ySurr = ySurr

)
## END spotLoop()

The function spotLoop ends here and the final steps of the main function spot,
which are summarized in the following section, are executed.
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Table 4.6 spot: return parameters

Parameter Value, type Description

xbest matrix Best x values

ybest matrix Best y values

xBestOcba matrix Best x values

yBestOcba matrix Best y values

x matrix x values

xt matrix Transformed x values

y matrix y values

logInfo matrix Additional y information, also
multi-objective values

count integer Number of function
evaluations

msg character Information about the
optimization

modelFit

yBestVec matrix History of best y values

ySurr matrix y values on the surrogate

control list Control parameters

4.5.5 Final Steps

To exploit the region of the best solution from the surrogate, S, which was deter-
mined during the SMBO in the main loop with spotLoop, SPOT allows a local
optimization step. If control$directOptControl$funEvals is larger than
zero, this optimization is started. If the best solution from the surrogate, xbest,
satisfies the inequality constraints, it is used as a starting point for the local optimiza-
tion with the local optimizer control$directOpt. For example, directOpt
= optimNLOPTR or directOpt = optimLBFGSB, can be used.

Results from the direct optimization will be appended to the matrices of the
x and y values based on SMBO. SPOT returns the gathered information in a list
(Table 4.6). Because SPOT focuses on reliability and reproducibility, it is not the
speediest algorithm.

4.6 Kriging

Basic elements of the Kriging-based surrogate optimization such as interpolation,
expected improvement, and regression are presented. The presentation follows the
approach described in Forrester et al. (2008a).
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4.6.1 The Kriging Model

Consider sample data X and y from n locations that are available in matrix form: X is
a (n × k) matrix, where k denotes the problem dimension and y is a (n × 1) vector.
The observed responses y are considered as if they are from a stochastic process,
which will be denoted as ⎛

⎜
⎝

Y(x(1))
...

Y(x(n))

⎞

⎟
⎠ .

The set of random vectors (also referred to as a “random field”) has a mean of 1μ,
which is a (n × 1) vector. The random vectors are correlated with each other using
the basis function expression

Cor
(
Y(x(i)), Y(x(l))

) = exp

⎧
⎨

⎩
−

k∑

j=1

θ j |x (i)
j − x (l)

j |p j

⎫
⎬

⎭
.

The (n × n) correlation matrix of the observed sample data is

� =
⎛

⎜
⎝

Cor
(
Y(x(i)), Y(x(l))

)
. . . Cor

(
Y(x(i)), Y(x(l))

)

...
...

...

Cor
(
Y(x(i)), Y(x(l))

)
. . . Cor

(
Y(x(i)), Y(x(l))

)

⎞

⎟
⎠ . (4.3)

Note: correlations depend on the absolute distances between sample points |x (n)
j −

x (n)
j | and the parameters p j and θ j .
To estimate the values of θ and p, they are chosen to maximize the likelihood of

y, which can be expressed as

L
(
Y(x(1)), . . . , Y(x(n))|μ, σ

) = 1

(2πσ)n/2
exp

{−∑n
j=1

(
Y( j) − μ

)2

2σ 2

}

,

which can be expressed in terms of the sample data

L
(

Y(x(1)), . . . , Y(x(n))|μ, σ
)

= 1

(2πσ)n/2|�|1/2 exp

{
−(y − 1μ)T�−1(y − 1μ)

2σ 2

}

,

and formulated as the log-likelihood:

ln(L) = −n

2
ln(2πσ) − 1

2
ln |�|−(y − 1μ)T�−1(y − 1μ)

2σ 2
. (4.4)
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Optimization of the log-likelihood by taking derivatives with respect to μ and σ

results in

μ̂ = 1T�−1yT

1T�−11T
(4.5)

and

σ̂ = (y − 1μ)T�−1(y − 1μ)

n
. (4.6)

Substituting (4.5) and (4.6) into (4.4) leads to the concentrated log-likelihood:

ln(L) = −n

2
ln(σ̂ ) − 1

2
ln |�|. (4.7)

Note: To maximize ln(L), optimal values of θ and p are determined numerically,
because (4.7) is not differentiable.

