
Chapter 10
Case Study III: Tuning of Deep Neural
Networks

Thomas Bartz-Beielstein, Sowmya Chandrasekaran, and Frederik Rehbach

Abstract A surrogate model based Hyperparameter Tuning (HPT) approach for
Deep Learning (DL) is presented. This chapter demonstrates how the architecture-
level parameters (hyperparameters) of Deep Neural Networks (DNNs) that were
implemented in keras/tensorflow can be optimized. The implementation of the
tuning procedure is 100% accessible from R, the software environment for statistical
computing. How the software packages (keras, tensorflow, and SPOT) can be
combined in a very efficient and effective manner will be exemplified in this chapter.
The hyperparameters of a standard DNN are tuned. The performances of the six
Machine Learning (ML) methods discussed in this book are compared to the results
from the DNN. This study provides valuable insights in the tunability of several
methods, which is of great importance for the practitioner.

10.1 Introduction

The DNN hyperparameter study described in this chapter uses the same data and
the same HPT process as the ML studies in Chaps. 8 and 9. Section10.2 describes
the data preprocessing. Section10.3 explains the experimental setup and the con-
figuration of the DL models. The objective function is defined in Sect. 10.4. The
hyperparameter tuner, spot, is described in Sect. 10.5. Based on this setup, experi-
mental results are analyzed: After discussing tunability based on the HPT progress
in Sect. 10.6, default, λ0 and tuned hyperparameters, λ� are compared in Sect. 10.6.2.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-981-19-5170-1_10.

T. Bartz-Beielstein (B) · S. Chandrasekaran · F. Rehbach
Institute for Data Science, Engineering and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

S. Chandrasekaran
e-mail: sowmya.chandrasekaran@th-koeln.de

F. Rehbach
e-mail: frederik.rehbach@th-koeln.de

© The Author(s) 2023
E. Bartz et al. (eds.), Hyperparameter Tuning for Machine and Deep Learning with R,
https://doi.org/10.1007/978-981-19-5170-1_10

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5170-1_10&domain=pdf
https://doi.org/10.1007/978-981-19-5170-1_10
mailto:thomas.bartz-beielstein@th-koeln.de
mailto:sowmya.chandrasekaran@th-koeln.de
mailto:frederik.rehbach@th-koeln.de
https://doi.org/10.1007/978-981-19-5170-1_10

236 T. Bartz-Beielstein et al.

Table 10.1 Deep-learning hyperparameter pipeline
Step Description Function Result Details

1 Get data getDataCensus dfCensus Data frame

2.1 Split data into
training,
validation, and test
data

getGenericTrainValTestData Data Partitioned data

2.2 Spec genericDataPrep specList List with the
following data

2.3.1 keras
configuration

getKerasConf kerasConf Configuration list
for keras

2.3.2 Model
configuration

getModelConf cfg Model

3 Hyperparameter
tuning

spot Result Result list

4 Evaluate on test
data

evalParamCensus Score Metrics

The DL tuning process is analyzed in Sect. 10.7. Results are validated using severity
in Sect. 10.8. A summary in Sect. 10.9 concludes this chapter. The DL hyperparam-
eter tuning pipeline, that was used for the experiments, is summarized in Table10.1
and illustrated in Fig. 10.1. The first sections in this chapter highlight the most impor-
tant steps of this pipeline. The program code for performing the experiments is shown
in Sect. 10.10.
keras isTensorFlow (TF)’s high-levelApplicationProgramming Interface (API)

designed with a focus on enabling fast experimentation. TF is an open source soft-
ware library for numerical computations with data flow graphs (Abadi et al. 2016).
Mathematical operations are represented as nodes in the graph, and the graph edges
represent the multidimensional arrays of data (tensors) (O’Malley et al. 2019). The
full TF API can be accessed via the tensorflow package from within the R soft-
ware environment for statistical computing and graphics (R).

The Appendix contains information on how to set up the required Python soft-
ware environment for performingHPTwith keras, SPOT, and SPOTMisc. Source
code for performing the experimentswill included in theR packageSPOTMisc. Fur-
ther information is published on https://www.spotseven.de and with some delay on
Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/package=
SPOT). This delay is caused by an intensive code check, which is performed by the
CRAN team. It guarantees high-quality open source software and is an important
feature for providing reliable software that is not just a flash in the pan.

https://www.spotseven.de
https://cran.r-project.org/package=SPOT
https://cran.r-project.org/package=SPOT

10 Case Study III: Tuning of Deep Neural Networks 237

Fig. 10.1 Overview. The
HPT pipeline introduced in
this chapter comprehends the
following steps: After the
data acquisition
(getDataCensus), the
data is split into training,
validation, and test sets.
These data sets are processed
via the function
genericDataPrep.
keras is configured via the
function getKerasConf.
The hyperparameter tuner
spot is called and finally,
the results are evaluated
(evalParamCensus)

start

end

1 Data Acquisition

getDataCensus

2.1.1 Train, Val, Test

getGenericTrainVal
TestData

2.1.2 specList

genericDataPrep

getKerasConf

3 Hyperparameter Tuning

spot

4 Evaluation

evalParamCensus

cfg (list), objf (function)

result (list)

238 T. Bartz-Beielstein et al.

10.2 Data Description

Identically to the ML case studies, the DL case study presented in this chapter uses
the Census-Income (KDD) Data Set (CID), which is made available, for example,
via the University of California, Irvine (UCI) Machine Learning Repository.1,2

10.2.1 getDataCensus: Getting the Data from OpenML

Before training the DNN, the data is preprocessed by reshaping it into the shape the
DNN can process. The function getDataCensus is used to get the OpenMachine
Learning (OpenML) data (from cache or from server). The same options as in the
previous ML studies will be used, i.e., the parameter settings from Table8.3 will be
used.

target <- "age"
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"
prop <- 2 / 3
dfCensus <- getDataCensus(
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
cachedir = cachedir,
target = target

)

10.2.2 getGenericTrainValTestData: Split Data in
Train, Validation, and Test Data

The data frame dfCensus, (X,Y) ⊂ (X,Y), with 10000 observations of 23 vari-
ables, is available. Based on prop, the data is split into training, validation, and test

1 https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD).
2 The data from CID is historical. It includes wording or categories regarding people which do not
represent or reflect any views of the authors and editors.

https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)

10 Case Study III: Tuning of Deep Neural Networks 239

data sets, (X,Y)(train), (X,Y)(val), and (X,Y)(test), respectively. If prop = 2/3, the
training data set has 4444 observations, the validation data set has 2222 observations,
and the test data set the remaining 3334 observations.

data <- getGenericTrainValTestData(dfGeneric = dfCensus, prop = prop)

10.2.3 genericDataPrep: Spec

The third step of the data preprocessing generates a specList.

batch_size <- 32
specList <- genericDataPrep(data = data, batch_size = batch_size)

The function genericDataPrep works as described in Sects. 10.2.3.1–
10.2.3.5.

10.2.3.1 The Iterator: Data Frame to Data Set

The helper function df_to_dataset3 converts the data frame dfCensus into a
data set. This procedure enables processing of very large Comma Separated Values
(CSV) files (so large that they do not fit into memory). The elements of the training
data sets are randomly shuffled. Finally, consecutive elements of this data set are
combined into batches.

