
Chapter 3
Models

Thomas Bartz-Beielstein and Martin Zaefferer

Abstract This chapter presents a unique overview and a comprehensive explana-
tion of Machine Learning (ML) and Deep Learning (DL) methods. Frequently used
ML and DL methods; their hyperparameter configurations; and their features such
as types, their sensitivity, and robustness, as well as heuristics for their determina-
tion, constraints, and possible interactions are presented. In particular, we cover the
following methods: k-Nearest Neighbor (KNN), Elastic Net (EN), Decision Tree
(DT), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector
Machine (SVM), and DL. This chapter in itself might serve as a stand-alone hand-
book already. It contains years of experience in transferring theoretical knowledge
into a practical guide.

3.1 Methods and Hyperparameters

In the following, we provide a survey and description of hyperparameters of ML and
DL methods. We emphasize that this is not a complete list of their parameters, but
covers parameters that are set quite frequently according to the literature.

Since the specific names and meaning of hyperparameters may depend on the
actual implementation used, we have chosen a reference implementation for each
model. The implementations chosen are all packages from the statistical program-
ming language R. Thus, we provide a description that is consistent with what users
experience, so that they can identify the relevant parameters when tuning ML and
DL methods in practice. In particular, we cover the methods shown in Table3.1.

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

M. Zaefferer
Bartz & Bartz GmbH and with Institute for Data Science, Engineering, and Analytics, TH Köln,
Gummersbach, Germany

Duale Hochschule Baden-Württemberg Ravensburg, Ravensburg, Germany
e-mail: zaefferer@dhbw-ravensburg.de

© The Author(s) 2023
E. Bartz et al. (eds.), Hyperparameter Tuning for Machine and Deep Learning with R,
https://doi.org/10.1007/978-981-19-5170-1_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5170-1_3&domain=pdf
mailto:thomas.bartz-beielstein@th-koeln.de
mailto:zaefferer@dhbw-ravensburg.de
https://doi.org/10.1007/978-981-19-5170-1_3


28 T. Bartz-Beielstein and M. Zaefferer

Table 3.1 Overview: Methods and hyperparameters analyzed in this book
Model, R Package Hyperparameter Comment

KNN, kknn k Number of neighbors

p p norm

EN, glmnet alpha Weight term of the loss function

lambda Trade-off between model quality and complexity

thresh Threshold for model convergence, i.e., convergence of the
internal coordinate descent

DT, rpart minsplit Minimum number of observations required for a split

minbucket Minimum number of observations in an end node (leaf)

cp Complexity parameter

maxdepth Maximum depth of a leaf in the decision tree

RF, ranger num.trees Number of trees that are combined in the overall ensemble
model

mtry Number of randomly chosen features are considered for
each split

sample.fraction Number of observations that are randomly drawn for
training a specific tree

replace Replacement of randomly drawn samples

respect.-

unordered.factors Handling of splits of categorical variables

XGBoost, xgboost eta Learning rate, also called “shrinkage” parameter

nrounds Number of boosting steps

lambda Regularization of the model

alpha Parameter for the L1 regularization of the weights

subsample Portion of the observations that is randomly selected in each
iteration

colsample_bytree Number of features that is chosen for the splits of a tree

gamma Number of splits of a tree by assuming a minimal
improvement for each split

maxdepth x Maximum depth of a leaf in the decision trees

min_child_weight Restriction of the number of splits of each tree

SVM, e1071 degree Degree of the polynomial (parameter of the polynomial
kernel function)

gamma Parameter of the polynomial, radial basis, and sigmoid
kernel functions

coef0 Parameter of the polynomial and sigmoid kernel functions

cost Regularization parameter weighs constraint violations of
the model

epsilon Regularization parameter defines ribbon around predictions

DL,
keras/tensorflow

See Chaps. 8, 9, 10, and 11
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This table presents an overview of thesemethods, their R packages, and associated
hyperparameters. After a short, general description of the specific hyperparameter,
the following features will be described for every hyperparameter:

Type: Describes the type (e.g., integer) and complexity (e.g., scalar).
These data types are described in Sect. 2.7.3. The variable type of
the implementation in the R package SPOTMisc, which is used
for the experiments in this book, is also listed.

Default: Default value as specified in getModelConf from the R pack-
age SPOTMisc.

Sensitivity: Describes how much the model is affected by changes of the
parameter. There is a close relationship between sensitivity and
tunability as defined by Probst et al. (2019a), because tunability
is the potential for improvement of the parameter in the vicinity
of a reference value.

Heuristics: Describes ways to find good hyperparameter settings.
Range: Describes feasible values, i.e., lower and upper bounds, con-

straints, etc.
Transformation: Transformation as specified in getModelConf.
Bounds: Lower and upper bounds as specified in getModelConf.
Constraints: Additional constraints, specific for certain settings or algorithms.
Interactions: Describes interactions between the parameters.

Each description concludes with a brief survey of examples from the literature that
gives hints how the method was tuned.

•! Attention: Default Hyperparameters

The default values in this chapter refer to the untransformed values, i.e., the trans-
formations that are also listed in the descriptions were not applied.

3.2 k-Nearest Neighbor

3.2.1 Description

In the field of statistical discrimination KNN classification is an established and
successful method. Hechenbichler and Schliep (2004) developed an extended KNN
version, where the distances of the nearest neighbors can be taken into account. The
KNN model determines for each x the k neighbors with the least distance to x , e.g.,
based on the Minkowski distance (Eq. (2.1)). For regression, the mean of the neigh-
bors is used (James et al. 2017). For classification, the prediction of the model is
the most frequent class observed in the neighborhood. Two relevant hyperparame-
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ters (k, p) result from this. Additionally, one categorical hyperparameter could be
considered: the choice of evaluation algorithm (e.g., choosing between brute force
or KD-Tree) (Friedman et al. 1977). However, this mainly influences computational
efficiency, rather than actual performance.

We consider the implementation from the R package kknn1 (Schliep et al. 2016).

3.2.2 Hyperparameters of k-Nearest Neighbor

KNN Hyperparameter k

The parameter k determines the number of neighbors that are considered by the
model. In case of regression, it affects how smooth the predicted function of the
model is. Similarly, it influences the smoothness of the decision boundary in case of
classification.

Small values of k lead to fairly nonlinear predictors (or decision boundaries),
while larger values tend toward more linear shapes (James et al. 2017). The error of
the model at any training data sample is zero if k = 1 but this does not allow any
conclusions about the generalization error (James et al. 2017). Larger values of k
may help to deal with rather noisy data. Moreover, larger values of k increase the
runtime of the model.

Type: integer, scalar.
Default: 7
Sensitivity: Determining the size of the neighborhoodviak is a fairly sensitive

decision. James et al. (2017) describe this as a drastic effect.
However, this is only true as long as the individual classes are hard
to separate (in case of classification). If there is a large margin
between classes, the shape of the decision boundary becomes less
relevant (see Domingos 2012, Fig. 3). Thus, the sensitivity of the
hyperparameter depends on the considered problem and data.
Probst et al. (2019a) also identify k as a sensitive (or tunable)
hyperparameter.

Heuristics: As mentioned above, the choice of k may depend on properties
of the data. Hence, no general rule can be provided. In individual
cases, determining the distance between and within classes may
help to find an approximate value: k = 1 is better than k > 1, if
the distance within classes is larger than the distance between
classes (Cover and Hart 1967). Another empirical suggestion
from the literature is k = √

n, where n is the number of data
samples (Lall and Sharma 1996; Probst et al. 2019a).

Range: k ≥ 1, k � n. Only integer values are valid.

1 https://cran.r-project.org/package=kknn.

https://cran.r-project.org/package=kknn
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Transformation: trans_id
Bounds: lower = 1; upper = 30
Constraints: none.
Interactions: We are not aware of any interactions between the hyperparame-

ters. However, both k and p change the perceived neighborhood
of samples and thus the shape of the decision boundaries. Hence,
an interaction between these hyperparameters is likely.

KNN Hyperparameter p

The hyperparameter p affects the distance measure that is used to determine the
nearest neighbors in KNN. Frequently, this is the Minkowski distance, see Eq. (2.1).
Moreover, it has to be considered that other distances could be chosen for non-
numerical features of the data set (i.e., Hamming distance for categorical features).
The implementation used in the R package kknn transforms categorical variables
into numerical variables via dummy-coding, then using the Minkowski distance on
the resulting data. Similar to k, p changes the observed neighborhood. While p does
not change the number of neighbors, it still affects the choice of neighbors.

Type: double, scalar.
Default: log10(2)
Sensitivity: It has to be expected that the model is less sensitive to changes in

p than to changes in k, since fairly extreme changes are required
to change the neighborhood set of a specific data sample. This
explains why many publications do not consider p during tuning,
see Table3.2. However, the detailed investigation of Alfeilat et al.
(2019) showed that changes of the distance measure can have a
significant effect on themodel accuracy.Alfeilat et al. (2019) only
tested special cases of the Minkowski distance (Eq. (2.1)): Man-
hattan distance (p = 1), Euclidean distance (p = 2) and Cheby-
shev distance (p = ∞). They give no indication whether other
values may be of interest as well.