4.6.2 Kriging Prediction

For a new prediction ŷ at x, the value of ŷ is chosen so that it maximizes the likelihood
of the sample data X and the prediction, given the correlation parameter θ and p.
The observed data y is augmented with the new prediction ŷ which results in the
augmented vector ỹ = (yT , ŷ)T . A vector of correlations between the observed data
and the new prediction is defined as

ψ =
⎛

⎜
⎝

Cor
(
Y(x(1)), Y(x)

)

...

Cor
(
Y(x(n)), Y(x)

)

⎞

⎟
⎠ =

⎛

⎜
⎝

ψ (1)

...

ψ (n)

⎞

⎟
⎠ .

The augmented correlation matrix is constructed as

�̃ =
(

� ψ

ψT 1

)

.

Similar to (4.4), the log-likelihood of the augmented data is

ln(L) = −n

2
ln(2π) − n

2
ln(σ̂ 2) − 1

2
ln |�̂| − (ỹ − 1μ̂)T �̃

−1
(ỹ − 1μ̂)

2σ̂ 2
. (4.8)

The MLE for ŷ can be calculated as

ŷ(x) = μ̂ + ψT �̃
−1

(y − 1μ̂). (4.9)
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Equation 4.9 reveals two important properties of the Kriging predictor.

• The basis function impacts the vectorψ , which contains the n correlations between
the new point x and the observed locations. Values from the n basis functions are

added to a mean base term μ with weightings w = �̃
(−1)

(y − 1μ̂).
• The predictions interpolate the sample data. When calculating the prediction at
the i th sample point, x(i), the i th column of �−1 is ψ , and ψ�−1 is the i th unit
vector. Hence, ŷ(x(i)) = y(i).

4.6.3 Expected Improvement

The EI is a criterion for error-based exploration, which uses the MSE of the Kriging
prediction. The MSE is calculated as

s2(x) = σ 2

(

1 − ψT�−1ψ + (1 − 1T�−1�)2

1T�−11

)

.

Here, s2(x) = 0 at sample points, and the last term is omitted in Bayesian settings.
Since the EI extends the Probability of Improvement (PI), it will be described first.

Let ymin denote the best-observed value so far and consider ŷ(x) as the realization
of a random variable. Then, the probability of an improvement I = ymin − Y(x) can
be calculated as

P(I (x)) = 1

2

{

1 + erf

(
ymin − ŷ(x)

ŝ
√
2

)}

.

The EI does not calculate the probability that there will be some improvement, it
calculates the amount of expected improvement. The rationale of using this expec-
tation is that we are less interested in highly probable improvement if the magnitude
of that improvement is very small. The EI is defined as follows.

Definition 4.3 (Expected Improvement)

E(I (x)) =
{

(ymin − ŷ(x))�
(

ymin−ŷ(x)

ŝ(x)

)
+ ŝφ

(
ymin−ŷ(x)

ŝ(x)

)
if ŝ > 0

0 if ŝ = 0
, (4.10)

where�(.) and φ(.) are the Cumulative Distribution Function (CDF) and Probability
Distribution Function (PDF), respectively.

The EI is evaluated as

E(I (x)) = (
ymin − ŷ(x)

) 1

2

{

1 + erf

(
ymin − Ŷ(x)

ŝ
√
2

)}

+ ŝ
1√
2π

exp

{
−(ymin − ŷ(x))2

2ŝ2

}

.