Applying the function df_to_dataset generates a list of tensors. Each tensor
represents a single column. The most significant difference to R’s data frames is that
a TF data set is an iterator.

train_ds_generic <-
df_to_dataset(data$trainGeneric, batch_size = batch_size)

val_ds_generic <-
df_to_dataset(data$valGeneric, shuffle = FALSE, batch_size = batch_size)

Background: Iterators

Each time an iterator is called it will yield a different batch of rows from the data
set. The iterator function iter_next can be called as follows, so that batches are
shown.

train_ds %>%
reticulate::as_iterator() %>%
reticulate::iter_next()

3 https://tensorflow.rstudio.com/tutorials/advanced/structured/classify/.

https://tensorflow.rstudio.com/tutorials/advanced/structured/classify/

240 T. Bartz-Beielstein et al.

The data set train_ds_generic returns a list of column names (from the
data frame) that map to column values from rows in the data frame.

10.2.3.2 The feature_spec Object: Specifying the Target

TF has built-in methods to perform common input conversions.4 The powerful
feature_column system will be accessed via the user-friendly, high-level inter-
face called feature_spec. While working with structured data, e.g., CSV data,
column transformations and representations can be initialized and specified. A prac-
tical benefit of implementing data preprocessing within model A is that when A is
exported, the preprocessing is already included. In this case, new data can be passed
directly toA.

•! Attention: Keras Preprocessing Layers

keras and tensorflow are under constant development. The current implemen-
tation inSPOTMisc classifies structured datawith feature columns. The correspond-
ing TF module was designed for the use with TF version 1 estimators. It does fall
under compatibility guarantees.5 The newly developed keras module uses “pre-
processing layers” for building keras-native input processing pipelines. Future
versions of SPOTMisc will be based on preprocessing layers. However, because
the underlying ideas of both preprocessing layers are similar (TF provides a migra-
tion guide6), the most important preprocessing steps will be presented next.

First the spec object specGeneric is defined. The response variable, here:
target, can be specified using a formula, see Chambers and Hastie (1992) and the
R function formula.

specGeneric <- feature_spec(dataset = train_ds_generic, target ˜ .)

10.2.3.3 Adding Steps to the feature_spec Object

The CID data set contains a variety of data types. These mixed data types are con-
verted to a fixed-length vector for the DL model to process. Based on their feature
type, their data type or level, the columns will be treated differently. After creat-
ing the feature_spec object the step functions from Table10.2 can be used to

4 https://tensorflow.rstudio.com/tutorials/beginners/load/load_csv/.
5 https://www.tensorflow.org/tutorials/structured_data/feature_columns?authuser=0.
6 https://www.tensorflow.org/guide/migrate/migrating_feature_columns.

https://tensorflow.rstudio.com/tutorials/beginners/load/load_csv/
https://www.tensorflow.org/tutorials/structured_data/feature_columns?authuser=0
https://www.tensorflow.org/guide/migrate/migrating_feature_columns

10 Case Study III: Tuning of Deep Neural Networks 241

Table 10.2 Steps: data transformations depending on the data type

Step functions Description

step_numeric_column Numeric variables

step_categorical_with_vocabulary_list Categorical variables with a
fixed vocabulary

step_categorical_column_with_hash_bucket Categorical variables using
the hash trick

step_categorical_column_with_identity Categorical variables stored
as integers

step_categorical_column_with_vocabulary_file Vocabulary stored in a file

Table 10.3 Description of the CID feature and data types that are used in the data set (X, Y) ⊂
(X,Y)

Column Feature type Data type/levels

capital_gains Num Double

capital_losses Num Double

dividends_from_stocks Num Double

wage_per_hour Num Double

weeks_worked_in_year Num Integer

class_of_worker Factor 9

industry_code Factor 51

occupation_code Factor 47

Education Factor 17

marital_status Factor 7

major_industry_code Factor 24

major_occupation_code Factor 15

Race Factor 5

hispanic_origin Factor 10

Sex Factor 2

tax_filer_status Factor 6

detailed_household_and_family_stat Factor 29

detailed_household_summary_in_household Factor 8

country_of_birth_self Factor 42

Citizenship Factor 5

income_class Factor 2

Target Factor 2

add further steps. Depending on the data type, the step functions specify the data
transformations. Table10.3 shows these types.

The R package tfdatasets provides selectors to select certain variable types
and ranges, e.g., all_numeric to select all numeric variables, all_nominal

242 T. Bartz-Beielstein et al.

to select all characters, or has_type("float32") to select variables based on
their TF variable type. Based on the feature and data type shown in Table10.3, the
data transformations from Table10.2 are applied. We will consider feature specs for
continuous and catergorical data separately.

10.2.3.4 Feature Spec: Continuous Data

For continuous data, i.e., numerical variables, the function step_numeric_
column will be used and all numeric variables will be normalized (scaled).
The R package tfdataset provides the scaler function scaler_min_max,
which uses the minimum and maximum of the numeric variable and the function
scaler_standard, which uses the mean and the standard deviation.

10.2.3.5 Feature Spec: Categorical Data

The DNN model A cannot directly process categorical (nominal) data—they must
be transformed so that they can be represented as numbers. The representation of
categorical variables as a set of one-hot encoded columns is widely used in prac-
tice (Chollet and Allaire 2018). There are basically two options for specifying the
kind of numeric representation used for categorical variables: indicator columns or
embedding columns.

Background: Embedding

Suppose instead of having a factor with a few levels (e.g., three categorical features
such as red, green, or blue), there are hundreds or even more levels. As the
number of levels grows very large, it becomes unfeasible to train a DNN using one-
hot encodings. In this situation, embedding should be used: instead of representing
the data as a very large one-hot vector, the data can be stored as a low-dimensional
vector of real numbers. Note, the size of the embedding is a parameter that must be
tuned (Abadi et al. 2015).

The implementation in SPOTMisc uses two steps: first, based on the number
of levels, i.e., the value of the parameter minLevelSizeEmbedding in the
following code, the set of columns where embedding should be used, is deter-
mined. Then, either the function step_indicator_column or the function
step_embedding_column is applied.

minLevelSizeEmbedding <- 100
embeddingDim <- floor(log(minLevelSizeEmbedding))
df <- data$trainGeneric
df <- df[-which(names(df) == "target")]
embeddingVars <-

10 Case Study III: Tuning of Deep Neural Networks 243

names(df %>%
mutate_if(is.character, factor) %>%
select_if(˜ is.factor(.) & nlevels(.) > minLevelSizeEmbedding))

noEmbeddingVars <-
names(df %>%
mutate_if(is.character, factor) %>%
select_if(˜ is.factor(.) & nlevels(.) <= minLevelSizeEmbedding))

specGeneric <- specGeneric %>%
step_numeric_column(all_numeric(),
normalizer_fn = scaler_standard()

) %>%
step_categorical_column_with_vocabulary_list(all_nominal()) %>%
step_indicator_column(matches(noEmbeddingVars)) %>%
step_embedding_column(matches(embeddingVars), dimension = embeddingDim)

After adding a step we need to fit the specGeneric object:

specGeneric_prep <- fit(specGeneric)

Finally, the following data structures are available:

1. train_ds_generic (batched, based on 4444 samples)
2. val_ds_generic, (batched, based on 2222 samples)
3. specGeneric_prep and
4. testGeneric (the remaining 3334 samples).

