
Chapter 12
Global Study: Influence of Tuning

Martin Zaefferer, Olaf Mersmann, and Thomas Bartz-Beielstein

Abstract Expanding themore focused analyses from previous chapters, this chapter
takes a broader view at the tuning process. That means, rather than tuning an individ-
ual model, this investigation considers the tuning of multiple models, with different
tuners, and varying data sets. The core aim is to see how characteristics of the data
and the model choice may impact the tuning procedure. We investigate five hypothe-
ses, concerning the necessity of tuning, the impact of data characteristics, the impact
of the target variable type, the impact of model choice, and benchmarking. Not only
does this entail an in-depth tuning study, but we also tie our results to a measure of
problem difficulty and use consensus ranking to aggregate the diverse experimental
results.

12.1 Introduction

As described in Sect. 4.4, the Sequential Parameter Optimization Toolbox (SPOT)
offers a robust approach for the tuning of Machine Learning (ML) algorithms, espe-
cially if the training and/or evaluation run time become large.

In practice, the learning process of models, A, and hence the choice of their
hyperparameters, λ, is influenced by a plethora of other factors. On the one hand,
this complex situation further motivates the use of tuning procedures, since the ML
algorithms have to be adapted to new data or situations. On the other hand, this
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raises the question of how such factors influence the tuning process itself. We want
to investigate this in a structured manner.

In detail, the following factors, which are introduced in Sect. 8.2.1, are objects of
our investigation.1 We test their influence on the tuning procedures.

• Number of numerical features in the data (nnumericals).
• Number of categorical features in the data (nfactors).
• Cardinality of the categorical features, i.e., the maximal number of levels
(cardinality).

• Number of observations in the data (n).
• Task type, classification or regression.
• Choice of model.

12.2 Research Questions

We want to investigate the following hypotheses.

(H-1) Tuning is necessary to find good parameter values (compared to defaults).
(H-2) Data: Properties of the data influence (the difficulty of) the tuning process.

• Information content: If the data has little information content, models are easier to
tune, sincemore parameter configurations achieve near-optimal quality. In general,
changing parameters has less impact on model quality in this case.

• Number of features: A larger number of features leads to longer run times, which
affects how many evaluations can be made during tuning.

• Type of features: The number of numerical and/or categorical features and their
cardinality influences how much information is available to the model, hence may
affect the difficulty of tuning.

• Number of observations n: With increasing n, the average run time of model
evaluations will increase.

(H-3) Target variable: There is no fundamental difference between tuning regres-
sion or classification models.

(H-4) Model: The choice of model (e.g., Elastic Net (EN) or Support Vector
Machine (SVM)) affects the difficulty of the tuning task, but not necessarily
the choice of tuning procedure.

(H-5) Benchmark: The performance of the employed tuners can be measured in a
statistically sound manner.

1 Thedata fromCensus-Income (KDD)DataSet (CID) is historical. It includeswordingor categories
regarding people which do not represent or reflect any views of the authors and editors.
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12.3 Setup

To investigate our research questions, the data set needs to be pre-processed accord-
ingly. This pre-processing is documented in the included source code and is explained
in Sect. 8.2.1.

For classification, the experiments summarized in Table12.1 are performed with
each tuner and each model. A reduced number of experiments are performed for
regression, see Table12.2.

To judge the impact of creating random subsets of the data (i.e., to reduce n), and
to consider the test/train split, three data sets are generated for each configuration.
All experiments are repeated for each of those three data sets.