(4.11)
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4.6.4 Infill Criteria with Noisy Data

The EI infill criterion was formulated under the assumption that the true underly-
ing function is deterministic, smooth, and continuous. In deterministic settings, the
Kriging predictor should interpolate the data. Noise can complicate the modeling
process: predictions can become erratic, because there is a high MSE in regions far
away from observed data. Therefore, the interpolation property should be dropped
to filter noise. A regression constant, λ, is added to the diagonal of � and � + λI is
used. Then, � + λI does not contain ψ as a column and the data is not interpolated.
The same method of derivation as in interpolating Kriging (Eq. 4.9) can be used for
regression Kriging. The regression Kriging prediction is given by

ŷr (x) = μ̂r + ψT (� + λI)−1(y − 1μ̂r ),

where

μ̂r = 1T (� + λI)−1y
1T (� + λI)−11

.

Including the regression constant λ the following equation allows the calculation of
an estimate of the error in the Kriging regression model for noisy data:

ŝ2r (x) = σ̂ 2
r

{

1 + λ − ψT (� + λI)−1ψ + (1 − 1T (� + λI)−1ψ)2

1T (� + λI)−11

}

, (4.12)

where

σ̂ 2
r = (y − 1μ̂r )

T (� + λI)−1(y − 1μ̂r )

n
.

Note: Eq. (4.12) includes the error associated with noise in the data. There is nonzero
error in all areas which leads to nonzero EI in all areas. As a consequence, resam-
pling can occur. Resampling can be useful if replicates result in different outcomes.
Although the possibility of resampling can destroy the convergence to the global
optimum, resampling can be a wanted feature in optimization with noisy data. In a
deterministic setting, resampling is an unwanted feature, because new evaluations of
the same point do not provide additional information and can stall the optimization
process.

Re-interpolation can be used to eliminate the errors due to noise in the data from
the model. Re-interpolation bases the estimated error on an interpolation of points
predicted by the regression model at the sample locations. It proceeds as follows:
calculate values for the Kriging regression at the sample locations using

ŷr = 1μ̂ + �(� + λI)−1(y − 1μ̂).

This vector can be substituted into Eq. (4.9), which is substituted into (4.6). This
results in
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σ̂ 2
ri = (y − 1μ̂)T (� + λI)−1�(� + λI)−1(y − 1μ̂)

n
.

Using the interpolating Kriging error estimate (4.12), the re-interpolation error esti-
mate reads

ŝ2ri(x) = σ̂ 2
ri

{

1 − ψT�−1ψ + (1 − 1T (� + λI)−1ψ)2

1T (� + λI)−11

}

.

4.6.5 spot’s Workhorse: Kriging

This section explains the implementation of the function buildKriging in SPOT.

(K-1) Set Parameters. buildKriging uses the parameters shown in Table 4.7. It
returns an object of class kriging, which is basically a list, with the options
and found parameters for the model which has to be passed to the predict
method of this class.

Program Code: Step (K-1)

buildKriging <- function(x, y, control = list()) {
## (K-1) Set Parameters
k <- ncol(x) # dimension
n <- nrow(x) # number of observations
con <- list(
thetaLower = 1e-4,
thetaUpper = 1e2,
types = rep("numeric", k),
algTheta = optimDE,
budgetAlgTheta = 200,
optimizeP = FALSE,
useLambda = TRUE,
lambdaLower = -6,
lambdaUpper = 0,
startTheta = NULL,
reinterpolate = TRUE,
target = "y"

)
fit <- control
fit$x <- x
fit$y <- y
LowerTheta <- rep(1, k) * log10(fit$thetaLower)
UpperTheta <- rep(1, k) * log10(fit$thetaUpper)
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Table 4.7 buildKriging: besides the design matrix x with corresponding observations y, the
function accepts a list with the parameters shown below

Parameter Value, type Description

types character vector A character vector giving the data type of each
variable. All but factor will be handled as
numeric, factor (categorical) variables will be
subject to the Hamming distance

thetaLower 1e-4, numerical Lower boundary for theta

thetaUpper 1e2 Upper boundary for theta

algTheta optimDE,
function

Algorithm used to find theta via MLE

budgetAlgTheta 200, integer Budget for the algorithm algTheta. The value
will be multiplied with the length of the model
parameter vector to be optimized

optimizeP FALSE, logical Specifies whether the exponents (p) should be
optimized. Otherwise, they will be set to two

useLambda TRUE, logical Whether to use the regularization constant lambda
(nugget effect)

lambdaLower -6, numerical Lower boundary for log10(lambda)

lambdaUpper 0, numerical Upper boundary for log10(lambda)

startTheta NULL, numerical Optional start value for theta optimization

reinterpolate TRUE, logical Whether re-interpolation should be performed

target "y", character
vector

Values of the prediction. Each element specifies a
value to be predicted, e.g., "y" for mean, "s" for
standard deviation, "ei" for EI