These data are returned as the list specList from the function genericData
Prep.

specList <- genericDataPrep(data = data, batch_size = batch_size)

Dense features prepared with TF’s feature columns mechanism can be listed. There
are 22 dense features that will be passed to the DNN.

names(specList$specGeneric_prep$dense_features())

[1] "wage_per_hour"

[2] "capital_gains"

[3] "capital_losses"

[4] "divdends_from_stocks"

[5] "num_persons_worked_for_employer"

[6] "weeks_worked_in_year"

[7] "indicator_class_of_worker"

[8] "indicator_industry_code"

[9] "indicator_major_industry_code"

[10] "indicator_occupation_code"

[11] "indicator_major_occupation_code"

[12] "indicator_education"

[13] "indicator_marital_status"

[14] "indicator_race"

[15] "indicator_hispanic_origin"

244 T. Bartz-Beielstein et al.

[16] "indicator_sex"

[17] "indicator_tax_filer_status"

[18] "indicator_detailed_household_and_family_stat"

[19] "indicator_detailed_household_summary_in_household"

[20] "indicator_country_of_birth_self"

[21] "indicator_citizenship"

[22] "indicator_income_class"

10.3 Experimental Setup and Configuration of the Deep
Learning Models

10.3.1 getKerasConf: keras and Tensorflow
Configuration

Setting up the keras configuration from within SPOTMisc is a simple step: the
function getKerasConf is called. The function getKerasConf passes addi-
tional parameters to the keras function, e.g.,

activation: Activation function in the last Neural Network (NN)
layer. Default: "sigmoid".

active: Vector of active variables, e.g., c(1,10) specifies that
only the first and tenth variable will be considered by
spot. This mechanism allows the shrinking the full set
of tunable parameters, say λ, to a smaller set, λ(−), if the
user wants to investigate the tunability (or the effect) of
one or only a few hyperparameters.

callbacks: List of callbacks to be called during training. Default:
list().

clearSession: Whether to call k_clear_session or not at the end
of keras modeling. Default: FALSE.

encoding: Encoding used during data preparation. Default:
"oneHot".

loss: Loss function, L, for the compile from the package
keras. For example Binary Cross Entropy (BCE) loss
as defined in Eq. (2.3).
Default: "loss_binary_crossentropy".

metrics: Metrics function for compile. Default: "binary_
accuracy".

model: Model, A, as specified via getModelConf. Default:
"dl". Forthcoming versions of SPOTMisc will pro-

10 Case Study III: Tuning of Deep Neural Networks 245

vide additional DNN model types, e.g., Convolutional
Neural Networks (CNNs).

nClasses: Number of classes in (multi-class) classification. Speci-
fies the number of units in the last layer (before
softmax). Default: 1 (binary classification).

resDummy: If TRUE, generate dummy (mock up) result for testing.
If FALSE, run keras and tensorflow evaluations.
Default: FALSE.

returnValue: Return value. Can be one of "trainingLoss",
"negTrainingAccuracy","validationLoss",
"negValidation Accuracy", "testLoss", or
"negTestAccuracy".

returnObject: Return object. Can be one of "evaluation",
"model", "pred". Default: "evaluation".

shuffle: Logical (whether to shuffle the training data (X,Y)(train)

before each epoch) or string (for “batch”). Used in the
function df_to_dataset. "batch" is a special option
for dealing with the limitations of the Hierarchical Data
Format (HDF) version 5 data. It shuffles in batch-sized
chunks. Default: FALSE.

testData: Test data, (X,Y)(test), on which to evaluate the loss, L,
and any model metrics,ψ(test)at the end of the optimiza-
tion using the function evaluate.

tfDevice: Tensorflow device. CPU/GPU allocation. Passed to
tensorflow via tf$device(kerasConf
$tfDevice). Default: "/cpu:0" (use CPU only).

trainData: Training data, (X,Y)(train), on which to evaluate the loss
and any model metrics at the end of each epoch.

validationData: Validation data, (X,Y)(val), onwhich to evaluate the loss
ψ(val)and any model metrics at the end of each epoch.

validation_split: Float between 0 and 1. Fraction of the training data
(X,Y)(train)to be used internally byA as validation data
(X,Y)(valtrain).Awill set apart this fraction of the train-
ing data, will not train on it, and will evaluate the loss
and any model metrics on (X,Y)(valtrain)at the end of
each epoch. (X,Y)(valtrain)is selected from the last sam-
ples in the (X,Y)(train)data provided, before shuffling.
Default: 0.2.

verbose: Verbosity mode (0 = silent, 1 = progress bar, 2 = one
line per epoch). Default: 0.

The default settings are useful for the binary classification task analyzed in this
chapter. Only the parameter kerasConf$clearSession is set to TRUE and
kerasConf$verbose is set to 0.

246 T. Bartz-Beielstein et al.

kerasConf <- getKerasConf()
kerasConf$clearSession <- TRUE
kerasConf$verbose <- 0

10.3.2 getModelConf: DL Hyperparameters

cfg <- getModelConf(model = "dl")

If the default values from the function getKerasConf are used, the vector of
hyperparameter λ contains the following elements: the dropout rates (dropout rates
of the layers will be tuned individually), the number of units (the number of single
outputs from a single layer), the learning rate (controls howmuch to change the DNN
model in response to the estimated error each time the model weights are updated),
the number of training epochs (a training epoch is one forward and backward pass
of a complete data set), the optimizer for the inner loop, Oinner, and its parameters
(i.e., β1, β2 as well as ε) and the number of layers. These hyperparameters and their
ranges are listed in Table10.4.

Table 10.4 The hyperparameters, λ, for the DNN, which implements a fully connected network

Variable Hyperparameter Type Default Lower bound Upper bound

x1 dropout: first
layer dropout rate

Numeric 0 0 0.4

x2 dropoutfact:
dropout multiplier

Numeric 0 0 0.5

x3 units: units per
first layer

Integer 32 1 32

x4 unitsfact: units
multiplier

Numeric 0.2 0.25 1

x5 learning_rate:
learning rate for the
optimizer

Numeric 1e − 3 1e − 6 1e − 2

x6 epochs inner loop
Oinner number of
training epochs

Integer 16 8 128

x7 beta_1 Numeric 0.9 0.9 0.99

x8 beta_2 Numeric 0.999 0.999 0.9999

x9 layers Integer 1 1 4

x10 epsilon Numeric 1e − 7 1e − 9 1e − 8

x11 optimizer Factor 5 1 7

10 Case Study III: Tuning of Deep Neural Networks 247

Table 10.5 Optimizers that can be selected via hyperparameter x11. Default optimizer Oinner is
adam. The function selectKerasOptimizer from the SPOTMisc implements the selection.
The corresponding R functions have the prefix optimizer_, e.g., adamax can be called via
optimizer_adamax

Level Name Description Reference

1 sgd SGD optimizer with support for momentum,
learning rate decay, and Nesterov momentum

Ruder (2017)

2 rmsprop RMSProp optimizer Ruder (2017)

3 adagrad Adagrad optimizer Duchi et al. (2011)

4 adadelta Adadelta optimizer Zeiler (2012)

5 adam Adam optimizer Kingma and Ba (2014)

6 adamax Adamax optimizer Kingma and Ba (2014)

7 nadam Nesterov Adam optimizer Sutskever et al. (2013)

To enable compatibility with the ranges of the learning rates of the other opti-
mizers, the learning rate of the optimizer adadelta is internally mapped to
1-learning_rate. That is, a learning rate of 0 will be mapped to 1 (which
is adadelta’s default learning rate). The learning rate of adagrad and sgd is
internallymapped to10 * learning_rate. That is, a learning rate of 0.001will
be mapped to 0.01 (which is adagrad’s and sgd’s default). The learning rate learn-
ing_rate of adamax and nadam is internally mapped to 2 * learning_rate.
That is, a learning rate of 0.001 will be mapped to 0.002 (which is adamax’s and
nadam’s default.)