Heuristics: The choice of distance measure (and hence p) depends on the
data, a general recommendation or rule-of-thumb is hard to
derive (Alfeilat et al. 2019).

Range: Often, the interval 1 ≤ p ≤ 2 is considered. The lower boundary
is p > 0. Note: The Minkowski distance is not a metric if p <

1 (Alfeilat et al. 2019). Theoretically, a value ofp = ∞ is possible
(resulting into Chebyshev distance), but this is not possible in the
kknn implementation.

Transformation: trans_10pow
Bounds: lower = -1; upper = 2
Constraints: none.
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Table 3.2 Survey of examples from the literature, for tuning of KNN

Hyperparameter Lower bound Upper bound Result Notes

(Schratz et al. 2019), weighted KNN variant, spacial data, 1 data set

k 10 400 NA

p 1 100 NA Integer

(Khan et al. 2020), detection of bugs, 5 data sets

k 1 17 NA

p 0,5 5 NA

(Osman et al. 2017), detection of bugs, 5 data sets

k 1 5 2 or 5 *

(Probst et al. 2019a), various applications, 38 data sets

k 1 30 2 to 30 *

(Doan et al. 2020), impact damage on reinforced concrete, 1 data set

k 7 51 9

p 1 11 3
∗Denotes results that depend on data set (multiple data sets)

Interactions: We are not aware of any known interactions between hyperpa-
rameters. However, both k and p change what is perceived as the
neighborhood of samples, and hence the shape of decision bound-
aries. An interaction between those hyperparameters is likely.

Table3.2 provides a brief survey of examples from the literature, where KNNwas
tuned.

3.3 Regularized Regression (Elastic Net)

3.3.1 Description

EN is a regularized regression method (Zou and Hastie 2005). Regularized regres-
sion can be employed to fit regression models with a reduced number of model
coefficients. Special cases of EN are Lasso and Ridge regression.

Regularization is useful for large k, i.e., when data sets are high dimensional
(especially but not exclusively if k > n), or when variables in the data sets are heavily
correlated with each other (Zou and Hastie 2005). Less complex models (i.e., with
fewer coefficients, see also Definition2.27) help to reduce overfitting. Overfitting
means that the model is extremely well adapted to the training data, but generalizes
poorly as a result, i.e., predicts poorly for unseen data. The resulting models are also
easier to understand for humans, due to their reduced complexity.
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During training, non-regularized regression reduces the model error (e.g., via the
least squares method), but not the model complexity. EN also considers a penalty
term, which grows with the number of coefficients included in the model (i.e., the
number of non-zero coefficients).

As a reference implementation, we use the R package glmnet2 (Friedman et al.
2020; Simon et al. 2011).

3.3.2 Hyperparameters of Elastic Net

EN Hyperparameter alpha

The parameter alpha (α) weighs the two elements of the penalty term of the loss
function in the EN model (Friedman et al. 2010):

min
β0,β

1

2n

n∑

i=1

(yi − β0 − xTi β)2 + λP(α, β). (3.1)

The penalty term P(α, β) is (Friedman et al. 2010)

(1 − α)
1

2
||β||22 + α||β||1, (3.2)

with the vector of p model coefficients β ∈ R
p and the intercept coefficient β0 ∈ R.

The value alpha = 0 corresponds to the special case of Ridge regression, alpha
= 1 corresponds to Lasso regression (Friedman et al. 2010).

The parameter alpha allows to find a compromise or trade-off between Lasso
and Ridge regression. This can be advantageous, since both variants have differ-
ent consequences. Ridge regression affects that coefficients of strongly correlated
variables match to each other (extreme case: identical variables receive identical
coefficients) (Friedman et al. 2010). In contrast, Lasso regression tends to lead to a
single coefficient in such a case (the other coefficients being zero) (Friedman et al.
2010).

Type: double, scalar.
Default: 1
Sensitivity: Empirical results from Friedman et al. (2010) show that the EN

model can be rather sensitive to changes in alpha.
Heuristics: We are not aware of any heuristics to set this parameter. As

described by Friedman et al. (2010), alpha can be set to a value
of close to 1, if a model with few coefficients without risk of
degeneration is desired.

2 https://cran.r-project.org/package=glmnet.

https://cran.r-project.org/package=glmnet
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Range: alpha ∈ [0, 1].
Transformation: trans_id
Bounds: lower = 0; upper = 1
Constraints: none.
Interactions: lambda interacts with alpha, see Sect. 3.3.2.

EN Hyperparameter lambda

The hyperparameter lambda influences the impact of the penalty term P(α, β) in
Eq. (3.1). Very large lambda values lead to many model coefficients (β) being set to
zero. Correspondingly, only fewmodel coefficients become zero if lambda is small
(close to zero). Thus, lambda is often treated differently than other hyperparame-
ters: in many cases, several values of lambda are of interest, rather than a single
value (Simon et al. 2011). There is no singular, optimal solution for lambda, as it
controls the trade-off between model quality and complexity (number of coefficients
that are not zero). Hence, a whole set of lambda values will often be suggested to
users, who then choose a resulting model that provides a specific trade-off to their
liking.

Type: double, scalar.
Default: not implemented, because parameter is not tuned.
Sensitivity: EN is necessarily sensitive to lambda, since extreme values lead

to completely different models, i.e., all coefficients are zero or
none are zero. This is also shown in Fig. 1 by Friedman et al.
(2010).

Heuristics: Often, lambda gets determined by a type of grid search, where
a sequence of decreasing lambda is tested (Friedman et al.
2010; Simon et al. 2011). The sequence starts with a sufficiently
large value of lambda, such that β = 0. The sequence ends,
if the resulting model starts to approximate the unregularized
model (Simon et al. 2011).

Range: lambda ∈ (0,∞) (Note: lambda = 0 is possible, but leads to
a simple unregularized model). Using a logarithmic scale seems
reasonable, as used in the study by Probst et al. (2019a), to cover
a broad spectrum of very small and very large values.

Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: none.
Interactions: lambda interacts with alpha. Both are central for determining

the coefficients β (see also Friedman et al. 2010, Fig. 1).
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Table 3.3 Survey of examples from the literature, for tuning of EN

Hyperparameter Lower bound Upper bound Result Notes

(Probst et al. 2019a), various applications, 38 data sets

alpha 0 1 0,003 to 0,981 *

lambda 2−10 210 0,001 to 0,223 *

(Wong et al. 2019), medical data, 1 data set

alpha 1 1 1 Not tuned, constant

lambda ** ** 0.001
∗Results depend on data set (multiple data sets)
∗∗The integrated, automatic tuning procedure from glmnet was used

EN Hyperparameter thresh

The parameter thresh is a threshold for model convergence (i.e., convergence
of the internal coordinate descent). Model training ends, when the change after an
update of the coefficients drops below this value (Friedman et al. 2020). Unlike
parameters like lambda, thresh is not a regularization parameter, hence there is
a clear connection between thresh and the number of model coefficients.

As a stopping criterion, thresh influences the duration of model training (larger
values of thresh result into faster training), and the quality of the model (larger
values of thresh may decrease quality).

Type: double, scalar.
Default: -7
Sensitivity: As long as thresh is in a reasonable range of values, the model

will not be sensitive to changes. Extremely large values can lead
to fairly poor models, extremely small values may result into
significantly larger training times.

Heuristics: none are known.
Range: thresh≈ 0, thresh> 0. It seems reasonable to set thresh

on a log-scale with fairly coarse granularity, since thresh
has a low sensitivity for the most part. Example: thresh =
10−20, 10−18, . . . , 10−4.

Transformation: trans_10pow
Bounds: lower = -8; upper = -1
Interactions: none are known.

In conclusion, Table3.3 provides a brief survey of examples from the literature,
where EN was tuned.
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3.4 Decision Trees

3.4.1 Description

Decision and regression trees are models that divide the data space into individual
segments with successive decisions (called splits).

Basically, the procedure of a decision tree is as follows: Starting from a root node
(which contains all observations) a first split is carried out. Each split affects a variable
(or a feature). This variable is compared with a threshold value. All observations that
are less than the threshold are assigned to a new node. All other observations are
assigned to another new node. This procedure is then repeated for each node until
a termination criterion is reached or until there is only one observation in each end
node. End nodes are also called leaves (following the tree analogy).

A detailed description of tree-based models is given by James et al. (2014). An
overview of decision tree implementations and algorithms is given by Zharmagam-
betov et al. (2019). Gomes Mantovani et al. (2018) describe the tuning of hyperpa-
rameters of several implementations. As a reference implementation, we refer to the
R package rpart (Therneau and Atkinson 2019; Therneau et al. 2019).

3.4.2 Hyperparameters of Decision Trees

DT Hyperparameter minsplit

If there are fewer than minsplit observations in a node of the tree, no further split
is carried out at this node. Thus,minsplit limits the complexity (number of nodes)
of the tree. With large minsplit values, fewer splits are made. A suitable choice
of minsplit can thus avoid overfitting. In addition, the parameter influences the
duration of the training of a decision tree (Hastie et al. 2017).