Table 12.1 Experiments for classification: Investigated combinations of the number of categorical
features (nfactors), numerical features(nnumericals), cardinality, and n. An empty field for cardi-
nality occurs for low nfactors. In that case, no categorical features are present, so the number of
categories becomes irrelevant. The number of observations, n, is varied on a logarithmic scale with
five levels in the range from 104 to 105, i.e., 10 000, 17 783, 31 623, 56 234, and 100 000

nfactors nnumericals Cardinality Number of
observations (n)

High Low Low 104, 104.25, . . . , 105

Medium Medium Low 104, 104.25, . . . , 105

Low High 104, 104.25, . . . , 105

High High Low 104, 104.25, . . . , 105

High Low Medium 104, 104.25, . . . , 105

Medium Medium Medium 104, 104.25, . . . , 105

High High Medium 104, 104.25, . . . , 105

High Low High 104, 104.25, . . . , 105

Medium Medium High 104, 104.25, . . . , 105

High High High 104, 104.25, . . . , 105

Complete data set 299285

Table 12.2 Experiments for regression: Investigated combinations of the number of categorical
features (nfactors), numerical features (nnumericals), cardinality, and n. An empty field for cardi-
nality occurs for low nfactors. In that case, no categorical features are present, so the number of
categories becomes irrelevant

nfactors nnumericals Cardinality Number of
observations (n)

low High 104, 104.25, . . . , 105

High High Low 104, 104.25, . . . , 105

High High High 104, 104.25, . . . , 105
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12.3.1 Model Configuration

The experiments include the models k-Nearest-Neighbor (KNN), Decision Tree
(DT), EN, Random Forest (RF), Gradient Boosting (GB), and SVM. Their respective
parameters are listed in Table4.1.

For EN, lambda is not optimized by the tuner. Rather, the glmnet implemen-
tation itself tunes that parameter. Here, a sequence of different lambda values is
tested (Hastie and Qian 2016; Friedman et al. 2020).

For SVM, the choice of the kernel (kernel) is limited toradial andsigmoid,
since we experienced surprisingly large runtimes for linear and polynomial
in a set of preliminary experiments. Hence, degree is also excluded, as it is only
relevant for the polynomial kernel. Due to experiment runtime, we also did not
perform experiments with SVM and KNN on data sets with m ≥ 105 observations.
These would require using model variants that are able to deal with huge data sets
(e.g., some sparse SVM type).

Table3.8 lists hyperparameters that are actually tuned in the experiments, includ-
ing data type, bounds, and employed transformations. Here, we mostly follow the
bounds and transformations as used by Probst et al. (2019a). Fundamentally, these
are not general suggestions. Rather, reasonable bounds will usually require some
considerations with respect to data understanding, modeling/analysis, and computa-
tional resources. Bounds on values which affect run time should be chosen so that
experiments are still possible within a reasonable time frame. Similar considera-
tion can apply to memory requirements. Where increasing/decreasing parameters
may lead to increasing/decreasing sensitivity of the model, a suitable transformation
(e.g., log-transformation) should be applied.

Most other configurations of the investigated models remain at default values.
The only exceptions are:

• ranger: For the sake of comparabilitywith othermodels,model training and eval-
uation are performed in a single thread, without parallelization (num.threads
= 1).

• xgboost: Similarly to ranger, we set nthread=1. For regression, the evalu-
ation metric is set to the root-mean-square error (eval_metric="rmse"). For
classification, log-loss is chosen (eval_metric="logloss").

12.3.2 Runtime For the Global Study

Similar to the local studies (Chaps. 8–10), run times are recorded in addition toMean
Mis-Classification Error (MMCE) (MMCE is defined in Eq. (2.2)). The recorded run
times are overall run time of a model evaluation, run time for prediction, and run
time for training.

Runtime budget: To mirror a realistic use case, we specify a fixed run time budget
for the tuner. This limits how long the tuner may take to find potentially optimal
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hyperparameter values. We set a budget of 5h for SVM, KNN, RF, and GB.
Since EN and DT are much faster to evaluate and less complex, they receive a
considerably lower budget (EN: 1h, DT: 5min).