(K-2) Normalization.
The function normalizeMatrix is used to normalize the data, i.e., each
column of the (n, k)-matrix X has values in the range from zero to one.

Program Code: Step (K-2)

## (K-2) Normalize input data
fit$normalizeymin <- 0
fit$normalizeymax <- 1
res <- normalizeMatrix(fit$x, ymin, ymax)
fit$scaledx <- res$y
fit$normalizexmin <- res$xmin
fit$normalizexmax <- res$xmax

(K-3) Correlation Matrix. Prepare correlation matrix � (Eq. (4.3)) and start points
for the optimization.Thedistancematrix is determined.The i-th rowof (k, n2)-
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matrix A contains the distances between the elements of the i-th column
(dimension). A(1, 1) is the distance of the first element to the first element in
the first dimension, A(1, 2) the distance of the first element to the second ele-
ment in the first dimension, A(1, n + 1) is the distance of the second element
to the first element in the first dimension, and so on.

Program Code: Step (K-3)

## (K-3) Prepare distance/correlation matrix
A <- matrix(0, k, n * n)
for (i in 1:k) {
if (control$types[i] != "factor") {
A[i, ] <-
as.numeric(as.matrix(dist(fit$scaledx[, i]))) # euclidean distance

} else {
tmp <-
outer(fit$scaledx[, i], fit$scaledx[, i], "!=") # hamming distance

class(tmp) <- "numeric"
A[i, ] <- tmp

}
}

(K-4) Prepare Starting Points.

(K-4.1) θ . The starting point for the optimization of θ is determined. If no explicit
starting point is specified, then

θ0 = n/(100k) (4.13)

is chosen.
(K-4.2) p. The parameter optimizeP determines whether p should be optimized

or not. In the latter case, p = 2 is set and the matrix A is squared. Otherwise,
the starting point for the optimization of p is chosen as p0 = 1.9 and the
search interval is set to [0.01, 2].

(K-4.3) Nugget. If a nugget effect should be integrated, the starting point for the
optimization of λ is set to

λ0 = λlower + λupper

2
(4.14)

(K-4.4) Penalty. The penalty value is set to

φ = n × log(Var(y)) + 1e4. (4.15)
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Note: this penalty value should not be a hard constant. The scale of
the likelihood, i.e., n × log(SigmaSqr) + LnDet Psi at least depends on
log(Var(y)) and the number of samples. Hence, large number of samples
may lead to caseswhere the penalty is lower than the likelihood ofmost valid
parameterizations. A suggested penalty is therefore φ = n × log(Var(y)) +
1e4. Currently, this penalty is set in the buildKriging function, when
calling krigingLikelihood.

Program Code: Step (K-4)

## (K-4) Prepare starting points, search bounds and penalty value
## for MLE optimization
## 4.1 theta
x1 <- rep(n / (100 * k), k) # start point for theta
## 4.2 p
LowerTheta <- c(LowerTheta, rep(1, k) * 0.01)
UpperTheta <- c(UpperTheta, rep(1, k) * 2)
x3 <- rep(1, k) * 1.9 # start values for p
x0 <- c(x1, x3)
## 4.3 lambda
# start value for lambda:
x2 <- (fit$lambdaUpper + fit$lambdaLower) / 2
x0 <- c(x0, x2)
# append regression constant lambda (nugget)
LowerTheta <- c(LowerTheta, fit$lambdaLower)
UpperTheta <- c(UpperTheta, fit$lambdaUpper)
x0 <- matrix(x0, 1) # matrix with one row
opts <- list(funEvals = fit$budgetAlgTheta * ncol(x0))
## 4.4 penalty
penval <- n * log(var(y)) + 1e4

(K-5) Objective.Theobjective functionfitFun for theMLEoptimizeralgTheta
is defined in this step.