Type: integer, scalar.
Default: 20
Sensitivity: Trees can react very sensitively to parameters that influence their

complexity. Together with minbucket, cp, and maxdepth,
minsplit is oneof themost important hyperparameters (Gomes
Mantovani et al. 2018).

Heuristics: minsplit is set to three times minbucket in certain imple-
mentations, if this parameter is available (Therneau and Atkinson
2019).

Range: minsplit ∈ [1, n], where minsplit � n is recommended,
since otherwise trees with extremely few nodes will arise. Only
integer values are valid.
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Transformation: trans_id
Bounds: lower = 1; upper = 300
Constraints: minsplit > minbucket. This is a soft constraint, i.e., valid

models are created even if violated, but minsplit would no
longer have any effect.

Interactions: The parameters minsplit, minbucket, cp, and maxdepth
all influence the complexity of the tree. Interactions between these
parameters are therefore likely. In addition, minsplit has no
effect for certain values of minbucket (see Constraints). Simi-
lar relationships (depending on the data) are also conceivable for
the other parameter combinations.

DT Hyperparameter minbucket

minbucket specifies the minimum number of data points in an end node (leaf) of
the tree. The meaning in practice is similar to that of minsplit. With larger values,
minbucket also increasingly limits the number of splits and thus the complexity of
the tree. Additional information: minbucket is set relative to minsplit, i.e., we
are using numerical values for minbucket that represent percentages relative to
minsplit. If minbucket = 1.0, then minbucket = minsplit. minsplit
should be greater than or equal minbucket.

Type: integer, scalar.
Default: 1/3
Sensitivity: see minsplit.
Heuristics: minbucket is set to a third of the values of minsplit

in the reference implementations, if this parameter is avail-
able Therneau et al. (2019).

Range: minbucket ∈ [1, n], where minbucket � n is recomm-
ended, as otherwise trees with extremely few nodes will arise.
Only integer values are valid.

Transformation: trans_id
Bounds: lower = 0.1; upper = 0.5
Constraints: minsplit > minbucket (this is a soft constraint, i.e., valid

models are created even if violated, but minsplit would no
longer have any effect).

Interactions: see minsplit. Due to the similarity of minsplit and
minbucket, it can make sense to only tune one of the two
parameters.
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DT Hyperparameter cp

The threshold complexity cp controls the complexity of the model in that split
decisions are linked to a minimal improvement. This means that if a split does not
improve the tree-based model by at least the factor cp, this split will not be carried
out. With larger values, cp increasingly limits the number of splits and thus the
complexity of the tree.

Therneau and Atkinson (2019) describe the cp parameter as follows:

The complexity parametercp is, likeminsplit, an advisory parameter, but is considerably
more useful. It is specified according to the formula

Rcp(T ) ≡ R(T ) + cp× |T | × R(T1), (3.3)

where T1 is the tree with no splits, |T | is the number of splits for a tree, and R is the risk.
This scaled version is much more user-friendly than the original CART formula since it is
unit less. A value of cp = 1 will always result in a tree with no splits. For regression models,
the scaled cp has a very direct interpretation: if any split does not increase the overall R2

of the model by at least cp (where R2 is the usual linear models definition) then that split is
decreed to be, a priori, not worth pursuing. The program does not split said branch any further
and saves considerable computational effort. The default value of 0.01 has been reasonably
successful at “pre-pruning” trees so that the cross-validation step only needs to remove one
or two layers, but it sometimes over prunes, particularly for large data sets.

Type: double, scalar.
Default: -2
Sensitivity: see minsplit.
Heuristics: none known.
Range: paramcp ∈ [0, 1[.
Transformation: trans_10pow
Bounds: lower = -10; upper = 0
Constraints: none.
Interactions: see minsplit. Since cp expresses a relative factor for the

improvement of the model, an interaction with the corresponding
quality measure is also possible (split parameter).

DT Hyperparameter maxdepth

The parameter maxdepth limits the maximum depth of a leaf in the decision tree.
The depth of a leaf is the number of nodes that lie on the path between the root and
the leaf. The root node itself is not counted (Therneau and Atkinson 2019).

The meaning in practice is similar to that of minsplit. Both minsplit and
maxdepth can be used to limit the complexity of the tree. However, smaller values
of maxdepth lead to a lower complexity of the tree. With minsplit it is the other
way round (larger values lead to less complexity).
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Table 3.4 DT: survey of examples from the literature. Tree-based tuning example configurations

Hyperparameter Lower bound Upper bound Result

(Probst et al. 2019a), various applications, 38 data sets

minsplit 1 60 6.7 to 49.15 *

maxdepth 1 30 9 to 28 *

cp 0 1 0 to 0.528 *

minbucket 1 60 1 to 44.1 *

(Wong et al. 2019), medical data, 1 data set

cp 10−6 10−1 10−2

(Khan et al. 2020), software bug detection, 5 data sets

minbucket 1 50 NA

(Gomes Mantovani et al. 2018), various data sets, 94 data sets

minsplit 1 50

minbucket 1 50

cp 0.0001 0.1

maxdepth 1 50

This study, see Chap.8, Census-Income (KDD) Data Set (CID)

minsplit 1 300 16 (not relevant)

minbucket 0.1 0.5 0.17 (not relevant)

cp 10−10 1 10−3 (most relevant
hyperparameter)

maxdepth 1 30 >10
∗Denotes that results depend on data sets

Type: integer, scalar.
Default: 30
Sensitivity: see minsplit.
Heuristics: none known.
Range: maxdepth ∈ [0, n]. Only integer values are valid.
Transformation: trans_id.
Bounds: lower = 1; upper = 30.
Constraints: none.
Interactions: see minsplit.

Table3.4 shows examples from the literature.
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3.5 Random Forest

3.5.1 Description

The model quality of decision trees can often be improved with ensemble methods.
Here, many individual models (i.e., many individual trees) are merged into one
overall model (the ensemble). Popular examples are RF and XGBoost methods. This
section discusses RF methods, XGBoost methods will be discussed in Sect. 3.6. The
RF method creates many decision trees at the same time, and their prediction is then
usually made using the mean (in case of regression) or by majority vote (in case of
classification).

The variant of RF described byBreiman (2001) uses two important steps to reduce
generalization error: first, when creating individual trees, only a random subset of
the features is considered for each split. Second, each tree is given a randomly drawn
subset of the observations to train. Typically, the approach of bootstrap aggregating
or bagging (James et al. 2017) is used. A comprehensive discussion of random forest
models is provided by Louppe (2015), who also presents a detailed discussion of
hyperparameters. Theoretical results on hyperparameters of RF models are summa-
rized by Scornet (2017). Often, tuning of RF also takes into account parameters for
the decision trees themselves as described in Sect. 3.4. Our reference implementation
studied in this report is from the R package ranger3 (Wright 2020; Wright and
Ziegler 2017).

3.5.2 Hyperparameters of Random Forests

RF Hyperparameter num.trees

num.trees determines the number of trees that are combined in the overall ensem-
ble model. In practice, this influences the quality of the method (more trees improve
the quality) and the runtime of the model (more trees lead to longer runtimes for
training and prediction).

Type: integer, scalar.
Default: log(500,2).
Sensitivity: According to Breiman (2001), the generalization error of the

model converges with increasing number of trees toward a lower
bound. This means that the model will become less sensitive to
changes of num.treeswith increasing values of num.trees.
This is also shown in the benchmarks of Louppe (2015). Only
with relatively small values (num.trees < 50) the model is

3 https://cran.r-project.org/package=ranger.

https://cran.r-project.org/package=ranger
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rather sensitive to changes in that parameter. The empirical
results of Probst et al. (2019a) also show that the tunability of
num.trees is estimated to be rather low.

Heuristics: There are theoretical results about the convergence of the model
in relation to num.trees (Breiman 2001; Scornet 2017). This
however does not result in a clear heuristic approach to set-
ting this parameter. One common recommendation is to choose
num.trees sufficiently high (Probst et al. 2019c) (since more
trees are usually better), while making sure that the runtime of
the model does not become too large.

Range: num.trees ∈ [1,∞). Several hundred or thousands of trees
are commonly used, see also Table3.5.

Transformation: trans_2pow_round.
Bounds: lower = 0; upper = 11.
Constraints: none.
Interactions: none are known.

RF Hyperparameter mtry

The hyperparameter mtry determines howmany randomly chosen features are con-
sidered for each split. Thus, it controls an important aspect, the randomization of
individual trees. Values of mtry � n imply that differences between trees will be
larger (more randomness). This increases the potential error of individual trees, but
the overall ensemble benefits (Breiman 2001; Louppe 2015). As a useful side effect
mtry� n may also reduce the runtime considerably (Louppe 2015). Nevertheless,
findings about this parameter largely depend on heuristics and empirical results.
According to Scornet (2017), no theoretical results about the randomization of split
features are available.