Timeout: For a majority of the models, the run time of a single evaluation (training
+ prediction) is hard to predict and may easily become excessive if parameters are
chosen poorly. In extreme cases, the run time of a single evaluation may become
so large that it consumes the bulk of the tuner’s allotted run time, or more. In such
a case, there would be insufficient time to test different hyperparameter values.
To prevent this, we specify a limit for the run time of a single evaluation, which
we call timeout. If the timeout is exceeded by the model, the evaluation will be
aborted. During the experiments, we set the timeout to a twentieth of the tuner’s
overall run time budget. Exceptions are the experiments with DT (rpart): Since
rpart evaluates extremely quickly, (in our experiments: usually much less than
a second) and has a correspondingly reduced run time budget (5min), the timeout
is not required. In fact, tracking the timeout would add considerable overhead to
the evaluation time in this case.

Additional performance measure from the mlr package could be easily integrated
when necessary.2

12.3.2.1 Surrogate Model

In one important case, we deviate from more common configurations of surrogate
model based optimization algorithms: For the determination of the next candidate
solution to be evaluated, we directly use the predicted value of the Gaussian pro-
cess model, instead of the so-called expected improvement. Our reason is, that the
expected improvement may yield worse results if the number of evaluations is low,
or the dimensionality rather high (Rehbach et al. 2020; Wessing and Preuss 2017).
With the strictly limited run time budget, our experience is that the predicted value
is preferable. A similar observation is made by De Ath et al. (2019).

12.3.2.2 Configuration of Random Search

With Random Search (RS), hyperparameter values will be sampled uniformly from
the search space. All related configurations (timeout, run time budget, etc.) corre-
spond to those of SPOT.

2 A complete list of measures in mlr can be found at https://mlr.mlr-org.com/articles/tutorial/
measures.html.

https://mlr.mlr-org.com/articles/tutorial/measures.html
https://mlr.mlr-org.com/articles/tutorial/measures.html
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12.3.3 Benchmark of Runtime

The experiments are not run on entirely identical hardware, but on somewhat diverse
nodes of a cluster. Hence, we have to consider that single nodes are faster or slower
than others (i.e., a tuning run on one node may perform more model evaluations than
on another node, simply because of having more computational power). To preserve
some sort of comparability, we compute a corrective factor that will be multiplied
with the run time budget. Before each tuning run, we compute a short performance
benchmark. The time measured for that benchmark will be divided by the respective
value measured at a reference node, to determine the run time multiplicator. We
use the benchmark_std function from the benchmarkme R package (Gillespie
2021).

12.3.4 Defaults and Replications

As a comparison basis, we perform an additional experiment for each model, where
all hyperparameter values remain at the models default settings. However, in those
cases we do not set a timeout for evaluation. Since no search takes place, the overall
run time for default values is anyways considerably lower than the run time of SPOT
or RS. All other settings correspond to those of SPOT and RS. To roughly estimate
the variance of results, we repeat all experiments (each tuner for each model on each
data set) three times.

12.4 Results

In this section, we provide an exploratory overview of the results of the experiments.
A detailed discussion of the results in terms of the research questions defined in
Sect. 12.2 follows in Sect. 12.5.

To visualize the overall results, we show exemplary boxplots.3 Since different
results are achieved depending on the data set and optimized model, a preprocessing
step is performed first: For each sampled data set and each model, the mean value of
all observed results (model quality of the best solutions found) is determined. This
mean is then subtracted from each individual observed value of the corresponding
group. Subsequently, these subtracted individual values are examined. This allows
a better visualization of the difference between the tuners without compromising
interpretability. The resulting values are no longer on the original scale of the model
quality, but the units remain unchanged. Thus, differences on this scale can still be
interpreted well.

3 Corresponding boxplots for all experiments can be found in the appendix of this document.
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Fig. 12.1 Boxplot comparing tuners for different classification models, with m = 105, nfactors =
high, nnumericals = high, cardinality = high. For this value of n, no experiments with KNN and
SVM are performed. The presented quality measure (MMCE) shows values after preprocessing,
where the mean value for each problem instance is subtracted

For the classification experiments, Fig. 12.1 shows the results for a case with
many features and observations (nfactors, nnumericals, and cardinality are all set to
high and m = 105). The figure first shows that both tuners (RS, SPOT) achieve a
significant improvement over default values. The value of this improvement is in the
range of about 1%MMCE. In almost all cases, the tuners show a smaller dispersion of
the quality values than a model with default values. Except for the tuning of rpart,
the results obtained by SPOT are better than those of RS.

