
Chapter 11
Case Study IV: Tuned Reinforcement
Learning (in PYTHON)

Martin Zaefferer and Sowmya Chandrasekaran

Abstract Similar to the example in Chap.10, which considered tuning a Deep Neu-
ral Network (DNN), this chapter also deals with neural networks, but focuses on a
different type of learning task: reinforcement learning. This increases the complex-
ity, since any evaluation of the learning algorithm also involves the simulation of the
respective environment. The learning algorithm is not just tunedwith a static data set,
but rather with dynamic feedback from the environment, in which an agent operates.
The agent is controlled via theDNN.Also, the parameters of the reinforcement learn-
ing algorithm have to be considered in addition to the network parameters. Based
on a simple example from the Keras documentation, we tune a DNN used for rein-
forcement learning of the inverse pendulum environment toy example. As a bonus,
this chapter shows how the demonstrated tuning tools can be used to interface with
and tune a learning algorithm that is implemented in Python.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-981-19-5170-1_11.

M. Zaefferer (B)
Bartz & Bartz GmbH and with Institute for Data Science, Engineering, and Analytics, TH Köln,
Gummersbach, Germany

Duale Hochschule Baden-Württemberg Ravensburg, Ravensburg, Germany
e-mail: zaefferer@dhbw-ravensburg.de

S. Chandrasekaran
Institute for Data Science, Engineering, and Analytics, TH Köln, Steinmüllerallee 1, 51643
Gummersbach, Germany
e-mail: sowmya.chandrasekaran@th-koeln.de

© The Author(s) 2023
E. Bartz et al. (eds.), Hyperparameter Tuning for Machine and Deep Learning with R,
https://doi.org/10.1007/978-981-19-5170-1_11

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5170-1_11&domain=pdf
https://doi.org/10.1007/978-981-19-5170-1_11
mailto:zaefferer@dhbw-ravensburg.de
mailto:sowmya.chandrasekaran@th-koeln.de
https://doi.org/10.1007/978-981-19-5170-1_11

272 M. Zaefferer and S. Chandrasekaran

11.1 Introduction

In this chapter, we will demonstrate how a reinforcement learning algorithm can be
tuned. In reinforcement learning, we consider a dynamic learning process, rather
than a process with fixed, static data sets like in typical classification tasks.

The learning task considers an agent, which operates in an environment. In each
timestep, the agent decides to take a certain action. This action is fed to the envi-
ronment, and causes a change from a previous state to a new state. The environment
also determines a reward for the respective action. After that, the agent will decide
the next action to take, based on received reward and the new state. The learning
goal is to find an agent that accumulates as much reward as possible.

To simplify things for a second, let us consider an example:Amobile robot (agent)
is placed in a room (environment). The state of the agent is the position of the robot.
The reward may be based on the distance traveled toward a target position. Different
movements of the robot are the respective actions.

In this case, our neural network can be used to map from the current state to a new
action. Thus, it presents a controller for our robot agent. The weights of this neural
network have to be learned in some way, taking into account the received rewards.
Compared to Chap.10, this leads to a somewhat different scenario: Data is usually
gathered in a dynamic process, rather than being available from the start.1 In fact,
initially, we may not have any data. We acquire data during the learning process, by
observing states/actions/rewards in the environment.

11.2 Materials and Methods

11.2.1 Software

We largely rely on the same software as in the previous chapters. That is, we use
the same tuning tools. As in Chap.10, we use Keras and TensorFlow to implement
the neural networks. However, we will perform the complete learning task within
Python, using the R package reticulate to explicitly interface between the
R-based tuner and the Python-based learning task (rather than implicitly via R’s
keras package).

On the one hand, this will demonstrate how to interface with different program-
ming languages (i.e., if your model is not trained in R). On the other hand, this is a
necessary step, because the respective environment is only available in Python (i.e.,
the toy problem).

For the sake of readability, the complete code will not be printed within the main
text, but is available as supplementary material.

1 Although it has to be noted that somewhat similar dynamics may occur, e.g., when learning a
classification model with streaming data.

11 Case Study IV: Tuned Reinforcement Learning (in Python) 273

joint

Pendulum in
poten�al start
posi�on

applied
torque

joint

Pendulum in goal
posi�on

applied
torque
(small)

Inital state Goal / final state

Fig. 11.1 Initial and goal state of the 2D inverted pendulum problem

11.2.2 Task Environment: Inverted Pendulum

The example we investigate is based on a Keras tutorial by Singh (2020). This relies
on a toy problem that is often used to test or demonstrate reinforcement learning
algorithms: the frictionless inverted pendulum. More specifically, we use the imple-
mentation of the inverse problem which is provided by OpenAI Gym2 denoted as
Pendulum-v0.