Type: integer, scalar.
Default: floor(sqrt(nFeatures)).
Sensitivity: According to Breiman (2001), RF is relatively insensitive to

changes of mtry: “But the procedure is not overly sensitive to
the value of F. The average absolute difference between the error
rate using F=1 and the higher value of F is less than 1.” (Breiman
2001) (here: F corresponds to mtry).
This seems to be at odds with the benchmarks by Louppe (2015),
which determine that mtry may indeed have a considerable
impact, especially for low values of mtry. The investigation of
tunability by Probst et al. (2019a) also identifies mtry as an
important (i.e., tunable) parameter. This is not necessarily a con-
tradiction to Breiman’s observation, since Probst et al. (2019a)
determine RF as the least tunable model in their experimental
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investigation. Sowhilemtrymight have some impact (compared
to other parameters), it may be less sensitive when compared in
relation to hyperparameters of other models.

Heuristics: Breiman (2001) propose the following heuristic:

mtry = floor(log2(n) + 1).

Should categorical features be present, Breiman suggests dou-
bling or tripling that value. No theoretical motivation is given.
Another frequent suggestion is mtry = √

n (or mtry = floor
(
√
n)). While these are used in various implementations of RF,

there is no clear theoretical motivation given. For n < 20 both
heuristics provide very similar values.
Some implementations distinguish between classification (mtry
= √

n) and regression (mtry = n/3). Empirical results with
these heuristics are described by Probst et al. (2019c).

Range: mtry ∈ [1, n].
Transformation: trans_id.
Bounds: lower = 1; upper = nFeatures.
Constraints: none.
Interactions: none are known.

RF Hyperparameter sample.fraction

The parameter sample.fraction determines how many observations are ran-
domly drawn to train one specific tree.

Probst et al. (2019c)write thatsample.fraction has a similar effect asmtry.
Thatmeans, it influences theproperties of the trees:With smallsample.fraction
(corresponding to small mtry) individual trees are weaker (in terms of predictive
quality), yet the diversity of trees is increased. This improves the ensemble model
quality. Smaller values of sample.fraction reduce the runtime (Probst et al.
2019c) (if all other parameters are equal).

Type: double, scalar.
Default: 1.
Sensitivity: sample.fraction can have a relevant impact onmodel qual-

ity. Scornet reports: “However, according to empirical results,
there is no justification for default values in random forests for
sub-sampling or tree depth, since optimizing either leads to better
performance.”

Heuristics: none known.
Range: sample.fraction ∈ (0, 1].
Transformation: trans_id.
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Bounds: lower = 0.1; upper = 1.
Constraints: none.
Interactions: Potentially, sample.fraction interacts with parameters that

influence training individual trees DT (e.g., maxdepth,
minsplit, cp). Scornet: “According to the theoretical anal-
ysis of median forests, we know that there is no need to optimize
both the subsample size and the tree depth: optimizing only
one of these two parameters leads to the same performance as
optimizing both of them” (Scornet 2017). However, this theoret-
ical observation is only valid for the respective median trees and
not necessarily for the classical RF model we consider.

RF Hyperparameter replace

The parameter replace specifies, whether randomly drawn samples are replaced,
i.e., whether individual samples can be drawn multiple times for training of a tree
(replace = TRUE) or not (replace = FALSE). If replace = TRUE, the prob-
ability that two trees receive the same data sample is reduced. This may further
decorrelate trees and improve quality.

Type: logical, scalar.
Default: 2 (TRUE).
Sensitivity: The sensitivity of replace is often rather small. Yet, the sur-

vey of Probst et al. (2019c) notes a potentially detrimental bias
for replace = TRUE, if categorical variables with a variable
number of levels are present.

Heuristics: Due to the aforementionedbias, the choice could bemadedepend-
ingon thevarianceof the cardinality in thedata features.However,
a quantifiable recommendation is not available.

Range: replace ∈ {TRUE,FALSE}.
Transformation: trans_id.
Bounds: lower = 1 (FALSE); upper = 2 (TRUE).
Constraints: none.
Interactions: One obvious interaction occurswithsample.fraction. Both

parameters control the random choice of training data for each
tree. The setting (replace = TRUE ∧ sample.fraction
= 1) as well as the setting (replace = FALSE ∧ sample.
fraction < 1) implies that individual trees will not see the
whole data set.
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RF Hyperparameter respect.unordered.factors

This parameter decides how splits of categorical variables are handled. There are
basically three options: ignore, order, or partition, which will briefly be
explained in the following. A detailed discussion is given by Wright and König
(2019). A standard that is also used byBreiman (2001) isrespect.unordered.
factors = partition. In that case, all potential splits of a nominal, categor-
ical variable are considered. This leads to a good model, but the large number of
considered splits can lead to an unfavorable runtime.

A naive alternative is respect.unordered.factors = ignore. Here, the
categorical nature of a variable will be ignored. Instead, it is assumed that the variable
is ordinal, and splits are chosen just aswith numerical variables. This reduces runtime
but can decrease model quality.

A better choice should be respect.unordered.factors = order. Here,
each categorical variable first is sorted, depending on the frequency of each level in
the first of two classes (in case of classification) or depending on the average depen-
dent variable value (regression). After this sorting, the variable is considered to be
numerical. This allows for a runtime similar to that with respect.unordered.
factors = ignore but with potentially better model quality. This may not be
feasible for classification with more than two classes, due to lack of a clear sorting
criterion (Wright and König 2019; Wright 2020).

In specific cases,respect.unordered.factors=ignoremayworkwell
in practice. This could be the case, when the variable is actually nominal (unknown
to the analyst).

Type: character, scalar.
Default: 1 (ignore).
Sensitivity: unknown.
Heuristics: none.
Range: respect.unordered.factors ∈ {ignore, order,

partition}. The parameter respect.unordered.
factors can also be understood as a binary value. Then TRUE
corresponds to order and FALSE to ignore (Wright 2020).

Transformation: trans_id.
Bounds: lower = 1 (ignore); upper = 2 (order).
Constraints: none.
Interactions: none are known.

In conclusion, Table3.5 provides a brief survey of examples from the literature,
where RF was tuned.
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Table 3.5 RF: survey of examples from the literature for tuning of random forest
Hyperparameter Lower bound Upper bound Result Notes

(Probst et al. 2019a), various applications, 38 data sets

num.trees 1 2000 187,85 to
1908,25 *

replace FALSE Binary

sample.fraction 0.1 1 0,257 to 0,974 *

mtry 0 1 0,035 to 0,954 * Transformed:
mtry ×m

respect.unordered.factors FALSE oder
TRUE

binary

min.node.size 0 1 0,007 to 0,513 * Transformed:
nmin.node.size

(Schratz et al. 2019), spatial data, 1 data set

num.trees 10 10000 NA

mtry 1 11 NA

(Wong et al. 2019), medical data, 1 data set

num.trees 10 2000 1000

mtry 10 200 50
∗Results depend on data set (multiple data sets)

3.6 Gradient Boosting (xgboost)

3.6.1 Description

Boosting is an ensemble process. In contrast to random forests, see Sect. 3.5, the
individual models (here: decision trees) are not created and evaluated at the same
time, but rather sequentially. The basic idea is that each subsequent model tries to
compensate for the weaknesses of the previous models.

For this purpose, amodel is created repeatedly. Themodel is trainedwithweighted
data. At the beginning these weights are identically distributed. Data that are poorly
predicted or recognized by the model are given larger weights in the next step and
thus have a greater influence on the next model. All models generated in this way are
combined as a linear combination to form an overall model (Freund and Schapire
1997; Drucker and Cortes 1995).

An intuitive description of this approach is slow learning, as the attempt is not
made to understand the entire database in a single step, but to improve the under-
standing step by step (James et al. 2014). Gradient Boosting (GB) is a variant of
this approach, with one crucial difference: instead of changing the weighing of the
data, models are created sequentially that follow the gradient of a loss function. In
the case of regression, the models learn with residuals of the sum of all previous
models. Each individual model tries to reduce the weaknesses (here: residuals) of
the ensemble (Friedman 2001).
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In the following, we consider the hyperparameters of one version of GB:
XGBoost (Chen and Guestrin 2016). In principle, any models can be connected
in ensembles via boosting. We apply XGBoost to decision trees. As a reference
implementation, we refer to the R package xgboost (Chen et al. 2020). Brownlee
(2018) describes some empirical hyperparameter values for tuning XGBoost.

3.6.2 Hyperparameters of Gradient Boosting

XGBoost Hyperparameter nrounds

The parameter nrounds specifies the number of boosting steps. Since a tree is
created in each individual boosting step, nrounds also controls the number of
trees that are integrated into the ensemble as a whole. Its practical meaning can be
described as follows: larger values of nroundsmean a more complex and possibly
more precise model, but also cause a longer running time. The practical meaning is
therefore very similar to that of num.trees in random forests. In contrast to num.trees,
overfitting is a risk with very large values, depending on other parameters such as
eta, lambda, alpha. For example, the empirical results of Friedman (2001) show
that with a low eta, even a high value of nrounds does not lead to overfitting.