Likewise for classification, Fig. 12.2 shows the case with n = 104, without cat-
egorical features (nfactors=low) and with maximum number of numerical features
(nnumericals=high). Here the data set contains much less information, since a large
part of the features is missing and only few observations are available. Still, both
tuners are significantly better than using default values. In this case, it is mostly not
clear which of the two tuners provides better results. For rpart (DT) and SVM, RS
seems to work better.

In the same form as for classification, Figs. 12.3, and 12.4 show results for regres-
sion models. Unlike for classification, the results here are somewhat more diverse. In
particular, glmnet shows a small difference between the tuners and default values.
There are also differences of several orders of magnitude between the individual
models (e.g. RF and SVM). For example, for RF the differences between tuners and
default values are about 0.02 years (the target variable scale is age in years). As
shown in Figs. 12.3 and 12.4, the interquartile range is about 0.01 years.

For GB, on the other hand, there is a difference of about 20 years between tuners
and default values. Here, the default values seem to be particularly poorly suited.
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Fig. 12.2 Boxplot comparing tuners for different classification models, with m = 104, nfactors =
low, nnumericals= high. The presented qualitymeasure (MMCE) shows values after preprocessing,
where the mean value for each problem instance is subtracted
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Fig. 12.3 Boxplot comparing tuners for different regression models, with m = 105, nfactors =
high, nnumericals = high, cardinality = high. For this value of n no experiments with KNN and
SVM are performed. The presented quality measure (MMCE) shows values after preprocessing,
where the mean value for each problem instance is subtracted
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Fig. 12.4 Boxplot comparing tuners for different regressionmodels, withm = 104, nfactors= low,
nnumericals = high. The presented quality measure (MMCE) shows values after preprocessing,
where the mean value for each problem instance is subtracted

12.5 Discussion

12.5.1 Rank-Analysis

Weanalyze the results of the experiments using rankings of the result values instead of
the raw results. Rankings are scale invariant, so aggregating the results from different
problem instances (resulting from data set and model choice) with different scales
for the result values is possible. This is important because we have to aggregate over
very diverse problem instances.

To aggregate rankings (also called consensus rankings), we follow the so-called
“optimal ranking” approach of Kemeny (1959). Here, the consensus ranking is deter-
mined such that themean distance between the consensus ranking and observed rank-
ing is minimal. The distance measure used for this purpose is Kendall’s tau (Kendall
1938), which counts the number of pairwise comparisons in which two rankings
contradict each other. The ranking determined using this approach can be interpreted
as the “median” of the individual rankings.

This procedure has the following advantages (Hornik andMeyer 2007;Mersmann
et al. 2010a):

• Scale invariant.
• Invariant to irrelevant alternatives.
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• Aggregation of large sets of comparisons, over arbitrary factors.
• Easy/intuitive to interpret results and visualizable.
• Generates relevant information: selection of the best one.
• Additional weights for preferences can be inserted.
• Fast evaluation.
• Non-parametric method, no distribution assumptions.
• Visualization of clusters over distance is possible, identification of problem classes
with similar algorithm behavior.

However, in addition to these advantages, there are also disadvantages:

• Estimating uncertainty in the ranking is difficult.
• The ranking does not have to induce a strict ordering, ties are possible.

We generate the consensus ranking by combining rankings of tuners (SPOT,
RS, default) of individual experiments. We always summarize the rankings of 9
experiments (3 repetitions of the tuner runs on each of 3 randomly drawn data sets).
Then, to aggregate across different variables related to the study subjects (e.g. n,
nfactors), we count how often the tuners reach a certain consensus rank.