(K-6) krigingLikelihood. The function krigingLikelihood, see Sect. 4.6.6, is
called.



4 Hyperparameter Tuning Approaches 109

Program Code: Steps (K-5) and (K-6)

## (K-5) MLE objective function
fitFun <-
function(x, fX, fy, optimizeP, useLambda, penval) {

krigingLikelihood(x, fX, fy, optimizeP, useLambda, penval)$NegLnLike
}

## (K-6) See krigingLikelihood

(K-7) Performing theOptimizationwithfitFun.Theoptimizer is called as follows:

Program Code: Step (K-7)

## (K-7) MLE optimization
res <- fit$algTheta(
x = x0,
fun =
function(x, fX, fy, optimizeP, useLambda, penval) {
apply(x, 1, fitFun, fX, fy, optimizeP, useLambda, penval)

},
lower = LowerTheta,
upper = UpperTheta,
control = opts,
fX = A,
fy = fit$y,
optimizeP = fit$optimizeP,
useLambda = fit$useLambda,
penval = penval

)

(K-8) Compile Results. Step Compile return values: The return values from the
optimization run, which are stored in the list res, are added to the list fit
that specifies the object of the class kriging. The list fit contains the
following optimized values: θ∗ as Theta, 10θ∗

as dmodeltheta, p∗, as P,
λ∗, as Lambda and 10λ∗

, as dmodellambda.
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Program Code: Step (K-8)

## (K-8) Compile results from MLE optimization (to fit object)
Params <- res$xbest
nevals <- as.numeric(res$count[[1]])
fit$Theta <- Params[1:k]
fit$dmodeltheta <- 10ˆParams[1:k]
fit$P <- Params[(k + 1):(2 * k)]
fit$Lambda <- Params[length(Params)]
fit$dmodellambda <- 10ˆParams[length(Params)]

(K-9) Use Results to Determine Likelihood and Best Parameters. The function
krigingLikelihood is called with these optimized values, θ∗, p∗, and
λ∗ to determine the values used for the fit of the Kriging model.

Program Code: Step (K-9)

## (K-9) Evaluate with optimized parameters
res <-
krigingLikelihood(

c(fit$Theta, fit$P, fit$Lambda),
A,
fit$y,
fit$optimizeP,
fit$useLambda

)

(K-10) Compile the fit Object. The return values from this call to
krigingLikelihood are added to the fit object.

Program Code: Step (K-10)

## (K-10) Add results from MLE evaluation to fit object
fit$yonemu <- res$yonemu
fit$ssq <- as.numeric(res$ssq)
fit$mu <- res$mu
fit$Psi <- res$Psi
fit$Psinv <- res$Psinv
fit$nevals <- nevals
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fit$like <- res$NegLnLike
fit$returnCrossCor <- FALSE

(K-11) Calculate the mean objective function value. In addition to the results from
theMLE optimization, the mean objective function value of the best x value,
ymin, is calculated and stored in the fit list as min. This value is needed
for the EI computation.
Now the fit is available and can be used for predictions. The corresponding
code is shown below.

4.6.6 krigingLikelihood

Step: MLE optimization with krigingLikelihood. The objective function
accepts the following parameters: x, a vector, which contains the parameters
log10(theta), log10(lambda), and p, AX, a three-dimensional array, constructed by
buildKriging from the sample locations, Ay, a vector of observations at sample
locations, optimizeP, logical, which specifies whether or not to optimize parame-
ter p (exponents) or fix at two, useLambda, logical, which specifies whether to use
the nugget, and penval, a penalty value which affects the value returned for invalid
correlation matrices or configurations. The function krigingLikelihood per-
forms the following calculations: The θ and λ values are updated:

θ j = 10θ0 ( j = 1, . . . , n) (4.16)

λ = 10λ (4.17)

AX [ j, ] = |(| AX)
p
j ( j = 1, . . . , n) (4.18)

(L-1) Starting Points.
(L-2) Correlation Matrix �. The matrix � can be calculated. If

useLambda == TRUE, the nugget effect λ is added.
(L-3) Cholesky Factorization. Since� > 0, its Cholesky factorization is computed.
(L-4) Determinant. The natural log of the determinant of �, LnDetPsi is calcu-

lated, because it is numerically more reliable and also faster than using det
or determinant.

(L-5) Matrix inverse, mean, error, and likelihood.
Using chol2inv, the following values can be calculated: ln(L) (Eq. (4.7)),
μ̂ (Eq. (4.5)), and σ̂ (Eq. (4.6)). Together with the matrices � and �−1, and
the vector 1μ, these values are combined into a list, which is returned from
the function krigingLikelihood.

The following code illustrates the main components of krigingLikelihood.
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Program Code: krigingLikelihood Function

krigingLikelihood <-
function(x,

AX,
Ay,
optimizeP = FALSE,
useLambda = TRUE,
penval = 1e8) {

## (L-1) Starting Points
nx <- nrow(AX)
theta <- 10ˆx[1:nx]
if (optimizeP) {
AX <- abs(AX)ˆ(x[(nx + 1):(2 * nx)])

}
lambda <- 0
if (useLambda) {
lambda <- 10ˆx[length(x)]

}
n <- dim(Ay)[1]
## (L-2) Correlation Matrix Psi
Psi <- exp(-matrix(colSums(theta * AX), n, n))
if (useLambda) {
Psi <- Psi + diag(lambda, n)

}
## (L-3) cholesky decomposition
cholPsi <- try(chol(Psi), TRUE)
## (L-4) Determininant
LnDetPsi <- 2 * sum(log(abs(diag(cholPsi))))
## (L-5.1) Psi Inverted
Psinv <- try(chol2inv(cholPsi), TRUE)
psisum <- sum(Psinv)
## (L-5.2) Mean
mu <- sum(Psinv %*% Ay) / psisum
## (L-5.3) yoneMu, SigmSqr
yonemu <- Ay - mu
SigmaSqr <- (t(yonemu) %*% Psinv %*% yonemu) / n
## (L-5.4) Log Likelihood
NegLnLike <- n * log(SigmaSqr) + LnDetPsi
## (L-5.5) Compile Result
list(
NegLnLike = NegLnLike,
Psi = Psi,
Psinv = Psinv,
mu = mu,
yonemu = yonemu,
ssq = SigmaSqr

)
}
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4.6.7 Predictions

The buildKriging function from the R package spot provides two Kriging
predictors: predictionwith andwithout re-interpolation.Re-interpolation is presented
here, because it prevents an incorrect approximation of the error which might cause
a poor global convergence. Re-interpolation bases the computation of the estimated
error on an interpolation of points predicted by the regression model at the sample
locations, see Forrester et al. (2008a).

The functionpredictKrigingReinterpolation requires twoarguments:
(i) object, the Kriging model (settings and parameters) of class kriging, and
(ii) newdata, the design matrix to be predicted.

The function normalizeMatrix2 is used to normalize the data. It uses infor-
mation from the normalization performed during the Kriging model building phase,
namely normalizexmin and normalizexmax to ensure the same scaling of
the known and new data. Furthermore, the following optimized parameters from the
Kriging model are extracted: scaledx, dmodeltheta, dmodellambda, Psi,
Psinv, mu, and yonemu.