Type: integer, scalar.
Default: 0.
Sensitivity/robustness Similar to the random forests parameter num.trees,

nrounds also has a higher sensitivity, especially with low
values (Friedman 2001).

Heuristics: Heuristics cannot be derived from the literature. Often val-
ues of several hundred to several thousand trees are set as
the upper limit (Brownlee 2018).

Range: ∈ [1,∞[. Only integer values are valid.
Transformation: trans_2pow_round.
Bounds: lower = 0; upper = 11.
Constraints: none.
Interactions: There is a connection between the hyperparameters beta,

rounds, and subsample.

XGBoost Hyperparameter eta

The parameter eta is a learning rate and is also called “shrinkage” parameter. It
controls the lowering of the weights in each boosting step (Chen and Guestrin 2016;
Friedman 2002). It has the following practical meaning: lowering the weights helps
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to reduce the influence of individual trees on the ensemble. This can also avoid
overfitting (Chen and Guestrin 2016).

Type: double, scalar.
Default: log2(0.3).
Sensitivity: Empirical results show that XGBoost is more sensitive to eta

when eta is large (Friedman 2001). Generally speaking, smaller
values are better. In an empirical study, Probst et al. (2018)
describe eta as a parameter with comparatively high tunabil-
ity.

Heuristics: A heuristic is difficult to formulate due to the dependence on
other parameters and the data situation, but Hastie et al. (2017)
recommend

. . . the best strategy appears to be to set eta to be very small (eta
< 0.1) and then choose nrounds by early stopping.

This may lead to correspondingly longer runtimes due to large
nrounds. Brownlee (2018) mentions a heuristic, which
describes a search range depending on nrounds.

Range: eta ∈ [0, 1]. Using a logarithmic scale seems reasonable, e.g.,
2−10, . . . , 20), as used in the studies by Probst et al. (2018)
or Sigrist (2020), because values close to zero often show good
results.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 0 .
Constraints: none.
Interactions: There is a connection between eta and nrounds: If one of

the two parameters increases, the other should be decreased if
the error remains the same (Friedman 2001; Probst et al. 2019a).
This is also demonstrated by Hastie et al. (2017):

Smaller values of eta lead to larger values of nrounds for the same
training risk, so that there is a trade-off between them.

In addition, Hastie et al. (2017) also point to correlations with the
subsample parameter: In an empirical study, subsample = 1
and eta = 1 show significantly worse results than subsample
= 0.5 and eta = 0.1. If subsample = 0.5 and eta = 1, the
results are even worse than for eta = 1 and subsample = 1. In
the best case (subsample = 0.5 and eta = 0.1), however, larger
values of nrounds are required to achieve optimal results.
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XGBoost Hyperparameter lambda

The parameter lambda is used for the regularization of the model. This parameter
influences the complexity of the model (Chen and Guestrin 2016; Chen et al. 2020)
(similar to the parameter of the same name in EN). Its practical significance can
be described as follows: as a regularization parameter, lambda helps to prevent
overfitting (Chen andGuestrin 2016).With larger values, smoother or simplermodels
are to be expected.

Type: double, scalar.
Default: 0.
Sensitivity: not known.
Heuristics: none known.
Range: lambda ∈ [0,∞[. A logarithmic scale seems to be useful, e.g.,

2−10, . . . , 210, as used in the study by Probst et al. (2019a) to
cover a wide range of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10.
Constraints: none.
Interactions: Because both lambda and alpha control the regularization of

the model, an interaction is likely.

XGBoost Hyperparameter alpha

The authors of the R package xgboost, Chen and Guestrin (2016), did not mention
this parameter. The documentation of the reference implementation does not provide
any detailed information on alpha either. Due to the description as a parameter
for the l1 regularization of the weights (Chen et al. 2020), a highly similar use as
for the parameter of the same name in elastic net is to be assumed. Its practical
meaning can be described as follows: similar to lambda, alpha also functions as
a regularization parameter.

Type: double, scalar.
Default: -10.
Sensitivity: unknown.
Heuristics: No heuristics are known.
Range: alpha ∈ [0,∞[. A logarithmic scale seems to be useful, e.g.,

2−10, . . . , 210, as used in the study by Probst et al. (2019a) to
cover a wide range of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10.
Constraints: none.
Interactions: Since both lambda and alpha control the regularization of the

model, an interaction is likely.
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XGBoost Hyperparameter subsample

In each boosting step, the new tree to be created is usually only trained on a subset
of the entire data set, similar to random forest (Friedman 2002). The subsample
parameter specifies the portion of the data approach that is randomly selected in each
iteration. Its practical significance can be described as follows: an obvious effect of
small subsample values is a shorter running time for the training of individual
trees, which is proportional to the subsample (Hastie et al. 2017).

Type: double, scalar.
Default: 1.
Sensitivity: The study by Friedman (2002) shows a high sensitivity

for very small or large values of subsample. In a rela-
tively large range of values from subsample (around
0.3 to 0.6), however, hardly any differences in model
quality are observed.

Determination heuristics: Hastie et al. (2017) suggest subsample = 0.5 as a
good starting value, but point out that this value can
be reduced if nrounds increases. With many trees
(nround is large) it is sufficient if each individual tree
sees a smaller part of the data, since the unseen data is
more likely to be taken into account in other trees.

Range: subsample ∈]0, 1]. Based on the empirical results
Friedman (2002); Hastie et al. (2017), a logarithmic
scale is not recommended.

Transformation: trans_id.
Bounds: lower = 0.1; upper = 1.
Constraints: none.
Interactions: There is a connection between the eta, nrounds, and

subsample.

XGBoost Hyperparameter colsample_bytree

The parameter colsample_bytree has similarities to the mtry parameter in
random forests. Here, too, a random number of features is chosen for the splits of a
tree. In XGBoost, however, this choice is made only once for each tree that is created,
instead for each split (xgboost developers 2020). Here colsample_bytree is a
relative factor. The number of selected features is therefore colsample_bytree
×n. Its practical meaning is similar to mtry: colsample_bytree enables the
trees of the ensemble to have a greater diversity. The runtime is also reduced, since
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a smaller number of splits have to be checked each time (if colsample_bytree
< 1).

Type: double, scalar.
Default: 1.
Sensitivity: The empirical study by Probst et al. (2019a) shows that the model

is particularly sensitive to changes for colsample_bytree
values close to 1. However, this sensitivity decreases in the vicin-
ity of more suitable values.

Heuristics: none known.
Range: colsample_bytree ∈]0, 1]. Brownlee (2018) mentions

search ranges such as colsample_bytree = 0.4, 0.6, 0.8, 1,
but mostly works with colsample_bytree = 0.1, 0.2, . . . , 1.

Transformation: trans_id.
Bounds: lower = 1/nFeatures; upper = 1.
Constraints: none.
Interactions: none known.

XGBoost Hyperparameter gamma

This parameter of a single decision tree is very similar to the parameter cp: Like cp,
gamma controls the number of splits of a tree by assuming a minimal improvement
for each split. According to the documentation (Chen et al. 2020):

Minimum loss reduction required to make a further partition on a leaf node of the tree. The
larger, the more conservative the algorithm will be.

The main difference between cp and gamma is the definition of cp as a relative
factor, while gamma is defined as an absolute value. This also means that the ranges
differ.

Default: -10.
Range: gamma ∈ [0,∞[. A logarithmic scale seems to make sense, e.g.,

2−10, . . . , 210, as, e.g., in the study by Thomas et al. (2018) to
cover a wide range of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10.

XGBoost Hyperparameter maxdepth

This parameter of a single decision tree is already known as maxdepth.

Default: 6.
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Sensitivity/heuristics: Hastie et al. (2017) state:

Although in many applications J = 2 will be insufficient, it is
unlikely that J > 10 will be required. Experience so far indi-
cates that 4 ≤ J ≤ 8 works well in the context of boosting,
with results being fairly insensitive to particular choices in this
range.4

Transformation: trans_id.
Bounds: lower = 1; upper = 15.

XGBoost Hyperparameter min_child_weight

Like gamma and maxdepth, min_child_weight restricts the number of splits
of each tree. In the case of min_child_weight, this restriction is determined
using the Hessian matrix of the loss function (summed over all observations in each
new terminal node) (Chen et al. 2020; Sigrist 2020). In experiments by Sigrist (2020),
this parameter turns out to be comparatively difficult to tune: the results show that
tuning with min_child_weight gives worse results than tuning with a similar
parameter (limitation of the number of samples per sheet) (Sigrist 2020).

Type: double, scalar.
Default: 0.
Sensitivity: unknown.
Heuristics: none known.
Range: min_child_weight ∈ [0,∞[. A logarithmic scale seems to

make sense, e.g., 2−10, . . . , 210, as used in the study by Probst
et al. (2019a) to cover a wide range of very small and very large
values.