This count is divided by the total number of experiments (or number of rankings)
on the corresponding problem instances. Thus, we record for each tuner how often
a particular consensus rank is achieved.

Simplified example:

• For case 2 (i.e., for a fixed choice of nnumericals, nfactors, cardinality, model, n,
target variable), the comparison of SPOT, RS, and default methods resulted in the
ranks

{1, 3, 2} {1, 2, 3} {2, 1, 3}.

The consensus ranking for this case is {1, 2, 3}.
• For case 2 (i.e., for another fixed choice of nnumericals, nfactors, cardinality,
model, n, target variable), the comparison of SPOT, RS, and default methods
resulted in the ranks

{3, 2, 1} {1, 2, 3} {2, 1, 3}.

The consensus ranking for this case is {2, 1, 3}.
• When both experiments are combined for an analysis, the frequencies for the
obtained rankings are as follows:

– SPOT: rank 1 with 50%, rank 2 with 50%, rank 3 with 0%.
– RS: rank 1 with 50%, rank 2 with 50%, rank 3 with 0%.
– Default: rank 1 with 0%, rank 2 with 0%, rank 3 with 100%.
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12.5.2 Rank-Analysis: Classification

Based on the analysis method described in Sect. 12.5.1, Fig. 12.5 shows the relation-
ship between the tuners, the number of observations n, and the optimized models. It
shows that SPOT and RS mostly beat the default setting and SPOT also usually per-
forms better than RS. However, some cases deviate from this. Especially, glmnet
(EN) and rpart (DT) seem to profit less from tuning: here the distinction between
the ranks of tuners is more difficult. In addition, when the number of observations is
small, there tends to be a greater uncertainty in the results. These results can be partly
explained by the required runtime of the models. With a smaller number of obser-
vations, the runtime of the individual models decreases, and glmnet and rpart
are the models with the lowest runtime (in the range of a few seconds, or below one
second in the case of rpart). If the evaluation of the models itself takes hardly
any time, it is advantageous for RS that its runtime overhead is low. SPOT, on the
other hand, requires a larger overhead (for the surrogatemodel and the corresponding
search for new parameter configurations).

n: 10000 n: 17783 n: 31623 n: 56234 n: 1e+05

cvglm
net

rpart
xgboost
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kknn
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Fig. 12.5 Rank of tuners depending on number of observations (n) and model, for classification
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Fig. 12.6 Rank of tuners as a function of the number of categorical features (nfactors) and the
model, for classification
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Fig. 12.7 Rank of tuners depending on number of numerical features (nnumericals) and model,
for classification

Figure12.6 shows the corresponding summary of the results depending on the
number of categorical features (nfactors). Again, SPOT usually performs best, fol-
lowed by RS. There is a tendency for the greatest uncertainty to be found in cases
where number of categorical features is low. Two explanations are possible: On the
one hand, the reduction of features also means a reduction of the required runtime.
On the other hand, the difficulty of the modeling increases, since with fewer features
less information is available to separate the classes.

The corresponding results for the number of numerical features can be found in
Fig. 12.7. There are hardly any differences, the number of numerical features seems
to have little influence. It should be noted that the data set contains fewer numerical
than categorical features anyway.

The cardinality of the categorical features also has little influence, see Fig. 12.8.
However, there is a slight tendency: at higher cardinality, the distinction between the
first rank (SPOT) and second rank (RS) is clearer. This can be explained (similarly
to nfactors) by the higher information content of the data set.
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Fig. 12.8 Rank of tuners as a function of the cardinality of categorical features and the model,
for classification. Note This figure does not include the cases where the data set no longer contains
categorical features (cardinality cannot be determined)
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Fig. 12.9 Rank of tuners depending on the model, for classification on the complete data set. Due
to the increased runtime, kknn (KNN) and e1071 (SVM) are not included

Finally, Fig. 12.9 shows the result of the tuners on the unmodified, complete data
set. For each case, SPOT gets rank 1 and RS rank 2. This result is in line with the
trends described above, since the complete data set contains the most information
and also leads to the largest runtimes (for model evaluations).

