Skip to main content

Nutrigenomics in Cereals

  • Chapter
  • First Online:
Biofortification in Cereals

Abstract

The sequencing of human genome has opened floodgates of immense knowledge and opportunities in the realm of personalized nutrition and health. Nutrigenomics is a rapidly emerging field that employs tools of bioinformatics, genomics, metabolomics, proteomics, epigenomics, and transcriptomics to bridge the existing gap and build up a holistic understanding of the interaction of dietary components and genes at the molecular level. Recent scientific evidence has fortified that genetic polymorphism plays a key role in daily nutritional requirements, metabolic response to food, and potency of dietary factors in response to diseases. Every individual has a categorical response to nutrients which results in nutrient impairment leading to alteration of gene expression. Several reports have highlighted that nutrients like carbohydrates, amino acids, fatty acids, vitamins, and minerals play a pivotal role in the regulation of gene expression. Cereal crops predominantly constitute 50% of daily dietary energy and protein source for majority of the worlds population. With the advent of molecular biology tools like genetic engineering, genome editing, and marker-assisted breeding, cereal crops are being enriched in order to maximize their nutritional potential while minimizing the anti-nutrient contents. The chapter highlights the potential role of cereals in nutrigenomics with emphasis on the current advances and challenges in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya T, Kumar NK, Muthuswamy V et al (2004) Harnessing genomics to improve health in India—an executive course to support genomics policy. Health Res Policy Syst 2:1–13

    PubMed  PubMed Central  Google Scholar 

  • Adiga MNS, Chandy S, Ramaswamy G et al (2008) Homocysteine, vitamin B12 and folate status in pediatric acute lymphoblastic leukemia. Indian J Pediatr 7:235–238

    Google Scholar 

  • Al-Babili S, Beyer P (2005) Golden Rice—five years on the road—five years to go? Trends Plant Sci 10:565–573

    CAS  PubMed  Google Scholar 

  • Almendro V, Gascan P (2012) Nutrigenomics and cancer. http://www.fundacionmhm.org/pdf/Mono9/Articulos/articulo9

  • Anai T, Koga M, Tanaka H et al (2003) Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21(10):988–992

    CAS  PubMed  Google Scholar 

  • Anderson RA, Jones CJ, Goodfellow J (2001) Is the fatty meal a trigger for acute coronary syndromes. Atherosclerosis 159:9–15

    CAS  PubMed  Google Scholar 

  • Arts IC, Hollman PC, Feskens EJ et al (2001) Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen elderly study. Am J Clin Nutr 74:227–232

    CAS  PubMed  Google Scholar 

  • Bacalini MG, Friso S, Olivieri F et al (2014) Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 136–137:101–115, 138

    PubMed  Google Scholar 

  • Barrangou R (2013) CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA 4:267–278

    CAS  PubMed  Google Scholar 

  • Bayless TM, Rosensweig NS (1966) A racial difference in incidence of lactase deficiency. A survey of milk intolerance and lactase deficiency in healthy adult males. JAMA 197(12):968–972

    CAS  PubMed  Google Scholar 

  • Bender DA, Bender AE (2009) Benders’ dictionary of nutrition and food technology, 7th edn. Woodhead Publishing, Abington

    Google Scholar 

  • Bhati KK, Alok A, Kumar A et al (2016) Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J Exp Bot 67(14):4379–4389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchini F, Kaaks R, Vainio H (2002) Overweight, obesity, and cancer risk. Lancet Oncol 3:565–574

    PubMed  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    CAS  PubMed  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B et al (2012) Wheat ferritins: improving the iron content of the wheat grain. J Cereal Sci 56:204–213

    CAS  Google Scholar 

  • Brinch-Pederson H, Olesen A, Rasmussen SK et al (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    Google Scholar 

  • Burton RA, Collins HM, Kibble NA et al (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure. Plant Biotechnol J 9(2):117–135

    CAS  PubMed  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG et al (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087

    CAS  PubMed  Google Scholar 

  • Calder PC, Davis J, Yaqoob P et al (1998) Dietary fish oil suppresses human colon tumour growth in athymic mice. Clin Sci (London) 94:303–311

    CAS  Google Scholar 

  • Cantos C, Francisco P, Trijatmiko KR et al (2014) Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci 5:302