The inverted pendulum is a simple 2D-physical simulation. Initially, the pendulum
hangs downwards, and has to be swung upwards, by applying force at the joint, either
to the left or right. Once the pendulum is oriented upwards, it has to be balanced
there as long as possible. This situation is shown in Fig. 11.1.

The state of this problem’s environment is composed of three values: the sine and
cosine of the pendulum angle, and the angular velocity. The action is the applied
torque (with a sign representing a change of direction), and the reward is computed
with −(angle2 + 0.1 ∗ velocity2 + 0.001 ∗ torque2). This ensures that the learning
process sees the largest rewards if the pendulum is upright (angles are close to zero),
moving slowly (small angular velocities), with little effort (small torques).

2 OpenAI Gym is a collection of reinforcement learning problems; see https://github.com/openai/
gym for details such as installation instructions.

https://github.com/openai/gym
https://github.com/openai/gym

274 M. Zaefferer and S. Chandrasekaran

11.2.3 Learning Algorithm

Largely, we leave the algorithm used in the original Keras tutorial as is (Singh 2020).
In fact, this algorithm follows the concept of the Deep Deterministic Policy Gradient
(DDPG) algorithm by Lillicrap et al. (2015). We will not go into all details of the
algorithm, but will note some important aspects for setting up the tuning procedure.

The learning algorithm essentially uses four different networks: an actor network,
a target actor network, a critic network, and a target critic network. The actor network
represents the policy of the agent: mapping from states to actions. The critic network
tries to guess the value (in terms of future rewards) of the current state/action pair,
thus providing a baseline to compare the actor against. That is, the critic network
maps from states and actions to a kind of estimated reward value.

The respective target networks are copies of these two networks. They use the
same architecture and weights, which are not directly trained for the target networks
but are instead updated via cloning them from the original networks regularly during
the learning process. These concepts (the actor-critic concept and target networks)
are intended to stabilize network training.

The learning algorithm also makes use of experience replay, which represents
a collection (or buffer) of tuples consisting of states, actions, rewards, and new
states. This allows learning from a set of previously experienced agent-environment
interactions, rather than just updating the model with the most recent ones.

11.3 Setting up the Tuning Experiment

11.3.1 File: run.py

The learning algorithm and task environment are processed with Python code, in
the file run.py. This is to a large extent identical to the Keras tutorial (Singh 2020).

Here, we explain the relevant changes, showing some snippets from the code.

• The complete code is wrapped into a function, which will later be called from R
via the reticulate interface.

def run_ddpg(num_hidden,critic_lr,actor_lr,
gamma,tau,activation,max_episodes,seed):

Importantly, the arguments consist of the parameters that will be tuned, as well as
max_episodes (number of learning episodes that will be run) and a seed for the
random number generator.

• Respectively, these parameters have all been changed from the original, hard-
coded values in the Keras tutorial. The original (default) values in the tutorial
are num_hidden=256, critic_lr=0.002, actor_lr=0.001, gamma=0.99, tau=0.005,
activation =“relu”.

11 Case Study IV: Tuned Reinforcement Learning (in Python) 275

• Note that we vary only the size of the largest layers in the networks (default: 256).
Especially, the critic has smaller layers that collect the respective inputs (states,
actions). These remain unchanged.

• Via the argument activation, we only replace the activation functions of the
internal layers, not the activation function of the final output layers.

• To make sure that results are reproducible, we set the random number generator
seeds (for the reinforcement learning environment, TensorFlow, and NumPy):

env.seed(seed)
tf.random.set_seed(seed)
np.random.seed(seed)

• We remove the plots from the tutorial code, as these are not particularly useful
during automated tuning.

• Finally, we return the variable avg_reward_list, which is the average reward of the
last 40 episodes. This returned value will be the objective function value that our
tuner Sequential Parameter Optimization Toolbox (SPOT) observes.

• Note that all reward values we consider will be negated, since most of the proce-
dures we employ assume smaller values to be better.

More details on the tuned parameters are given next.

11.3.2 Tuned Parameters

In the previous Sect. 11.3.1, we already briefly introduced the tuned parameters and
their default values: num_hidden=256, critic_lr=0.002, actor_lr=0.001, gamma=0.99,
tau=0.005, activation=“relu”. Some of these we may recognize, matching parame-
ters of neural networks that we considered throughout other parts of this book:
num_hidden corresponds to the previously discussed units, but is a scalar value
(it is reused to define the size of all the larger layers in all networks). Instead of a
single learning_rate, we have separate learning rates for the actor and critic
networks, critic_lr, and actor_lr.