Transformation: trans_2pow.
Bounds: lower = 0; upper = 7.
Constraints: none.
Interactions: Interactions with parameters such as gamma and maxdepth are

probable, since all three parameters influence the complexity of
the individual trees in the ensemble.

Table3.6 shows XGBoost example parameter settings from the literature.

4 J is the number of nodes in a tree that is strongly influenced by maxdepth.
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Table 3.6 Survey: examples from literature about XGBoost tuning

Hyperparameter Lower bound Upper bound Result

(Probst et al. 2019a), several applications, 38 data sets

nrounds 1 5000 920.7 to 4847.15 *

eta 2−10 20 0.002 to 0.445 *

subsample 0.1 1 0.545 to 0.964 *

maxdepth x 1 15 2.6 to 14 *

min_child_weight 20 27 1.061 to 7.502 *

colsample_bytree 0 1 0.334 to 0.922 *

lambda 2−10 210 0.004 to 29.755 *

alpha 2−10 210 0.002 to 6.105 *

(Thomas et al. 2018), several applications, 16 data sets

eta 0.01 0.2

gamma 2−7 26

subsample 0.5 1

maxdepth x 3 20

colsample_bytree 0.5 1

lambda 2−10 210

alpha 2−10 210

(Wang 2019), Risk Classification, 1 data set

eta 0.005 0.2

subsample 0.8 1

maxdepth x 5 30

min_child_weight 0 10

colsample_bytree 0.8 1

gamma 0 0.02

(Zhou et al. 2020), Tunnel construction, 1 data set

nrounds 1 150 103

eta 0.00001 1 0.152

maxdepth x 1 15 15

lambda 1 15 13

alpha 1 15 1

This study, see Sect. 9.1, CID

nrounds 0 32 256

eta 2−10 0 0.125
∗Denotes that results depend on the data (several data sets)



3 Models 53

3.7 Support Vector Machines

3.7.1 Description

The SVM is a kernel-based method.

Definition 3.1 (Kernel) A kernel is a real-valued, symmetrical function k(x, x ′)
(usually positive definite), which often expresses some form of similarity between
two observations x, x ′.
The usefulness of kernels can be explained by the Kernel-Trick. The Kernel-Trick
describes the ability of kernels to transfer data into a higher dimensional feature space.
This allows classificationwith linear decision boundaries (hyperplanes) even in cases
where the data in the original feature space are not linearly separable (Schölkopf and
Smola 2001).

As reference implementation, we use the R package e10715 (Meyer et al. 2020),
which is based on libsvm (Chang and Lin 2011).

3.7.2 Hyperparameters of the SVM

SVM Hyperparameter kernel

The parameter kernel is central for the SVM model. It describes the choice of the
function k(x, x ′). In practice, k(x, x ′) can often be understood to be a measure of
similarity. That is, the kernel function describes how similar two observations are to
each other, depending on their feature values.

Type: character, scalar.
Default: 1 (radial).
Sensitivity: The empirical investigation of Probst et al. (2019a) shows “In

svm the biggest gain in performance can be achieved by tuning
the kernel, gamma or degree, while the cost parameter does
not seem to be very tunable.” This does not necessarily mean
that cost should not be tuned, as the tunability investigated by
Probst et al. (2019a) always considers a reference value (e.g., the
default).

Heuristics: Informally, it is often recommended to use kernel = radial
basis. This also matches well to results and observations from
the literature (Probst et al. 2019a; Guenther and Schonlau 2016).
With very large numbers of observations and/or featuresHsu et al.
(2016) suggest to use kernel = linear. These are infallible

5 https://cran.r-project.org/package=e1071.

https://cran.r-project.org/package=e1071
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rules, other kernels may perform better depending on the data
set. This stresses the necessity of using hyperparameter tuning to
choose kernels.

Range: • linear: k(x, x ′) = xTx ′.
• polynomial: k(x, x ′) = (gamma xTx ′ + coef0)degree.
• radial basis: k(x, x ′) = exp(−gamma ||x − x ′||2).
• sigmoid: k(x, x ′) = tanh(gamma xTx ′ + coef0).

Transformation: trans_id.
Bounds: lower = 1 (radial); upper = 2 (sigmoid).
Constraints: none.
Interactions: The kernel functions themselves have parameters (degree,

gamma, and coef0), whose values only matter if the respec-
tive function is chosen.

SVM Hyperparameter degree

The parameter degree influences the kernel function if a polynomial kernel was
selected:

• polynomial: k(x, x ′) = (gamma xTx ′ + coef0)degree.

Integer values of degree determine the degree of the polynomial. Non-integer
values are possible, even though not leading to a polynomial in the classical sense.
If degree has a value close to one, the polynomial kernel approximates the linear
kernel. Else, the kernel becomes correspondingly nonlinear.

Type: double, scalar.
Default: not implemented, because parameter is not tuned.
Sensitivity: The empirical investigation of Probst et al. (2019a) shows “In

svm the biggest gain in performance can be achieved by tuning
the kernel, gamma or degree, while the cost parameter does
not seem to be very tunable.”

Heuristics: none are known.
Range: degree ∈ (0,∞).
Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: none.
Interactions: The parameter only has an impact if kernel = polynomial.
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SVM Hyperparameter gamma

The parameter gamma influences three kernel functions:

• polynomial: k(x, x ′) = (gamma xTx ′ + coef0)degree.
• radial basis: k(x, x ′) = exp(−gamma ||x − x ′||2).
• sigmoid: k(x, x ′) = tanh(gamma xTx ′ + coef0).

In case of polynomial and sigmoid, gamma acts as a multiplier for the scalar product
of two feature vectors. For radial basis, gamma acts as a multiplier for the distance
of two feature vectors.

In practice, gamma scales how far the impact of a single data sample reaches in
terms of influencing the model. With small gamma values, an individual observation
may potentially influence the prediction in a larger vicinity, since with increasing
distance between x and x’, their similarity will decrease more slowly (esp. with
kernel = radial basis).

Type: double, scalar.
Default: log(1/nFeatures,2).
Sensitivity: The empirical investigation of van Rijn and Hutter (2018) shows

that gamma is rather sensitive.
Heuristics: The reference implementation uses a simple heuristic, to deter-

mine gamma: gamma= 1/n (Meyer et al. 2020). Another imple-
mentation (the sigest function in kernlab6) first scales all
input data, so that each feature has zero mean and unit variance.
Afterward, a good interval for gamma is determined, by using
the 10 and 90% quantile of the distances between the scaled data
samples. By default, 50% randomly chosen samples from the
input data are used.

Range: gamma ∈ [0,∞). Using a logarithmic scale seems reasonable
(e.g., 2−10, . . . , 210 as used by Probst et al. 2019a), to cover a
broad spectrum of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10.
Constraints: none.
Interactions: This parameter has no effect when kernel = linear. In addition,

empirical results show a clear interaction with cost (van Rijn
and Hutter 2018).

6 https://cran.r-project.org/package=kernlab.

https://cran.r-project.org/package=kernlab
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SVM Hyperparameter coef0

The parameter coef0 influences two kernel functions:

• polynomial: k(x, x ′) = (gamma xTx ′ + coef0)degree.
• sigmoid: k(x, x ′) = tanh(gamma xTx ′ + coef0).

In both cases, coef0 is added to the scalar product of two feature vectors.

Type: double, scalar.
Default: 0.
Sensitivity: Empirical results of Zhou et al. (2011) show that coef0 has

a strong impact in case of the polynomial kernel (but only for
degree = 2).

Heuristics: Guenther and Schonlau (2016) suggest to leave this parameter at
coef0 = 0.

Range: coef0 ∈ R.
Transformation: trans_id.
Bounds: lower = -1; upper = 1
Constraints: none.
Interactions: This parameter is only active ifkernel=polynomial orkernel

= sigmoid.

SVM Hyperparameter cost

The parameter cost (often written as C) is a constant that weighs constraint vio-
lations of the model. C is a typical regularization parameter, which controls the
complexity of the model (Cherkassky and Ma 2004), and may help to avoid overfit-
ting or dealing with noisy data.7

Type: double, scalar.
Default: 0.
Sensitivity: The empirical results of van Rijn and Hutter (2018) show that

cost has a strong impact on the model, while the investigation
of Probst et al. (2019a) determines only a minor tunability. This
disagreement may be explained, since cost may have a huge
impact in extreme cases, yet good parameter values are found
close to the default values.

Heuristics: Cherkassky and Ma (2004) suggest the following: cost =
max(|ȳ + 3σy |, |ȳ − 3σy |). Here, ȳ is the mean of the observed
y values in the training data, and σy is the standard deviation.

7 Here, complexity does not mean the number of model coefficients (as in linear models) or splits
(decision trees), but the potential to generate more active/rugged functions. In that context, C
influences the number of support vectors in the model. A high model complexity (many support
vectors) can create functions with many peaks. This may lead to overfitting.
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They justify this heuristic, by pointing out a connection between
cost and the predicted y: as a constraint, cost limits the output
values of the SVMmodel (regression) and should hence be set in
a similar order of magnitude as the observed y (Cherkassky and
Ma 2004).