    PubMed  PubMed Central  Google Scholar 

  • Carciofi M, Blennow A, Jensen SL et al (2012) Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol 12(1):223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chae YJ, Kim CH, Ha TS, Hescheler J, Ahn HY, Sachinidis A (2007) Epigallocatechin-3-O-gallate inhibits the angiotensin-II induced adhesion molecule expression in human umbilical vein endothelial cell via inhibition of MAPK pathways. Cell Physiol Biochem 20:859–866

    CAS  PubMed  Google Scholar 

  • Chang WL, Chapkin RS, Lupton JR (1998) Fish oil blocks azoxymethane-induced rat colon tumorigenesis by increasing cell differentiation and apoptosis rather than decreasing cell proliferation. J Nutr 128:491–497

    CAS  PubMed  Google Scholar 

  • Chen Z, Young TE, Ling J et al (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci U S A 100:3525–3530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Xue G, Chen P et al (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17(4):633–643

    CAS  PubMed  Google Scholar 

  • Chen D, Li W, Du M et al (2015) Sequencing and characterization of divergent marbling levels in the beef cattle (longissimus dorsi muscle) transcriptome. Asian Australas J Anim Sci 28:158–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17:23–42

    PubMed  Google Scholar 

  • Cong L, Wang C, Chen L et al (2009) Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J Agric Food Chem 57(18):8652–8660

    CAS  PubMed  Google Scholar 

  • Connorton JM, Jones ER, Rodríguez-Ramiro I et al (2017) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol 174(4):2434–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corella D, Ordovas JM (2009) Advances in genetics. Nutrigenomics in cardiovascular medicine. Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on aging at Tufts University, Boston

    Google Scholar 

  • Costa NMB, Rosa COB (2011) Functional foods: bioactive components and physiological effects. 1 Reprint, R’ubio, Rio de Janeiro

    Google Scholar 

  • Costabile A, Klinder A, Fava F, Napolitano A et al (2008) Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr 99:110–120

    CAS  PubMed  Google Scholar 

  • Cozzolino SMF (2012) The bioavailability of nutrients, 4th edn. Monole, São Paulo

    Google Scholar 

  • Cozzolino SMF, Cominetti C (2013) Biochemical and physiological bases of nutrition in different stages of life in health and disease, 1st edn. Monole, São Paulo

    Google Scholar 

  • Crawford M, Galli C, Visioli F et al (2000) Role of plant-derived omega-3 fatty acids in human nutrition. Ann Nutr Metab 44:263–265

    CAS  PubMed  Google Scholar 

  • da Costa K, Kozyreva OG, Song J et al (2006) Common genetic polymorphisms have major effects on the human requirement for the nutrient choline. FASEB J 20:1336–1344

    PubMed  Google Scholar 

  • Davis CD, Uthus EO (2004) DNA methylation, cancer susceptibility and nutrient interactions. Exp Biol Med 229:988–995

    CAS  Google Scholar 

  • Decourcelle M, Perez-Fons L, Baulande S et al (2015) Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. J Exp Bot 66(11):3141–3150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietitians Association of Australia (DAA) (n.d.) The Australian Dietary Guidelines. https://daa.asn.au/smart-eating-for-you/smart-eating-fast-facts/healthy-eating/the-australian-dietary-guidelines

  • Dikeman CL, Fahey GC (2006) Viscosity as related to dietary fiber: a review. Crit Rev Food Sci Nutr 46:649–663

    CAS  PubMed  Google Scholar 

  • Doshi KM, Eudes F, Laroche A et al (2006) Transient embryo specific expression of anthocyanin in wheat. In Vitro Cell Dev Biol Plant 42:432–438

    CAS  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol 59(6):869–880

    CAS  Google Scholar 

  • Elkonin LA, ItalianskayaI JV, Domanina VN et al (2016) Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation. Russ J Plant Physiol 63:678–689

    CAS  Google Scholar 

  • Enattah NS, Sahi T, Savilahti E et al (2002) Identification of a variant associated with adult-type hypolactasia. Nat Genet 30(2):233–237

    CAS  PubMed  Google Scholar 

  • EU Science Hub (n.d.) Food-based Dietary Guidelines in Europe. https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/food-based-dietary-guidelines