The parameter gamma is new, as it is specific to actor-critic learning algorithms:
it represents a discount factor which is applied to estimated rewards as a multipli-
cator. The parameter tau is also new, representing a multiplicator that is used when
updating the weights of the target networks. Finally, activation is the activation
function (here: shared between all internal layers). The parameters and their bounds
are summarized in Table11.1.

List of configurations

The following code snippet shows the code used to define this parameter search space
for SPOT in R.

276 M. Zaefferer and S. Chandrasekaran

Table 11.1 The hyperparameters for our reinforcement learning example. Note that the defaults
and bounds concern the actual scale of each parameter (not transformed). Defaults denote the values
from the original Keras tutorial, not the formal defaults from the Keras function interfaces

Name Type Default Scale
transformation

Lower bound Upper bound

num_hidden Integer x 256 8 256

critic_lr Double 10x 0.002 1e − 5 1e − 1

actor_lr Double 10x 0.001 1e − 5 1e − 1

gamma Double 1 − 10x 0.99 0.5 1

tau Double 10x 0.001 1e − 4 1e − 0

activation Factor relu relu, swish, sigmoid

configuration for the tuning problem
cfg <- list(
Names of the parameters
tunepars = c("num_hidden","actor_lr","critic_lr",

"gamma","tau","activation"),
their lower bounds
lower = c(8, -5, -5, -4, -4, 1),
their upper bounds
upper = c(256, -1, -1, -0.3, 0, 3),
their type
type = c("integer","numeric","numeric","numeric","numeric","factor"),
transformations to apply
transformations =

c(trans_id,trans_10pow,trans_10pow,
trans_1minus10pow,trans_10pow,trans_id),

another parameter that will not be tuned, but is fixed
fixpars = list(max_episodes=50L),
specify levels of categorical parameters
(i.e., to translate from integers to these factor levels):
factorlevels = list(activation=c("relu","swish","sigmoid")),
not used in this example
(specify parameters that are relative to other parameters)
relpars = list()

)

Note that we set a single fixed parameter, max_episodes, limiting the evaluation
of the learning process to 50 episodes.

11.3.3 Further Configuration of SPOT

SPOT is configured to use 300 evaluations, which are spent as follows: Each evalu-
ation is replicated (evaluated repeatedly) five times, to account for noise. Noise is a
substantial issue in reinforcement learning cases like this one.

11 Case Study IV: Tuned Reinforcement Learning (in Python) 277

30 different configurations are tested in the initial design, leading to 150 evalu-
ations (including the replications). The remaining 150 evaluations are spent by the
iterative search procedure of SPOT. Due to replications, this implies that 30 further
configurations are tested. Also, due to the stochastic nature of the problem, we set
the parameter noise=TRUE.

The employed surrogate model is Kriging (a.k.a. Gaussian process regression),
which is configured to use the so-called nugget effect (useLambda=TRUE), but no
re-interpolation (reinterpolate=FALSE).

In each iteration after the initial design, a Differential Evolution algorithm is
used to search the surrogate model for a new, promising candidate. The Differential
Evolution algorithm is allowed to spend 2400 evaluations of the surrogate model in
each iteration of SPOT.

For the sake of reproducibility, random number generator seeds are specified
(seedSPOT,seedFun). Each replicationwillworkwith a different randomnumber
generator seed (iterated, starting from seedFun).

Arguments for calling SPOT

The respective configuration and function call is

result <- spot(fun = objf,
lower=cfg$lower,
upper=cfg$upper,
control = list(types=cfg$type,

funEvals=300,
plots=TRUE,
optimizer=optimDE,
noise=TRUE,
seedSPOT=1,
seedFun=1,
designControl=list(size=5*length(cfg$lower),

replicates=5),
replicates=5,
model=buildKriging,
modelControl=list(target="ei",useLambda=TRUE,

reinterpolate=FALSE),
optimizerControl=list(funEvals=

400*length(cfg$lower))
)

)

11.3.4 Post-processing and Validating the Results

To determine how well the tuning worked, we perform a short validation experiment
at the end. There, we spend 10 replications to evaluate the best found solution. We
also spend more episodes for this test (i.e., max_episodes=100). This provides a less

278 M. Zaefferer and S. Chandrasekaran

noisy and more reliable estimate of our solution’s performance, compared to the
respective performance of the default settings from the tutorial (see Table11.1).

Note that this step requires a bit of data processing, where we first aggregate our
result data set by computing mean objective values (i.e., over the 5 replications), to
determine which configuration was evaluated to work best on average.