The hyperparameter x11, which encodes the optimizer is implemented as a
factor. Factor levels, which represent the available optimizers are listed in Table10.5.

A discussion of the DNN hyperparameters, λ, recommendations for their settings
and further information are presented in Sect. 3.8. The R function getModelConf
provides information about hyperparameter names, ranges, and types.

10.3.3 The Neural Network

Background: Network Implementation in SPOTMisc

The SPOTMisc function getModelConf selects a pre-specified, but not pre-
trained, DL network A. This network is called via funKerasGeneric, which
is the interface to spot. funKerasGeneric uses a network, that is implemented
as follows:

To build the DNN in keras, the function layer_dense_features that
processes the feature columns specification is used (Fig. 10.2). It receives the data set
specGeneric_prep as input and returns an array off all dense features:

248 T. Bartz-Beielstein et al.

layer <-
layer_dense_features(
feature_columns = dense_features(specList$specGeneric_prep)

)

The iterator can be called to take a look at the (scaled) output:

specList$train_ds_generic %>%
reticulate::as_iterator() %>%
reticulate::iter_next() %>%
layer()

TheNNmodel can be compiled after theloss functionL, which determines how
good the DNN prediction is (based on the (X,Y)(val)), the optimizer, i.e., Oinner,
i.e., the update mechanism of A, which adjusts the weights using backpropagation,
and the metrics. metrics The metrics monitor the progress during training and
testing and are specified using the compile function from keras.

•! Attention: Hyperparameter Values

To improve the readability of the code, evaluated (“forced” values) of the hyperpa-
rameters λ are shown in the code snippets below instead of the arguments that are
passed from the tuner spot to the function funKerasGeneric.

units1 <- 2
model <- keras_model_sequential() %>%
layer_dense_features(dense_features(specList$specGeneric_prep)) %>%
layer_dense(units = units1, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
loss = loss_binary_crossentropy,
optimizer = "adam",
metrics = "binary_accuracy"

)

The DNN training can be started as follows (using keras’ fit function). Train
themodel on theCPUusing the settingtf$device("/cpu:0") on the validation
data set:

with(tf$device("/cpu:0"), {
historyD <-
model %>%
fit(dataset_use_spec(specList$train_ds_generic,
spec = specList$specGeneric_prep

),
epochs = 25,

10 Case Study III: Tuning of Deep Neural Networks 249

Fig. 10.2 Simple DNN
based on the code in this
section

validation_data =
dataset_use_spec(
specList$val_ds_generic,
specList$specGeneric_prep

),
verbose = 0
)

})

The predictions from the DNN model are shown in the following code snippet.
The tensor values are the output from the final DNN layer after the sigmoid function
was applied. Values are from the interval [0, 1] and represent probabilities: values
smaller than 0.5 are interpreted as predictions “age < 40”, otherwise “age ≥ 40”.

specList$test_ds_generic %>%
reticulate::as_iterator() %>%
reticulate::iter_next() %>%
model()

tf.Tensor(

[[0.31883082]

[0.47055224]

[0.99928933]

[0.9962864]

[0.27977774]

[0.34997565]

[0.7686823]

[0.99928933]

[0.32100695]

[0.99928933]

[0.16852783]

[0.33614054]

[0.36855838]

[0.4346528]

[0.6968227]

[0.41458437]

250 T. Bartz-Beielstein et al.

lo
ss

bi
na

ry
_a

cc
ur

ac
y

0 5 10 15 20 25

0.4

0.5

0.6

0.70

0.75

0.80

epoch

data
training
validation

Fig. 10.3 DNN training. History of the inner optimization loop

[0.9992539]

[0.01920704]

[0.34810022]

[0.6455758]

[0.78468007]

[0.9993542]

[0.9469396]

[0.00989294]

[0.00521746]

[0.01071302]

[0.8888161]

[0.78542197]

[0.9993542]

[0.6045456]

[0.9993542]

[0.9992539]], shape=(32, 1), dtype=float32)

Figure10.3 shows the quantities that are being displayed during training:

(i) the loss of the network over the training and validation data, ψ(train) and ψ(val),
respectively, and

(ii) the accuracy of the network over the training and validation data, f (train)
acc and

f (val)
acc , respectively.

This figure illustrates that an accuracy greater than 80% on the training data,
(X,Y)(train), can be reached quickly.

Figure10.3 can indicate (even if this is only a short fit procedure) whether the
modeling is affected by overfitting or not. If this situation occurs, it might be useful
to implement dropout layers or use other methods to prevent overfitting.

10 Case Study III: Tuning of Deep Neural Networks 251

The effects of HPT and the tunability of A will be described in the following
sections. Finally, using keras’ evaluate function, the DNNmodel performance
can be checked on X (test).

model %>%
evaluate(specList$test_ds_generic %>%
dataset_use_spec(specList$specGeneric_prep), verbose = 0)

loss binary_accuracy

0.3550636 0.8068387

The relationship between ψ(train), ψ(val), and ψ(test) as well as between f (train)
acc ,

f (val)
acc , and f (test)

acc can be analyzed with Sequential Parameter Optimization Toolbox
(SPOT), because it computes and reports these values.

10.4 funKerasGeneric: The Objective Function

The hyperparameter tuner, e.g., spot, performs model selection during the tuning
run: training data X (train) is used for fitting (training) the models, e.g., the weights
of the DNNs. Each trained model Aλi

(
X (train)

)
will be evaluated on the validation

data X (val), i.e., the loss is calculated as shown in Eq. (2.9). Based on (λi , ψ
(val)
i), at

each iteration of the outer optimization loop a surrogate model S(t) is fitted, e.g.,
a Bayesian Optimization (BO) (Kriging) model using spot’s buildKriging
function.

For each hyperparameter configuration λi , the objective function
funKerasGeneric reports information about the related DNN models Aλi

1. training loss, ψ(train),
2. training accuracy, f (train)

acc ,
3. validation (testing) loss, ψ(val), and
4. validation (testing) accuracy, f (val)

acc .

10.5 spot: Experimental Setup for the Hyperparameter
Tuner

The SPOT package for R, which was introduced in Sect. 4.5, will be used for the
DL hyperparameter tuning (Bartz-Beielstein et al. 2021). The budget is set to twelve
hours, i.e., the run time of DL tuning is larger than the run time of the ML tuning.
The budget for the spot runs was set to this value, because of the complexity of the
hyperparameter search space � and the relatively long run time of the DNN.