For re-interpolation, the error in the model excluding the error caused by noise is
computed. The following modifications are made:

PsiB <-
Psi - diag(lambda, n) + diag(.Machine$double.eps, n)

SigmaSqr <-
as.numeric(t(yonemu) %*% Psinv %*% PsiB %*% Psinv %*% yonemu) /

n
Psinv <- try(solve.default(PsiB), TRUE)
if (class(Psinv)[1] == "try-error") {
Psinv <- ginv(PsiB)

}

The MLE for ŷ is
ŷ(x) = μ̂ + ψT�−1(y − 1μ̂). (4.19)

This is Eq. (2.40) in Forrester et al. (2008a). It is implemented as follows:

psi <- matrix(0, k, n)
for (i in 1:nvar) {
tmp <- expand.grid(AX[, i], x[, i])
if (object$types[i] == "factor") {
tmp <- as.numeric(tmp[, 1] != tmp[, 2])ˆp[i]

} else {
tmp <- abs(tmp[, 1] - tmp[, 2])ˆp[i]

}
psi <- psi + theta[i] * matrix(tmp, k, n, byrow = TRUE)

}

psi <- exp(-psi)

f <- mu + as.numeric(psi %*% (Psinv %*% yonemu))
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Depending on the setting of the parameter target, the values y and s or y, s,
and ei are returned.

res <- list(y = f)
if (any(object$target %in% c("s", "ei"))) {
#
Psinv <- try(solve.default(PsiB), TRUE)
if (class(Psinv)[1] == "try-error") {
Psinv <- ginv(PsiB)

}
#
SSqr <-
SigmaSqr * (1 - diag(psi %*% (Psinv %*% t(psi))))

s <- sqrt(abs(SSqr))
res$s <- s
if (any(object$target == "ei")) {
res$ei <- expectedImprovement(f, s, object$min)

}
}
if (object$returnCrossCor) {
res$psi <- psi

}
res

4.7 Program Code

One complete spot run is shown below. To increase readability, only one iteration
of the spotLoop is performed.

Program Code: spot Run

## (S-1) Setup:
fun <- funNoise
lower <- c(-1, -1)
upper <- c(1, 1)
control <- list(
OCBA = TRUE,
OCBABudget = 3,
replicates = 2,
noise = TRUE,
multiStart = 2,
designControl = list(replicates = 2)

)
control <- spotFillControlList(control, lower, upper)

## (S-2) Initial design:
set.seed(control$seedSPOT)
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x <- control$design(
x = NULL,
lower = lower,
upper = upper,
control = control$designControl

)
x <- repairNonNumeric(x, control$types)

## (S-3) Eval initial design
y <- objectiveFunctionEvaluation(
x = NULL,
xnew = x,
fun = fun,
control = control

)

## (S-4) Imputation
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}

## (S-5) Enter spotLoop:

## (S-6) Initial check:
initialInputCheck(x, fun, lower, upper, control, inSpotLoop = TRUE)
dimension <- length(lower)
con <- spotControl(dimension)
con[names(control)] <- control
control <- con
rm(con)
control <- spotFillControlList(control, lower, upper)

## (S-7) Imputation:
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}

## (S-8) Counter and logs:
count <- nrow(y)
modelFit <- NA
ybestVec <- rep(min(y[, 1]), count)
ySurr <- matrix(NA, nrow = 1, ncol = count)

## (S-9) Termination (while loop):

## (S-10) Subsect select:
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selectRes <- control$subsetSelect(
x = x,
y = y[, 1, drop = FALSE],
control = control$subsetControl

)

## (S-11) Surrogate fit:
modelFit <- control$model(
x = selectRes$x,
y = selectRes$y,
control = control$modelControl

)

## (S-12) Surrogate optimization function:
funSurrogate <- evaluateModel(
modelFit,
control$infillCriterion,
control$verbosity

)

## (S-13) Random starting points: surrogate optimization
x0 <- getMultiStartPoints(x, y, control)
resSurr <- matrix(NA, nrow = nrow(x0), ncol = ncol(x0) + 1)

## (S-14b) Surrogate optimization:
for (i in 1:nrow(x0)) {
optimResSurr <- control$optimizer(
x = x0[i, , drop = FALSE],
funSurrogate,
lower,
upper,
control$optimizerControl