11.4 Results

Table11.2 compares the parameters of the best solution found during tuning with
those of the defaults from the tutorial. It also lists the respective performance (average
reward) and its standard deviation. We can load the result file created after tuning to
create a visual impression of this comparison (Fig. 11.2).

load("supplementary/ch11-caseStudyIV/resultFile.RData")
boxplot(best_real_y,default_y,

names=c("tuned","default"),
xlab="performance (-reward)",
horizontal=TRUE)

Interestingly, much smaller size of the dense layers (num_hidden=64) seems to
suffice for the tuned solution. The larger tutorial network uses 256 units. The tuned
algorithm also uses a larger learning rate for the critic network, compared to the
actor network. The parameters gamma and tau deviate strongly from the respective
defaults.

Table 11.2 The hyperparameter values of the best solution found during tuning, compared against
those of the defaults from the Keras tutorial by Singh (2020). It also lists the respective performance
(mean neg. reward) and its standard deviation. Mean and standard deviation are computed over 10
replications, evaluated with 100 episodes

Variable name Default Tuned

num_hidden 256 64

critic_lr 0.00200 0.00349

actor_lr 0.00100 0.00074

gamma 0.99000 0.93668

tau 0.00100 0.01481

activation relu swish

Average negated reward 183.62 169.86

st. dev. of avg. neg. reward 37.49 27.60

11 Case Study IV: Tuned Reinforcement Learning (in Python) 279

tu
ne

d
de

fa
ul

t

140 160 180 200 220 240

performance (−reward)

Fig. 11.2 Boxplot comparing the default and tuned configurations of the reinforcement learning
process, in terms of their negated reward

11.5 Severity: Validating the Results

Let us proceed to analyze the average negated reward attained between the tuned
and default parameters using severity. The pre-experimental runs indicate that the
difference is x̄ = 13.76. Because this value is positive, we can assume that the tuned
solution is superior. The standard deviation is sd = 32.67. Based on Eq.5.14, and
with α = 0.05, β = 0.2, and � = 40, we can determine the number of runs for the
full experiment.

For a relevant difference of 40, approximately 8 completing runs per algorithm
are required. Hence, we can proceed directly to evaluate the severity as sufficient
runs have already been performed.

The decision based on the p-value of 0.0915 is to not reject H0. Considering
a target relevant difference � = 40, the severity of not rejecting H0 is 0.99, and
thus it strongly supports the decision of not rejecting the H0. The corresponding
severity plot is shown in Fig. 11.3. Analyzing the results of hypothesis testing and
severity as shown in Table11.3, the differences in terms of parameter values do
not seem to manifest in the performance values. It can be observed in Table11.2
that a comparatively minor difference in mean performance is observed, while the
difference in standard deviation is a bit more pronounced. However, this cannot be
deemed as statistically significant relevance.

Overall, this matches well with what we see from a more detailed look at the
tuning results (Fig. 11.4):

SPOTMisc::plot_parallel(resultpp)

280 M. Zaefferer and S. Chandrasekaran

0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

τ

D
en

si
ty

c 1
−αx

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Δ
Se

ve
rit

y

p−value

Fig. 11.3 Reinforcement learning. Severity of not rejectingH0 (red), power (blue), and error (gray).
Left: the observed mean x̄ = 13.76 is smaller than the cut-off point c1−α = 16.99. Right: Severity
of not rejecting H0 as a function of �

Table 11.3 Case Study IV: Result Analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0.09 H0 not
rejected

0.987019 0.4178644 0.4002082 � ≥ 25 are
well supported

Fig. 11.4 Parallel plot of the achieved performance values during tuning. Red lines denote poor
configurations (poor performance), blue lines better configurations

11 Case Study IV: Tuned Reinforcement Learning (in Python) 281

11.6 Summary and Discussion

In summary, the investigation shows that large parts of the search space lead to
poorly performing configurations of the algorithm. Still, there seems to be a broad
spectrum of potentially well-performing configurations, which interestingly include
fairly small networks (i.e., with few units). This observation may be linked to the
complexity of the problem, which is a relatively simple reinforcement learning sce-
nario with few states and actions.

The tuned solution seems to work a little better than the default settings from
the tutorial (Singh 2020), but those defaults are still competitive. It is reasonable
to assume that the tutorial defaults were chosen with care (potentially by some sort
of tuning procedure, or relevant experience by the tutorial’s author) and are well-
suited for this problem. While the smaller network implies faster computation, the
larger network has the advantage of being more easily transferred to more complex
reinforcement learning cases.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	11 Case Study IV: Tuned Reinforcement Learning (in Python)
	11.1 Introduction
	11.2 Materials and Methods
	11.2.1 Software
	11.2.2 Task Environment: Inverted Pendulum
	11.2.3 Learning Algorithm

	11.3 Setting up the Tuning Experiment
	11.3.1 File: run.py
	11.3.2 Tuned Parameters
	11.3.3 Further Configuration of SPOT
	11.3.4 Post-processing and Validating the Results

	11.4 Results
	11.5 Severity: Validating the Results
	11.6 Summary and Discussion