SPOT provides several options for adjusting the HPT parameters, e.g., type of
the Surrogate Model Based Optimization (SMBO) model, S, and optimizer, O, as
well as the size of the initial design, ninit. These parameters can be passed via the
spotControl function to spot. For example, instead of the default surrogate S,
which is BO (implemented as buildKriging), a Random Forest (RF), (imple-
mented as buildRanger) can be chosen.

252 T. Bartz-Beielstein et al.

openML / CID

(X ,Y)

1 Data Acquisition

getDataCensus

(X,Y)

2.1.1 Data Frame Preparation

getGenericTrainValTestData

data:
trainGeneric: (X,Y)(train),
valGeneric: (X,Y)(val),
testGeneric: (X,Y)(test)

2.1.2 Data Set Preparation

genericDataPrep

train ds generic: (X,Y)(train),
val ds generic: (X,Y)(val),
test ds generic: (X,Y)(test)

keras

train ds generic: (X,Y)(train)

spot

funKerasGeneric

val ds generic : (X,Y)(val)

spot

evalParamCensus

test ds generic : (X,Y)(test)

Model Optimization Model Selection Model Assessment

Fig. 10.4 Overview. The DL HPT data workflow

ThegeneralDLHPTdataworkflow is as follows: first the trainingdata, (X,Y)(train)

are fed to theDNN. TheDNNwill then learn to associate images and labels. Based on
the keras parameter validation_split, the training data will be partitioned
into a (smaller) training data set, X (train), and a validation data set, (X,Y)(valtrain). The
trained DNN produces predictions for validations based on (X, Y)(val) data. The DL
HPT data workflow is shown in Fig. 10.4.

Similar to the process described in Sect. 8.1 for ML, the hyperparameter tuning
for DL can be started as follows:

startCensusRun(model = "dl")

The startCensusRun function performs the following steps:

1. Providing the CID data set, ((X,Y)CID, see Sect. 8.2.1.
2. Generating the random sample (X,Y) ⊆ ((X,Y)CID of size nobs.

10 Case Study III: Tuning of Deep Neural Networks 253

Table 10.6 SPOT parameters used for deep learning hyperparameter tuning. The control list
contains internally further lists, see Table10.7

Parameter Value Description

x x0 Starting point, hyperparameter vector λ, see
Tables10.4 and 10.5

fun funKerasGeneric Objective function, Oouter

lower cfg$lower Lower bounds for x aka λ

upper cfg$upper Upper bounds for x aka λ

control List

kerasConf kerasConf Argument used by the objective function
funKerasGeneric

specList specList Argument used by the objective function
funKerasGeneric

Table 10.7 SPOT list parameters used for deep learning hyperparameter tuning

List Parameter Value

Control Types cfg$type

Verbosity Verbosity

Time List (maxTime = timebudget/60)

Plots Plots

Progress TRUE

Model spotModel

Optimizer spotOptim

Noise Noise

OCBA OCBA

OCBABudget OCBABudget

seedFun NA

seedSPOT tuner.seed

designControl Replicates Rinit

Size initSizeFactor * length(cfg$lower)

modelControl Target krigingTarget

useLambda krigingUseLambda

Reinterpolate krigingReinterpolate

optimizerControl funEvals multFun * length(cfg$lower))

yImputation handleNAsMethod handleNAsMethod

imputeCriteriaFuns imputeCriteriaFuns

penaltyImputation 3

254 T. Bartz-Beielstein et al.

3. Defining an experimental design, including performance measures.
4. Configuration of the hyperparameter tuner, T .
5. Configuration of the DL model, A.
6. Performing the experiments.

Furthermore, it can be decided whether to use the default hyperparameter setting,
λ0, as a starting point or not. Using the parameter specifications from Tables10.6
and 10.7, we are ready to perform the HPT run: spot can be started.

10.6 Tunability

Regarding tunability as defined in Definition2.26, we are facing a special situation
in this chapter, because there is no generally accepted “default” hyperparameter
configuration, λ0, for DNNs. This problem is not as obvious in ML, because the
correspondingmethods have a long history, i.e., there are publications for most of the
shallowmethods that can give hints how to select adequate λ values. This information
is collected and summarized in Chap.3. The “default” hyperparameter setting of the
DNNs analyzed in this chapter is based on our own experiences, combined with
recommendations in the literature. Chollet and Allaire (2018) may be considered as
a reference in this field.7

The result list from the spot run can be loaded. It contains the 14 values
shown in Table4.6, e.g., names of the tuned hyperparameters that were introduced
in Table10.4:

result$control$parNames

[1] "dropout" "dropoutfact" "units" "unitsfact"
[5] "learning_rate" "epochs" "beta_1" "beta_2"
[9] "layers" "epsilon" "optimizer"

The HPT inner optimization loop is shown in Fig. 10.5. The DNN uses the tuned
hyperparameters, λ� from Table10.8. The model training supports the result found
by the tuner spot that the number of training epochs should be 32. The reader may
compare the inner optimization loop with default and with tuned hyperparameters in
Figs. 10.3 and 10.5.

The tuned DNN model has the following structure:

$model

Model: "sequential_1"

__

Layer (type) Output Shape Param

==

dense_features_2 (DenseFeatures) multiple 0

7 An updated version of Chollet and Allaire (2018) is under preparation while we are writing this
text. Check the authors’ web-page for more information: https://www.manning.com/books/deep-
learning-with-r.

https://www.manning.com/books/deep-learning-with-r
https://www.manning.com/books/deep-learning-with-r

10 Case Study III: Tuning of Deep Neural Networks 255

lo
ss

bi
na

ry
_a

cc
ur

ac
y

0 5 10 15 20 25 30

0.3

0.4

0.5

0.65

0.70

0.75

0.80

0.85

epoch

data
training
validation

Fig. 10.5 Training DL (inner optimization loop) using the tuned hyperparameter setting λ�

Table 10.8 DNN configurations. “lr” denotes “learning_rate”. The overall mean of the loss, y is
0.3691, its standard deviation is 0.1152, whereas the mean of the best HPT configuration, λ�, found
by OCBA, is 0.3346 with s.d. 0.0343
dropout dropoutfact units unitsfact lr epochs beta_1 beta_2 layers epsilon optimizer Loss

0 0 5 0.5 0.001 4 0.9 0.999 1 0 5 0.346

0.038 0.793 5 0.742 0.002 5 0.913 0.994 1 0 4 0.335

dense_2 (Dense) multiple 8864

dense_3 (Dense) multiple 33

==

Total params: 8,897

Trainable params: 8,897

Non-trainable params: 0

__

##

$history

##

Final epoch (plot to see history):

loss: 0.2983

binary_accuracy: 0.8508

val_loss: 0.3343

val_binary_accuracy: 0.8132

10.6.1 Progress

After loading the results from the experiments, the hyperparameter tuning progress
can be visually analyzed. First of all, the result list information will be used to

256 T. Bartz-Beielstein et al.

dl

0 250 500 750

0.5

1.0

1.5

function evaluations

va
lid

at
io

n
lo

ss

Fig. 10.6 Progress plot. In contrast to the progress plots used for the ML methods, this plot shows
the BCE loss and not the MMCE against the number of iterations (function evaluations of the tuner)

visualize the route to the solution: in Fig. 10.6, loss function values,ψ(val), are plotted
against the number of iterations, t . Each point represents one evaluation of an DNN
model Aλ(t) at time step (spot iteration) t .