  • Fafournoux P, Remesy C, Demigne C (1990) Fluxes and membrane transport of amino acids in rat liver under different protein diets. Am J Physiol Endocrinol Metab 259:E614–E625

    CAS  Google Scholar 

  • FAO (2002) Food outlook, no 4, october 2002 (fao.org)

  • FAO (2020) World food and agriculture – statistical yearbook 2020 (fao.org)

  • FAOStat (2020) https://www.fao.org/3/cb1329en/CB1329EN.pdf

  • Ferguson LR (2006) Nutrigenomics: integrating genomic approaches into nutrition research. Mol Diagn Ther 10(2):101–108

    CAS  PubMed  Google Scholar 

  • Franco RF, Reitsma PH (2001) Gene polymorphisms of the haemostatic system and the risk of arterial thrombotic disease. Br J Haematol 115:491–506

    CAS  PubMed  Google Scholar 

  • Gao H, Smith J, Yang M et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61(1):176–187

    CAS  PubMed  Google Scholar 

  • Ghodke Y, Chopra A, Shintre P et al (2011) Profiling single nucleotide polymorphisms (SNPs) across intracellular folate metabolic pathway in healthy Indians. Indian J Med Res 133:274–279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibney MJ, Gibney ER (2004) Diet, genes and disease: implications for nutrition policy. Proc Nutr Soc 63(3):491–500

    PubMed  Google Scholar 

  • Godard B, Hurlimann T (2009) Nutrigenomics for global health: ethical challenges for underserved populations. Curr Pharmacogenomics Person Med 7:205

    CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    CAS  PubMed  Google Scholar 

  • Gregory J, Lowe S, Bates CJ et al (2000) National Diet and nutrition survey: young people aged 4 to 18 years, Report of the diet and nutrition survey, vol 1. The Stationary Office, London

    Google Scholar 

  • Grootboom AW, Mkhonza NL, Mbambo Z et al (2014) Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum. Plant Cell Rep 33(3):521–537

    CAS  PubMed  Google Scholar 

  • Hall C, Hillen C, Garden Robinson J (2017) Composition, nutritional value and health benefits of pulses. Cereal Chem 94:11–31

    CAS  Google Scholar 

  • Han Y, Gao S, Muegge K et al (2015) Advanced applications of RNA sequencing and challenges. Bioinform Biol Insights 9(Suppl 1):29–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haskell MJ (2012) The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion—evidence in humans. Am J Clin Nutr 96:1193S–1203S

    CAS  PubMed  Google Scholar 

  • Hinds DA, Stuve LL, Nilsen GB et al (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    CAS  PubMed  Google Scholar 

  • Holme IB, Dionisio G, Brinch-Pedersen H et al (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10(2):237–247

    CAS  PubMed  Google Scholar 

  • Holt SH, Delargy HJ, Lawton CL et al (1999) The effects of high-carbohydrate vs high-fat breakfasts on feelings of fullness and alertness, and subsequent food intake. Int J Food Sci Nutr 50(1):13–28

    CAS  PubMed  Google Scholar 

  • Hooper L, Summerbell CD, Higgins JPT et al (2001) Dietary fat intake and prevention of cardiovascular disease: systemic review. Br Med J 322:757–763

    CAS  Google Scholar 

  • Hossain P, Kawar B, Nahas ME et al (2007) Obesity and diabetics in the developing world—a growing challenge. N Engl J Med 356:213–215

    CAS  PubMed  Google Scholar 

  • Hsu SC, Huang CJ (2006) Reduced fat mass in rats fed a high oleic acid-rich safflower oil diet is associated with changes in expression of hepatic PPARa and adipose SREBP-1c-regulated genes. J Nutr 136:1779–1785

    CAS  PubMed  Google Scholar 

  • Huang S, Frizzi A, Florida CA et al (2006) High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD alpha-zeins. Plant Mol Biol 61(3):525–535

    CAS  PubMed  Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S–1467S

    CAS  PubMed  Google Scholar 

  • Ilnytska O, Argyropoulos G (2008) The role of the agouti-related protein in energy balance regulation. Cell Mol Life Sci 65(17):2721–2731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery IB, O’Toole PW (2013) Diet microbiota interactions and their implications for healthy living. Nutrients 5:234–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaput J, Noble J, Hatipoglu B et al (2007) Application of nutrigenomic concepts to type 2 diabetes mellitus. Nutr Metab Cardiovasc 17:89–103