Range: cost∈ [0,∞).Using a logarithmic scale seems reasonable (e.g.,
2−10, . . . , 210 as used by Probst et al. (2019a)), to cover a broad
spectrum of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10
Constraints: none.
Interactions: Empirical results show a clear interaction with gamma (van Rijn

and Hutter 2018).

SVM Hyperparameter epsilon

The parameter epsilon defines a corridor or “ribbon” around predictions. Resid-
uals within that ribbon are tolerated by the model, i.e., are not penalized (Schölkopf
and Smola 2001). The parameter is only used for regression with SVM, not for clas-
sification. In the experiments in Sect. 12.1, epsilon is only considered when SVM
is used for regression.

Similar to cost, epsilon is a regularization parameter. With larger values,
epsilon allows for larger errors/residuals. This reduces the number of support
vectors (and incidentally, also the runtime). The model becomes more smooth
(cf. Schölkopf and Smola 2001, Fig. 9.4). This can be useful, e.g., to deal with
noisy data and avoid overfitting. However, the model quality may be decreased.

Type: double, scalar.
Default: -1.
Sensitivity: As described above, epsilon has a significant impact on the

model.
Heuristics: For SVM regression, Cherkassky and Ma (2004) suggest based

on simplified assumptions and empirical results: epsilon =
3σ

√
ln(n)

n . Here, σ 2 is the noise variance, which has to be esti-
mated from the data, see, e.g., Eqs. (22), (23), and (24) in
Cherkassky and Ma (2004). The noise variance is the remain-
ing variance of the observations y, which cannot be explained by
an ideal model. This ideal model has to be approximated with the
nearest neighbor model (Cherkassky and Ma 2004), resulting in
additional computational effort.

Range: epsilon ∈ (0,∞).
Transformation: trans_10pow.
Bounds: lower = -8; upper = 0.
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Table 3.7 Survey of examples from the literature, for tuning of SVM

Hyperparameter Lower bound Upper bound Result Notes

(Probst et al. 2019a), various applications, 38 data sets

kernel radial basis

cost 2−10 210 0,002 to 963,81 *

gamma 2−10 210 0,003 to 276,02 *

degree 2 5 2 to 4 *

(Mantovani et al. 2015), various applications, 70 data sets

cost 2−2 215

gamma 2−15 23

(van Rijn and Hutter 2018), various applications, 100 data sets

cost 2−5 215

gamma 2−15 23

coef0 −1 1 Only sigmoid

tolerance 10−5 10−1

(Sudheer et al. 2013), flow rate prediction (hydrology), 1 data set

cost 10−5 105 1,12 to 1,93 *

epsilon 0 10 0,023 to 0,983 *

gamma 0 10 0,59 to 0,87 *
∗Denotes that results depend on data set (multiple data sets)

Constraints: none.
Interactions: none are known.

In conclusion, Table3.7 provides a brief survey of examples from the literature,
where SVM was tuned.

3.8 Deep Neural Networks

3.8.1 Description

WhileDL describes themethodology, DeepNeural Networks (DNNs) are themodels
used in DL. DL models require the specification of a set of architecture-level param-
eters, which are important hyperparameters. Hyperparameters in DL are optimized
in the outer loop of the hyperparameter tuning process. They are to be distinguished
from the parameters of the DL method that are optimized in the initial loop, e.g.,
during the training phase of a Neural Network (NN) via backpropagation. Hyperpa-
rameter values are determined before the model is executed—they remain constant
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during model building and execution whereas parameters are modified. Selecting the
method for the parameter optimization is a typical Hyperparameter Tuning (HPT)
task. Available optimization methods such as ADAptive Moment estimation algo-
rithm (ADAM) are described in Sect. 3.8.2.

Typical questions regarding hyperparameters in DL models are as follows:

1. How many layers should be combined?
2. Which dropout rate prevents overfitting?
3. How many filters (units) should be used in each layer?

Several empirical studies and benchmarking suites are available, see Sect. 6.2. But to
date, there is no comprehensive theory that adequately explains how to answer these
questions. Recently, Roberts et al. (2021) presented a first attempt to develop a DL
theory.

Besides the hyperparameters discussed in this section, there are additional param-
eters used to defineweight initialization schemes or regularization penalties. Further-
more, it should be noted that hyperparameters in DL methods can be conditionally
dependent (this is also true for ML), e.g., on the number of layers as shown in the
following example:

Example: Conditionally Dependent Hyperparameters

Mendoza et al. (2019) consider besidesNNhyperparameters (e.g., batch size, number
of layers, learning rate, dropout output rate, and optimizer), hyperparameters con-
ditioned on solver type (e.g., β1 and β2) as well as hyperparameters conditioned on
learning-rate policy, and per-layer hyperparameters (e.g., activation function, num-
ber of units). For practical reasons, Mendoza et al. (2019) constrained the number of
layers to the range between one and six: firstly, they aimed to keep the training time
of a single configuration low, and secondly each layer adds eight per-layer hyper-
parameters to the configuration space, such that allowing additional layers would
further complicate the configuration process.

3.8.2 Hyperparameters of Deep Neural Networks

DL Hyperparameter layers

The parameter layer determines the number of layers of the NN. Only the number
of hidden layers are affected, because input and output layers are basic elements of
every NN. Larger values mean more complex models, which correspondingly also
have more model coefficients, a higher runtime, but possibly also a higher model
quality. There is also an increased risk of overfitting, if no regularization measures
are implemented or methods such as early-stopping be used (Prechelt 2012).
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Type: integer.
Default: 1.
Sensitivity: The influence of layers can be extreme. By varying this value,

extremely simple (no hidden layer or only one hidden layer with
very few neurons) or extremely complex models (thousands of
layers and neurons) can be generated. Moreover, the study of
Li et al. (2018) shows that network depth has a strong influ-
ence onweight optimization. The functional relationship between
weights andmodel quality becomes increasingly nonlinear as net-
work depth increases and contains more local optima. Thus, the
difficulty of weight optimization problem increases. At the same
time, this difficulty decreases when more neurons are used per
layer (Li et al. 2018). Also, “skip connections” (connections in
the network that skip layers) can help reduce the difficulty.

Heuristics: We are not aware of any quantitative heuristics. Bengio (2012)
recommend choosing the number of layers as large as possible,
considering the impact on computational resources. Larger net-
works exhibit better model performance as long as appropriate
regularization procedures are applied (Bengio 2012).

Range: layersi ∈ [1,∞), with i = {1, 2, . . . ,∞}. Only integer values
are valid.

Transformation: identity.
Bounds: lower = 1; upper = 4.
Constraints: none.
Interactions: An interaction of units and dropout with layers is

expected. These parameters together determine the total num-
ber of nodes in the network. This is also shown by the example
of Srivastava et al. (2014).

DL Hyperparameter units

The parameter units determines the size of the corresponding network layer (num-
ber of neurons in the layer). Only the hidden layers are affected, because the dimen-
sion of the input and output layers is pre-determined, i.e., the number of units of
the input layer depends on the dimensionality of the data and the number of units
of the output layer depends on the task (e.g., binary and multi-class classification
or regression). Similar to the layers, larger values mean more complex models,
which correspondingly also have more model coefficients, a higher runtime, but
possibly also a higher model quality. There is also an increased risk of overfitting,
should no regularization measures be taken or methods such as early-stopping be
used (Prechelt 2012).
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Type: integer, vector.
Default: 5.
Sensitivity: The influence of units can be extreme. By varying this vec-

tor, extremely simple (no hidden layer or only one hidden layer
with very few neurons) or extremely complex models (thousands
of layers and neurons) can be generated. Moreover, the study
of Li et al. (2018) shows that network depth has a strong influ-
ence onweight optimization. The functional relationship between
weights andmodel quality becomes increasingly nonlinear as net-
work depth increases and contains more local optima. Thus, the
difficulty of weight optimization problem increases. At the same
time, this difficulty decreases when more neurons are used per
layer (Li et al. 2018). Also, “skip connections” (connections in
the network that skip layers) can help reduce the difficulty.

Heuristics: We are not aware of any quantitative heuristics. Larger networks
exhibit better model performance as long as appropriate regular-
ization procedures are applied (Bengio 2012). In addition, it is
recommended from empirical results (Bengio 2012), to choose a
first hidden layer that has more neurons than the input layer (i.e.,
the first element of units should be larger than n).

Range: unitsi ∈ [1,∞), with i = {1, 2, . . . ,∞}. Only integer values
are valid.

Transformation: trans2_pow
Bounds: lower = 0; upper = 5
Constraints: none.
Interactions: An interaction of layers and dropout with units is

expected. These parameters together determine the total num-
ber of nodes in the network. This is also shown by the example
of Srivastava et al. (2014).

DL Hyperparameter activation

The parameter activation specifies the activation function of the network nodes
(neurons). In tensorflow, this parameter is often specified for each layer. This function
decides how the input values of each node are translated into an output value.