The initial design, which includes the default hyperparameter setting, λ0, results
in a loss value of ψ

(val)
init = 0.3371. The best value, that was found during the tuning,

is y(∗)
val = 0.3285. These values have to be taken with caution, because they represent

onyl one evaluation ofAλ. Based on OCBA, which takes the noise in the model eval-
uation via the function funKerasGeneric into consideration, the best function
value is y(OCBA∗)

val = 0.3346.
After 12h, 914 dl models were evaluated. Comparing the worst configuration

that was observed during the HPT with the best, a 81.773% reduction in the BCE
loss was obtained. After the initial phase, which includes 44 evaluations, the smallest
BCE reads 0.3370858. The dotted red line in Fig. 8.6 illustrates this result. The final
best value reads 0.3285304, i.e., a reduction of the BCE of 2.5381%. These values, in
combinationwith results shown in the progress plot (Fig. 8.6) indicate that a relatively
short HPT run is able to improve the quality of the DNNmodel. It also indicates, that
increased run times do not result in a significant improvement of the BCE. The full

10 Case Study III: Tuning of Deep Neural Networks 257

0.5

0.7

1.0

1 10 100 1000
function evaluations

va
lid

at
io

n
lo

ss

name
dl

Fig. 10.7 Log-log plot

comparison of the DL and ML algorithm performances with default, λ0, and tuned,
λ�, hyperparameters is shown in Sect. 10.9.

•! Attention

These results do not replace a sound statistical comparison, they are only indicators,
not final conclusions.

The corresponding code is presented in the Appendix. The related hyperparame-
ters values are shown in Table10.8.

There is a large variance in the loss as can be seen in Figs. 10.6 and 10.7. The
latter of these two plots visualizes the same data as the former, but uses log-log axes
instead.

10.6.2 evalParamCensus: Comparing Default and Tuned
Parameters on Test Data

The function evalParamCensus evaluates ML and DL hyperparameter configu-
rations on the CID data set. It compiles a data frame, which includes performance
scores from several hyperparameter configurations and can also process results from
default settings. This data frame can be used for a comparison of default and tuned
hyperparameters, λ0 and λ�, respectively. A violin plot of this comparison is shown
in Fig. 10.8. It is based on 30 evaluations of λ0 and λ� and shows—in contrast to the
values in the DNN progress plots—theMeanMis-Classification Error (MMCE). The
MMCE was chosen to enable a comparison of the DL results with the ML results

258 T. Bartz-Beielstein et al.

Fig. 10.8 Comparison of
DL algorithms with default
(D) and tuned (T)
hyperparameters. Mean
misclassification error
(MMCE) for both
configurations. Vertical lines
mark quantiles (0.25, 0.5,
0.75) of the corresponding
distribution. Numerical
values are shown in
Table10.8

dlD

dlT

0.18 0.19 0.20

MMCED
ef

au
lt

(d
lD

),
tu

ne
d

(d
lT

) C
on

fig
s.

factor(name)
dlD
dlT

shown in this book. Identical evaluations were done in Chaps. 8, 9, and 12. A global
comparison of the six ML and the DL methods from this book will be shown in
Sect. 10.9.

10.7 Analysing the Deep Learning Tuning Process

The values that are used for the analysis in this section are biased because they are
not using an experimental design (space filling or factorial). Instead, they are using
the data from the spot tuning process, i.e., they are biased by the search strategy
(Expected Improvenment (EI)) on the surrogate S.

Identical to the analysis of the ML methods, a simple regression tree as shown in
Fig. 10.9 can be used for analysing effects and interactions between hyperparameters
λ.

The regression tree supports the observations, that units and epochs have the
largest effect on the validation loss. The importance of the parameters from the
random forest analysis are shown in Table10.9.

To perform a sensitivity analysis, parallel and sensitivity plots can be used.
The parallel plot (Fig. 10.10) indicates that the hyperparameter units should be

set to a value of 32 (the transformed values range from 1 to 32), the epochs, i.e.
x6, should be set to a value of 32 (the transformed values range from 8 to 128), the
layers, i.e. x9, should be set to a value of 1 (the transformed values range from 1
to 4), and the optimizer, i.e. x11, should be set to a value of 4 (the transformed
values range from 1 to 7).

Looking at Fig. 10.11, the following observations can be made: Similar to the
results from the parallel plot (Fig. 10.10), the sensitivity plot shows that the epochs,
i.e. x6, and the optimizer, i.e. x11, have the largest effect: the former leads to poor
results for larger values, whereas the latter produces poor results for relatively small
values. This indicates that the number of training epochs should not be too large

10 Case Study III: Tuning of Deep Neural Networks 259

epochs < 48

units >= 3

learning_rate >= 317e−6

epsilon >= 3.9e−9

beta_1 >= 0.91

layers < 2

units < 6

layers < 2

0.37
100%

0.36
93%

0.35
86%

0.35
84%

0.34
77%

0.4
7%

0.37
6%

0.56
1%

0.47
2%

0.44
7%

0.36
3%

0.49
4%

0.53
7%

0.42
6%

0.37
5%

0.58
1%

1.3
1%

yes no

Fig. 10.9 Regression tree. Deep learning model. Transformed hyperparameter values are shown

Table 10.9 Variable importance of the DL model hyperparameters
λi units epochs beta_2 layers lr beta_1 eps opt. dropoutfact dropout unitsfact

Var.
imp.

6.04 1.69 1.36 0.63 0.47 0.46 0.42 0.33 0.22 0.19 0.10

0.0

0.5

1.0

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
variable

va
lu

e

bestPercent
>=0%
>=25%
>=50%
>=75%

Fig. 10.10 Best configurations in green

260 T. Bartz-Beielstein et al.

4

8

12

0.00 0.25 0.50 0.75 1.00
x

y

name
x1
x10
x11
x2
x3
x4
x5
x6
x7
x8
x9

Fig. 10.11 Sensitivity plot (best)

5

10

15

20

y

3 4 5 6 7
1

2

3

4

5

6

7

x6

x1
1

Fig. 10.12 Surface plot: epochs x6 plotted against optimizer x11. This plot indicates that longer
training (larger epochs values) worsen the performance and that the optimizer adadelta per-
forms well. Note: Plateaus are caused by discrete and factor variables

(probably to prevent overfitting, see Fig. 10.5) and that the optimizers adadelta
or adam are recommended (Fig. 10.12).