12.5.3 Rank-Analysis: Regression

In addition to the classification experiments, a smaller set of experiments with regres-
sion as an objective are also conducted. Figure12.10 shows the results for this case
separately for each optimized model. Here, too, SPOT is usually ranked first. Unlike
in case of classification, however, there is more uncertainty.

For glmnet (EN), default values occasionally even achieve rank 1. It seems that
linear modeling with glmnet is unsuitable for regression with the present data set,
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Fig. 12.10 Rank of tuners depending on model for regression
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Fig. 12.11 Rank of tuners, depending on number of observations (n), for regression

so that the tuners can hardly achieve differences to the default values. This behavior
was already indicated in Fig. 12.4.

In the case of SVM, RS is more often ranked first than SPOT. The reason for
this is not clear. A possible cause is a lower influence of the hyperparameters on
the model quality of SVM for regression (compared to classification). However, it
should also be considered that less experiments were conducted for regression than
for classification.

The dependence on the number of observations n is shown in Fig. 12.11. The
results for regression with respect to n are largely consistent with those for classifi-
cation. With an increasing number of observations, SPOT is more clearly ahead of
RS.

The correlation with categorical features (number, cardinality) is also consistent
with the classification results, see Fig. 12.12. With larger number of features and
larger cardinality, a clearer separation between the tuners is observed.

12.5.4 Problem Analysis: Difficulty

In the context of this study, an interesting question arose as to how the difficulty of the
modeling problem is related to the results of the tuning procedures. We investigate
this on the basis of the data obtained from the experiments.
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Fig. 12.12 Rank of tuners, depending on cardinality and number of categorical features (nfactors),
for regression

In general, there are many measures of the difficulty of modeling problems in
the literature. An overview is given by Lorena et al. (2019). Of these measures, the
overlap volume (F2, seeLorena et al. 2019) is of interest, since it is easily interpretable
and not specific to a particular model.

First, the values of each feature are separated into two groups, one for each class.
Then, the range of the intersection of the two groups is computed for each individual
feature. This is called the overlap of a feature. The overlap volume of the data set is
then the product of the individual overlap values.

However, this measure is unsuitable for categorical features (even after dummy
coding). Furthermore, outliers are very problematic for this measure.

We therefore use a slight modification: We calculate the proportion of sample
values for each feature, which could occur in both classes (i.e. for which a swap of
the classes based on the feature value is possible). As an example, this is illustrated
for a numeric and a categorical feature in Fig. 12.13. For the overall data set, the
individual overlap values of each feature are multiplied. Subsequently, we refer to
this measure as sample overlap.

Figure12.14 shows the dependence of the sample overlap on our data properties
(n, nfactors, nnumericals, cardinality).

Our data sets can be grouped into 4 difficulty levels based on these values of
sample overlap:

1. Sample overlap ≈ 0.39: nfactors = high and cardinality = high (green).
2. Sample overlap ≈ 0.54: nfactors = high and cardinality = med (blue).
3. Sample overlap ≈ 0.76: all others (orange).
4. Sample overlap ≈ 1.00: nfactors = low (red).

Here, 4 corresponds to the highest level of difficulty. For the range relevant in the
experiments, there is almost no change depending on n or nnumericals. For nfactors
and cardinality a strong correlation can be seen.