The choice of activation function can have a strong impact onmodel performance.
Among other things, activation influences an essential property of the network:
the ability to approximate nonlinear functions. Only nonlinear activation functions
allow this (Goldberg 2016).

Type: character/function, vector. Standard activation functions can be
selected via their name, else custom functions can be imple-
mented in tensorflow or keras.
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Default: relu (parameter is not tuned).
Sensitivity: unknown.
Heuristics: A heuristic is not known. A popular choice is activation =

relu (Bengio 2012). However, activation = tanh also shows
success (LeCun et al. 2012). The choice of activation function is
often empirically justified (Goldberg 2016), based on empirical
data or empirical research for a specific problem. This under-
scores the need to tune this parameter.

Range: activation∈ {tanh, sigmoid, relu, linear, swish,

…}.
Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: As a soft constraint, the choice of activation function may affect

whether or not GPU-acceleration can be used in tensorflow. That
is, some activation functions cannot be used if GPU support is
required.

Interactions: not known.

DL Hyperparameter dropout

Dropout is a commonly used regularization technique for DNNs: some percentage of
the layer’s output features will be randomly set to zero (“dropped out”) during train-
ing, i.e., dropout refers to the random removal of nodes (units) in the network (Chol-
let and Allaire 2018; Srivastava et al. 2014). The parameter dropout (often also
p (Srivastava et al. 2014)) is the probability that any node will be removed. Remov-
ing nodes randomly helps to avoid overfitting, dropout thus acts in the sense of
regularization (Srivastava et al. 2014). In tensorflow, this parameter is often specified
for each layer.

Type: double, vector.
Default: 0.
Sensitivity: A NN model’s quality can be very sensitive to dropout. In an

example, Srivastava et al. (2014) show that at a constant num-
ber of hidden nodes (network structure remains unchanged) the
model error on test data for values between dropout = 0.4 and
dropout = 0.6 is approximately constant. However, the model
error increases for larger and smaller values of dropout.

Heuristics: none known.
Range: dropout ∈ (0, 1].
Transformation: identity.
Bounds: lower = 0; upper = 0.4.
Constraints: none.



3 Models 63

Interactions: An interaction of dropout with units and layers is
expected. These parameters together determine the total number
of nodes in the network. This is also illustrated in the example of
Srivastava et al. (2014).

DL Hyperparameter learning_rate

The learning rate (learning_rate) is a parameter of the weight optimization
algorithm employed in the NN. It can be understood as a multiplier for the gradient
in each iteration of the NN training procedure. The result is used to determine new
values for the network weights (Bengio 2012).

The learning rate is essential to the model. When the gradient of the weights is
determined, the learning rate decides how large a step to take in the direction of the
gradient. Very large values can lead to faster progress on the one hand, but on the
other hand can lead to instability and thus prevent the convergence of the training.

Type: double, scalar/vector. Usually a scalar, but a schedule of different
values can also be supplied to most tensorflow optimizers.

Default: 1e-3.
Sensitivity: Learning rates have a significant impact on the model. Accord-

ing to Bengio (2012), this parameter is often the most important
parameter that should always be considered when tuning neural
networks.

Heuristics: LeCunet al. (2012) propose to estimate learning rates individually
for each weight, proportional to the root of the number of inputs
to a node. Bengio (2012), on the other hand, states “The optimal
learning rate is usually close to (by a factor of 2) the largest learn-
ing rate that does not cause divergence of the training criterion.”
Heuristics based on this observation require multiple restarts of
network training procedure (for example, start with large learn-
ing rate, stepwise divide by three until model training starts to
converge (Bengio 2012).)

Range: learning_rate ∈ (0,∞).
Transformation: identity.
Bounds: lower = 1e-6; upper = 1e-2.
Constraints: none.
Interactions: An interaction of batch_size, epochs, and learning_

rate is expected: Smaller learning rates or batch sizesmay result
in larger epochs being required for model convergence.
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DL Hyperparameter epochs

The parameter epochs determines the number of iterations (here: epochs), which
are executed during the training of the model. An epoch describes the update of the
network weights based on the calculated local gradient. Usually, within an epoch,
the entire training data set is considered for determining the gradient (Bengio 2012).
Each epoch can be subdivided again (depending on batch_size) into single steps.

In practice, epochs is often not a classical tuning parameter, since it mainly
affects the runtime of the tuning procedure. Larger values are generally better for the
model quality, but detrimental for the required runtime. However, larger runtimes
may also increase the risk of overfitting, if no countermeasures are employed.

Type: integer, scalar.
Default: 4.
Sensitivity: For small values of epochs, the NN is sensitive to changes

in epochs. It becomes increasingly insensitive to changes as
epochs increases (i.e., as the model increasingly converges).

Heuristics: None known.
Range: epochs ∈ [1,∞]. Only integer values are valid.
Transformation: trans_2pow
Bounds: lower = 3; upper = 7.
Constraints: none.
Interactions: See batch_size and learning_rate.

DL Hyperparameter optimizer

Optimization algorithms, e.g., Root Mean Square Propagation (RMSProp) (imple-
mented in Keras as optimizer_rmsprop) or ADAM (optimizer_adam).
Choi et al. (2019) considered RMSProp with momentum (Tieleman and Hinton
2012), ADAM (Kingma and Ba 2015), and ADAM (Dozat 2016) and claimed that
the following relations hold:

SGD ⊆ Momentum ⊆ RMSProp,

SGD ⊆ Momentum ⊆ Adam,

SGD ⊆ Nesterov ⊆ NAdam.

ADAM can approximately simulate MOMENTUM: MOMENTUM can be approx-
imated with ADAM, if a learning-rate schedule that accounts for ADAM’s bias
correction is implemented. Choi et al. (2019) demonstrated that these inclusion rela-
tionships are meaningful in practice. In the context of HPT and Hyperparameter
Optimization (HPO), inclusion relations can significantly reduce the complexity of
the experimental design. These inclusion relations justify the selection of a basic
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set, e.g., RMSProp, ADAM, and Nesterov-accelerated Adaptive Moment Estima-
tion (NADAM).

Type: factor.
Default: 5.
Sensitivity: unknown.
Heuristics: We are not aware of heuristics.
Range: optimizer ∈ { "SDG", RMSPROP", ADAGRAD",

ADADELTA", ADAM", ADAMAX", NADAM" }.
Transformation: identity.
Bounds: lower = 1; upper = 7.
Constraints: none.
Interactions: Necessarily, there is an interaction.

DL Hyperparameter loss

This parameter determines the loss function that is minimized when training the
network (optimizing the weights). The loss function can have a significant influence
on the quality of the model (Janocha and Czarnecki 2017). However, it is not a
typical tuning parameter, in part because the tuning procedure itself requires a con-
sistent loss function, to identify better configurations of the hyperparameters. The
loss parameter is therefore usually chosen separately by the user before the tuning
procedure.

Type: character, scalar.
Default: problem dependent, parameter is not tuned.
Sensitivity: not known.
Heuristics: not known.
Range: several standard loss functions (such as Mean Squared Error

(MSE)) are available in tensorflow, custom loss functions can
be provided by users.

Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: Some loss functions are specific to certain tasks (i.e., classifica-

tion: crossentropy, regression: MSE).
Interactions: unknown.

DL Hyperparameter batch_size

When determining the gradient of the network weights, either the whole data set can
be used for this or only a subset (here: batch). The size of this subset is specified by
batch_size.
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The parameter batch_size mainly affects the runtime of the training (Bengio
2012). However, batch_size also affects the quality of the model. Small batch
sizes may introduce a strong random element to weigh updates, which can hinder or
benefit the learning process. Shallue et al. (2019) and Zhang et al. (2019) have shown
empirically that increasing the batch size can increase the gaps between training times
for different optimizers.

Type: integer, scalar.
Default: 32.
Sensitivity: unknown.
Heuristics: We are not aware of heuristics, 32 is suggested as a good default

value (Bengio 2012).However, from the experience of the authors
of this expertise, this is highly dependent on the data situation,
computer architecture, and further configuration of the model.
Specifying batch_size as a function of n should also be con-
sidered.

Range: batch_size ∈ (1, n]. Only integer values are valid. Common
batch_size values are between 10 and several hundred (Ben-
gio 2012). But several thousands are also possible (Mendoza et al.
2016).

Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: none.
Interactions: Necessarily, there is an interaction between batch_size and

epochs, since both together determine the number of steps of the
training procedure. In addition, an interaction of batch_size,
epochs, and learning_rate is also expected. The inter-
action between batch_size and learning_rate is also
mentioned by Bengio (2012).

3.9 Summary and Discussion

On the basis of our literature survey, we recommend tuning the introduced hyperpa-
rameters ofMLmodels. In the experiments described in this study,we also investigate
five additional parameters:

• dropoutfact is a multiplier for dropout, which reduces or increases
dropout in each consecutive layer of the network;

• unitsfact performs the same job but for units; and
• beta_1, beta_2, and epsilon are parameters affecting the optimizer.

Reasonable bounds for all investigated parameters are summarized in Table3.8.
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indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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