Finally, a simple linear regression model can be fitted to the data. Based on the
data from SPOT’s res list, this can be done as follows:

##
Call:
lm(formula = y ˜ ., data = df)
##
Residuals:
Min 1Q Median 3Q Max

10 Case Study III: Tuning of Deep Neural Networks 261

-0.19062 -0.04055 -0.00477 -0.00044 1.16255
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.291e+00 1.494e+00 1.533 0.125532
dropout 9.491e-02 3.804e-02 2.495 0.012776 *
dropoutfact 3.807e-02 3.167e-02 1.202 0.229606
units 9.670e-03 3.544e-03 2.729 0.006484 **
unitsfact -5.514e-02 2.225e-02 -2.478 0.013396 *
learning_rate 8.281e+00 1.509e+00 5.488 5.29e-08 ***
epochs 4.832e-02 4.628e-03 10.442 < 2e-16 ***
beta_1 3.456e-01 1.705e-01 2.028 0.042888 *
beta_2 -2.589e+00 1.486e+00 -1.743 0.081739 .
layers 2.360e-02 4.573e-03 5.161 3.03e-07 ***
epsilon -1.522e+06 7.284e+05 -2.089 0.036961 *
optimizer2 4.672e-02 1.783e-02 2.620 0.008933 **
optimizer3 2.791e-02 1.575e-02 1.772 0.076659 .
optimizer4 -9.552e-03 1.343e-02 -0.711 0.477196
optimizer5 1.282e-01 2.094e-02 6.121 1.39e-09 ***
optimizer6 6.941e-02 1.572e-02 4.415 1.13e-05 ***
optimizer7 1.172e-01 3.020e-02 3.880 0.000112 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.09997 on 897 degrees of freedom
Multiple R-squared: 0.2595, Adjusted R-squared: 0.2463
F-statistic: 19.65 on 16 and 897 DF, p-value: < 2.2e-16

Although this linear model requires a detailed investigation (a misspecification
analysis is recommended, see, e.g., Spanos 1999), it can be used in combination with
other Exploratory Data Analysis (EDA) tools and visualizations from this section
to discover unexpected and/or interesting effects. It should not be used alone for a
final decision. Despite of a relatively low adjusted R2 value, the regression output
shows—in correspondence with previous observations—that increasing the number
of epochs worsens the model performance.

10.8 Severity: Validating the Results

Considering the results of the experimental runs the difference is x̄ = 0.0054. Since
this value is positive, for themoment, let us assume that the tuned solution is superior.
The corresponding standard deviation is sd = 0.0056. Based on Eq.5.14, and with
α = 0.05, β = 0.2, and 	 = 0.006.

Next, we will identify the required number of runs for the full experiment using
the getSampleSize function. For a relevant difference of 0.006 approximately
11 completing runs per algorithm are required. Hence, we can directly proceed to
evaluate the severity and analyse the performance improvement achieved through
tuning the parameters of the DL model.

262 T. Bartz-Beielstein et al.

Table 10.10 Case Study III: Result Analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.9999849 0.695314 0.686284 	 ≤ 0.0045
are well
supported

−0.010 0.000 0.005 0.010

0
10

0
20

0
30

0
40

0

τ

D
en

si
ty

c 1
−α x

0.000 0.004 0.008

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Δ

Se
ve

rit
y

p−value

Fig. 10.13 Tuning DL. Severity of rejecting H0 (red), power (blue), and error (gray). Left: the
observed mean x̄ = 0.0054 is larger than the cut-off point c1−α = 0.0017 Right: The claim that
the true difference is as large or larger than 0.006 is not supported by severity. But, any difference
smaller than 0.0045 is supported by severity

Result summaries are presented in Table10.10. The decision based on p-value is
to reject the null hypothesis, i.e, the claim that the tuned parameter setup provides
a significant performance improvement in terms of MMCE is supported. The effect
size suggests that the difference is of mediummagnitude. For the chosen	 = 0.006,
the severity value is at 0.29 and thus it does not support the decision of rejecting the
H0. The severity plot is shown in Fig. 10.13. Severity shows that only performance
differences smaller than 0.0045 are well supported.

10.9 Summary and Discussion

A HPT approach based on SMBO was introduced and exemplified in this chapter. It
uses functions from the packages keras, SPOT and SPOTMisc from the statisti-
cal programming environment R, hence providing a HPT environment that is fully
accessible from R. Although HPT can be performed with R functions, an underly-

10 Case Study III: Tuning of Deep Neural Networks 263

ing Python environment has to be installed. This installation is explained in the
Appendix.

The first three case studies in this book are concluded with a global comparison
of the seven methods, i.e., six ML methods and one DL method. The main goal of
these studies was to analyze whether a relatively short HPT run, which is performed
on a notebook or desktop computer without High Performance Computing (HPC)
hardware, can improve the performance. Or, stated differently:

Is it worth doing a short HPT run before doing a longer study?

To illustrate the performance gain (tunability), a final comparison of the seven meth-
ods will be presented. The number of repeats will be determined first:

An approximate formula for sample size determination will be used. The reader is
referred to Sect. 5.6.5 and to Senn (2021) for details. A sample size of 30 experiments
was chosen, i.e., altogether 210 runs were performed.

The list of results from the rfunctionspot HPT run stores relevant information
about the configuration and the experimental results.

Violin plots (Fig. 10.14) can be used. These observations are based on data col-
lected from default and tuned parameter settings. Although the absolute best value
was found by Extreme Gradient Boosting (XGBoost), Support Vector Machine
(SVM) should be considered as well, because the performance is similar while the
variance is much lower. This study briefly explained how HPT can be used as a
datascope for the optimization of DNN hyperparameters. The results from this brief
study scratch on the surface of the HPT set of tools. Especially for DL, SPOT allows
recommendations for improvement, it provides tools for comparisons using different
losses and measures on different data sets, e.g., ψ(train), ψ(val), and ψ(test).

While discussing the hyperparameter tuning results, HPT does not search for the
final, best solution only. For sure, the hyperparameter practitioner is interested in the
best solution. But even from this greedy point of view, considering the route to the
solution is also of great importance, because analyzing this route enables learning
and can be much more efficient in the long run compared to a greedy strategy.

Example: Route to the solution

Consider a classification task that has to be performed several times in a different
contextwith similar data. Instead of blindly (automatically) running theHyperparam-
eter Optimization (HPO) procedure individually for each classification task (which
might also require a significant amount of time and resources, even when it is per-
formed automatically) a few HPT procedures are performed. Insights gained from
HPT might help to avoid ill specified parameter ranges, too short run times, and
further pitfalls.

In addition to an effective and efficient way to determine the optimal hyperparam-
eters, SPOT provides means for understanding algorithms’ performance (we will use

264 T. Bartz-Beielstein et al.

cvglmnetD

cvglmnetT

dlD

dlT

kknnD

kknnT

rangerD

rangerT

rpartD

rpartT

svmD

svmT

xgboostD

xgboostT

0.18 0.20 0.22
y

fa
ct

or
(n

am
e)

factor(algname)
cvglmnet
dl
kknn
ranger
rpart
svm
xgboost

Fig. 10.14 Comparison of ML algorithms with default (D) and tuned (T) hyperparameters. Clas-
sification error (MMCE). Note: because there is no “default” hyperparameter setting for the deep
learning models used in this study, we have chosen a setting based on our experience and recom-
mendations from the literature, see the discussion in Sect. 10.6

datascopes similar to microscopes in biology and telescopes in astronomy). Consid-
ering the research goals stated in Sect. 4.1, the HPT approach presented in this study
provides many tools and solutions.

To conclude this chapter, in addition to the research goals (R-1) to (R-8) from
Sect. 4.1, important goals that are specific for HPT in DNN are presented.