)
resSurr[i, ] <- c(optimResSurr$xbest, optimResSurr$ybest)

}

## (S-15) Compile surrogate results:
m <- which.min(resSurr[, ncol(x) + 1])
## Determine xnew based on multi start results
xnew <- resSurr[m, 1:ncol(x), drop = FALSE]
## value on the surrogate (can be "y", "s2, "ei", "negLog10ei" etc.)
ySurrNew <- resSurr[m, ncol(x) + 1]

## (S-16) Duplicate handling:
xnew <- duplicateAndReplicateHandling(xnew, x, lower, upper, control)
# Repair non-numeric results
xnew <- repairNonNumeric(xnew, control$types)

## (S-17) OCBA
if (control$noise & control$OCBA) {
xnew <- rbind(xnew, repeatsOCBA(
x, y[, 1, drop = FALSE],
control$OCBABudget
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))
}

## (S-18) Evaluate xnew
ynew <- tryCatch(
expr = {
objectiveFunctionEvaluation(
x = x,
xnew = xnew,
fun = fun,
control = control

)
},
error = function(e) {
message("Error in objectiveFunctionEvaluation()!")
print(e)
if (!is.null(control$yImputation$handleNAsMethod)) {
message("Error will be corrected.")
n <- nrow(xnew)
m <- ncol(y)
return(matrix(rep(NA, m * n), nrow = n))

}
}

)

## (S-19) Impute
colnames(xnew) <- colnames(x)
x <- rbind(x, xnew)
y <- rbind(y, ynew)
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}

## (S-20) Update counter, logs, etc.
ySurr <- c(ySurr, ySurrNew)
count <- count + nrow(ynew)
indexBest <- which.min(y[, 1, drop = FALSE])
ybestVec <- c(ybestVec, y[indexBest, 1, drop = FALSE])

## END while loop

## (S-21) Reporting after while loop in spotLoop
if (ncol(y) > 1) {
logInfo <- y[, -1, drop = FALSE]

} else {
logInfo <- NA

}
if (length(control$transformFun) > 0) {
xt <- transformX(xNat = x, fn = control$transformFun)

} else {
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xt <- NA
}
## (S-22) OCBA-based selection of the best
if (control$noise & control$OCBA) {
ocbaRes <- ocbaRanking(
x = x,
y = y,
fun = fun,
control = control

)
control$xBestOcba <- ocbaRes[1, 1:(ncol(ocbaRes) - 1)]
control$yBestOcba <- ocbaRes[1, ncol(ocbaRes)]

}
# Compile results in spotLoop
result <- list(
xbest = x[indexBest, , drop = FALSE],
ybest = y[indexBest, 1, drop = FALSE],
xBestOcba = matrix(control$xBestOcba, ncol = length(lower)),
yBestOcba = matrix(control$yBestOcba, ncol = length(lower)),
x = x,
xt = xt,
y = y[, 1, drop = FALSE],
logInfo = logInfo,
count = count,
msg = "budget exhausted",
modelFit = modelFit,
ybestVec = ybestVec,
ySurr = ySurr

)
## END spotLoop()

if (control$directOptControl$funEvals > 0) {
## (S-23) Starting point for direct optimization
xbest <- result$xbest
if (!is.null(control$directOptControl$eval_g_ineq) &&
(
control$directOptControl$opts$algorithm == "NLOPT_GN_ISRES" &
control$directOptControl$eval_g_ineq(xbest) < 0

)) {
x0 <- NULL

} else {
x0 <- xbest

}

# Direct optimization on the real fun
optimResDirect <- control$directOpt(
x = x0,
fun = fun,
lower = lower,
upper = upper,
control$directOptControl

)

## (S-24) Update results adding direct
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if (result$ybest > optimResDirect$ybest) {
result$xbest <- optimResDirect$xbest
result$ybest <- optimResDirect$ybest

}
result$x <- rbind(result$x, optimResDirect$x)
result$y <- rbind(result$y, optimResDirect$y)

}

The result from one spotLoop is saved in the variable result.
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