Based on the 4 difficulty levels, the ranks already determined in previous sections
can be re-ranked. The result is summarized in Fig. 12.15. It turns out that as the
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feature 1 (numeric)

feature 2 (categoric)

overlap range

category 1 category 2 category 3 category 4

overlap categories

Fig. 12.13 Example of the sample overlap for two features of a classification problem with two
classes. The crosses show samples from the data set. All sampleswith class 1 are red (+). All samples
with class 2 are blue (x). For feature 1, the overlap is 50% (number of samples in the overlap area
divided by the total number of samples). For feature 2, the overlap is 70% (number of samples in
the overlap categories divided by total number of samples). For both characteristics together, the
sample overlap is 0.5 × 0.7 = 0.35

Fig. 12.14 Sample overlap depending on the properties of the data set varied in the experiments.
The sample overlap is used as a measure of problem difficulty and leads to the definition of four
difficulty levels (marked in color)
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Fig. 12.15 Frequency of the achieved ranks of the tuners depending on the difficulty level

difficulty of the problem increases, the rank differences are less robust. That is, with
larger sample overlap it is harder to estimate which tuner works best. This is plausible
with respect to the theoretical extreme case: A maximally difficult data set cannot
be learned by any model, since the features no longer contain any information about
the classes. In this case, the hyperparameters no longer have any influence and the
tuners cannot improve.

12.6 Summary and Discussion

To summarize our findings, we discuss the hypotheses from Sect. 12.2.

(H-1) Tuning is necessary: In almost all cases, significantly worse results are
obtained with default settings. In addition, the variance of the results
decreases when tuners are used (see Figs. 12.1, 12.2, 12.3 and 12.4).

(H-2) Data:Differences between tuners become apparent for data sets with a high
information content and for larger data volumes. If the number of levels or
features (categorical and numerical) decreases, it can be observed that the
differences between the tuners become smaller.
It has been confirmed that as the number of features and observations
increases, the runtime increases. As the mean runtime of the models
increases (i.e., for more complex models or larger data sets), SPOT per-
forms increasingly better than RS, as the ratio of overhead to evaluation
time decreases more for SPOT.

(H-3) Target variable: The execution of the tuning is not affected by the change of
the target variable. A peculiarity that requires further investigation occurred
when tuning SVM for regression: RS seems to perform better than SPOT.
We recommend using a larger data base to investigate this case.

(H-4) Model: The choice of tuning method is not fundamentally influenced by the
models. Models that can be evaluated very quickly (e.g. rpart) benefit
from the larger number of evaluations. This is due to the fact that time was
chosen as a termination criterion.
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(H-5) Benchmark: As described in Sect. 12.5.1, analysis methods based on con-
sensus ranking can be used to evaluate the suitability of tuners in a simple
and statistically valid way.

Overall, the result of this experimental investigation underlines that tuning of
machine learning models is essential to produce good configurations of the hyper-
parameters and thus models of high quality.

It is especially important to use tuners at all, since the biggest differences are usu-
ally observed in comparison to default settings. However, there are also differences
between tuners, which in our investigation are mostly favoring the use of SPOT, i.e.
a model-based optimizers. For the prospective focus on tuning with relatively large
data sets (large n and k), this is all the more evident, since the resulting high model
runtime favors the use of model-based methods.

Since the number of hyperparameters is manageable (<< 100), the addition of a
fewmore parameters does not significantly increase the complexity of the tuning. For
both Random Search (Bergstra and Bengio 2012) and SPOT, the addition of a few
parameters is harmless, even if they have only a small effect on the model quality.

Moreover, the analysis results in additional benefits:

• Possible software bugs can be detected,
• seemingly unimportant parameters are detected as important,
• unknown interactions can be uncovered.

The surrogate model allows to learn the influence of the hyperparameters on the
model values. Unimportant parameters are consequently weighted less in the search.

Finally, we recommend for the selection of the tuner, in the context of this study:

• Random Search can be used when either very little time (order of magnitude: time
is sufficient for a single-digit number of sequential evaluations) but a lot of parallel
computing capacity is available or when models can be evaluated extremely fast
(in the range of seconds).

• If time-consuming computations with complex data and models need to be per-
formed in more time (with relatively limited parallel computing capacity), we
recommend model-based tuning with SPO.

• In exceptional cases, which deviate from our considered objective of tuning with
complex data and models (extremely large amount of computing time available,
average evaluation times for the models), the use of surrogate model-free tuning
methods may also be considered.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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