The selection of an adequate performance measure is relevant. Kedziora et al.
(2020) claimed that “research strands into ML performance evaluation remain
arguably disorganized, [. . .]. Typical ML benchmarks focus on minimizing both loss
functions and processing times, which do not necessarily encapsulate the entirety
of human requirement.” Furthermore, a sound test problem specification is neces-

10 Case Study III: Tuning of Deep Neural Networks 265

sary, i.e., train, validation, and test sets should be clearly specified. Importantly, the
initialization (this is similar to the specification of starting points in optimization)
procedures should be made transparent. Because DLmethods require a large amount
of computational resources, the usage of surrogate benchmarks should be considered
(this is similar to the use of Computational Fluid Dynamics (CFD) simulations in
optimization). Most of the ML and DL methods are noisy. Therefore, repeats should
be considered. The power of the test, severity, and related tools which were intro-
duced in Chap.5 can give hints for choosing adequate values, i.e., howmany runs are
feasible or necessary. The determination of meaningful differences—with respect to
the specification of the loss function or the accuracy—based on tools like severity are
of great relevance for the practical application. Remember: scientific relevance is not
identical to statistical significance. Furthermore, floor and ceiling effects should be
avoided, i.e., the comparison should not be based on too hard (or too easy) problems.
We strongly recommend a comparison to baseline (e.g., default settings or Random
Search (RS)).

ThemodelAmust be clearly specified, i.e., the initialization, pre-training (starting
points in optimization) should be explained. The hyperparameter (ranges, types)
should be clearly specified. If there are any additional (untunable) parameters, then
they should be explained. How is reproducibility ensured (and by whom)? Last but
not least: open source code and open data should be provided.

The final conclusion from the three case studies (Chaps. 8–10) can be formulated
as follows:

HPT provides tools for comparing, analyzing, and selecting an adequate ML
or DL method for unknown real-world problems. It requires only moderate
computational resources (notebooks or desktop computers) and limited time.
Practitioners can start HPT runs at the end of their work day and will find the
results ready on their desk the next morning.

10.10 Program Code

Program Code

runNr <- "000"
batch_size <- 16
prop <- 2 / 3
dfGeneric <- getDataCensus(target = target, nobs = 1000)
dfGeneric <- MASS::Boston
names(dfGeneric)[names(dfGeneric) == "medv"] <- "target"

266 T. Bartz-Beielstein et al.

data <- getGenericTrainValTestData(dfGeneric = dfGeneric, prop = prop)
specList <- genericDataPrep(data = data, batch_size = batch_size)
model configuration:
model <- "dl"
cfg <- getModelConf(list(model = model))
x <- matrix(cfg$default, nrow = 1)
#’
kerasConf <- getKerasConf()
kerasConf$nClasses <- 1
kerasConf$activation <- NULL
kerasConf$verbose <- 0
kerasConf$loss <- "mse"
kerasConf$metrics <- "mae"
Only some variables are tuned
kerasConf$active <- c("layers", "units", "epochs")
First example: simple function call:
message("objectiveFunctionEvaluation(): x before transformX().")
print(x)
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
message("objectiveFunctionEvaluation(): x after transformX().")
print(x)
funKerasGeneric(x, kerasConf = kerasConf, specList = specList)
#’
Second example: evaluation of several (three) hyperparameter settings:
xxx <- rbind(x, x, x)
funKerasGeneric(xxx, kerasConf = kerasConf, specList)
#’
Third example: spot call
kerasConf$verbose <- 0
result <-
spot(

x = NULL,
fun = funKerasGeneric,
lower = cfg$lower,
upper = cfg$upper,
control = list(

funEvals = 25,
time = list(maxTime = 5),
noise = TRUE,
types = cfg$type,
plots = TRUE,
progress = TRUE,
seedFun = 1,
seedSPOT = 1,
replicates = 2,
OCBA = TRUE,
OCBABudget = 2,
parNames = cfg$tunepars,
designControl = list(

replicates = 2,
size = 1 * length(cfg$lower)

),
yImputation = list(

handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
penaltyImputation = 3

),

10 Case Study III: Tuning of Deep Neural Networks 267

modelControl = list(
target = "ei",
useLambda = TRUE,
reinterpolate = FALSE

),
transformFun = cfg$transformations

),
kerasConf = kerasConf,
specList = specList

)
x <- result$xbest
message("objectiveFunctionEvaluation(): x before transformX().")
print(x)
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
message("objectiveFunctionEvaluation(): x after transformX().")
print(x)
df <- data.frame(x)
names(df) <- cfg$tunepars
print(df)
save(result, file = paste0(model, runNr, ".RData"))

dfRun <- prepareProgressPlot(model, runNr, directory = ".")
ggplotProgress(dfRun)

library("rpart")
library("rpart.plot")
library("SPOT")
x <- result$x
cfg <- getModelConf(model="dl")
transformFun <- cfg$transformations
message("predDlCensus(): x before transformX().")
print(x)
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
message("predDlCensus(): x after transformX().")
print(xt)
fitTree <- buildTreeModel(
x = xt,
y = result$y,
control = list(xnames = result$control$parNames)

)
rpart.plot(fitTree$fit)

kerasConf$returnObject <- "pred"
x <- result$xbest
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
x
evalKerasGeneric(

268 T. Bartz-Beielstein et al.

x = x,
kerasConf = kerasConf,
specList = specList

)

library("SPOT")
library("SPOTMisc")
runNr <- "OCBA"
batch_size <- 32
prop <- 2 / 3
target <- "age"
dfGeneric <- getDataCensus(target = target, nobs = 1e4)
dfGeneric <- MASS::Boston
names(dfGeneric)[names(dfGeneric) == "medv"] <- "target"
data <- getGenericTrainValTestData(dfGeneric = dfGeneric, prop = prop)
specList <- genericDataPrep(data = data, batch_size = batch_size)
model configuration:
model <- "dl"
cfg <- getModelConf(list(model = model))
x <- matrix(cfg$default, nrow=1)
x <- result$xBestOcba
#’
kerasConf <- getKerasConf()
kerasConf$nClasses <- 1
kerasConf$activation <- NULL
kerasConf$verbose <- 2
kerasConf$loss <- "mse"
kerasConf$metrics <- "mae"
Only some variables are tuned
kerasConf$active <- c("layers", "units", "epochs")
First example: simple function call:
message("objectiveFunctionEvaluation(): x before transformX().")
print(x)
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
message("objectiveFunctionEvaluation(): x after transformX().")
print(x)
evalKerasGeneric(
x = x,
kerasConf = kerasConf,
specList = specList

)

10 Case Study III: Tuning of Deep Neural Networks 269

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	10 Case Study III: Tuning of Deep Neural Networks
	10.1 Introduction
	10.2 Data Description
	10.2.1 getDataCensus: Getting the Data from OpenML
	10.2.2 getGenericTrainValTestData: Split Data in Train, Validation, and Test Data
	10.2.3 genericDataPrep: Spec

	10.3 Experimental Setup and Configuration of the Deep Learning Models
	10.3.1 getKerasConf: keras and Tensorflow Configuration
	10.3.2 getModelConf: DL Hyperparameters
	10.3.3 The Neural Network

	10.4 funKerasGeneric: The Objective Function
	10.5 spot: Experimental Setup for the Hyperparameter Tuner
	10.6 Tunability
	10.6.1 Progress
	10.6.2 evalParamCensus: Comparing Default and Tuned Parameters on Test Data

	10.7 Analysing the Deep Learning Tuning Process
	10.8 Severity: Validating the Results
	10.9 Summary and Discussion
	10.10 Program Code