    CAS  Google Scholar 

  • Katsube T, Kurisaka N, Ogawa M et al (1999) Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol 120:1063–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles LM, Milner JA (2003) Diallyl disulfide induces ERK phosphorylation and alters gene expression profiles in human colon tumor cells. J Nutr 133:2901–2906

    CAS  PubMed  Google Scholar 

  • Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    CAS  PubMed  Google Scholar 

  • Krishnaswamy K (2008) Developing and implementing dietary guidelines in India. Asia Pac J Clin Nutr 17(Suppl 1):66–69

    PubMed  Google Scholar 

  • Külahoglu C, Bräutigam A (2014) Quantitative transcriptome analysis using RNA-seq. In: Staiger D (ed) Plant circadian networks. Humana, New York, pp 71–91

    Google Scholar 

  • Kussmann M, Affolter M (2006) Proteomic methods in nutrition. Curr Opin Clin Nutr Metab Care 9(5):575–583

    CAS  PubMed  Google Scholar 

  • Kussmann M, Affolter M, Fay LB (2005) Proteomics in nutrition and health. Comb Chem High Throughput Screen 8(8):679–696

    CAS  PubMed  Google Scholar 

  • Lai JS, Messing J (2002) Increasing maize seed methionine by mRNA stability. Plant J 30:395–402

    CAS  PubMed  Google Scholar 

  • Lane MA, Bailey SJ (2005) Role of retinoid signalling in the adult brain. Prog Neurobiol 75:275–293

    CAS  PubMed  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    CAS  PubMed  Google Scholar 

  • Lee SI, Kim HU, Lee YH et al (2001) Constitutive and seed-specific expression of a maize lysine-feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol Breed 8:75–84

    CAS  Google Scholar 

  • Lee TTT, Wang MMC, Hou RCW et al (2003) Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Biosci Biotechnol Biochem 67:1699–1705

    PubMed  Google Scholar 

  • Lee S, Jeon US, Lee SJ et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392

    CAS  PubMed  Google Scholar 

  • Liang Z, Zhang K, Chen K et al (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41(2):63–68

    CAS  PubMed  Google Scholar 

  • Lipkie TE, De Moura FF, Zhao ZY et al (2013) Bioaccessibility of carotenoids from transgenic provitamin a biofortified sorghum. J Agric Food Chem 61(24):5764–5771

    CAS  PubMed  Google Scholar 

  • Loktionov A (2003) Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases. J Nutr Biochem 14:426–451

    CAS  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S–190S

    CAS  PubMed  Google Scholar 

  • Luft FC, Weinberger MH (1997) Heterogeneous responses to changes in dietary salt intake: the salt-sensitivity paradigm. Am J Clin Nutr 65(Suppl 2):612S–617S

    CAS  PubMed  Google Scholar 

  • Mahan LK, Scott Stump S (2005) Food, nutrition & diet therapy, 6th edn. Roca, Sao Paulo

    Google Scholar 

  • Mahley RW, Rall SC (2000) Apolipoprotein E: far more than a lipid transport protein. Ann Rev Genomics Hum Genet 1:507–537

    CAS  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    CAS  PubMed  Google Scholar 

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 24(7):21

    Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC et al (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108

    Google Scholar 

  • McNulty H, Eaton-Evans J, Cran G et al (1996) Nutrient intakes and impact of fortified breakfast cereals in schoolchildren. Arch Dis Child 75(6):474–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihalik D, Gubisova M, Klempova T et al (2014) Transgenic barley producing essential polyunsaturated fatty acids. Biol Plant 58(2):348–354

    CAS  Google Scholar 

  • Moghissi AA, Pei S, Liu Y (2015) Golden rice: scientific, regulatory and public information processes of a genetically modified organism. Crit Rev Biotechnol 21:1–7

    Google Scholar 

  • Moraes AAC, Pereira FEL (2009) Nutrigenomics of the soy. In: Waitzberg D, Enteral L (eds) Parenteral nutrition in clinical practice, 4th edn. Atheneu, São Paulo, pp 2039–2047

    Google Scholar 

  • Muller M, Kersten S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4:315–322

    PubMed  Google Scholar 

  • Najafian M, Jahromi MZ, Nowroznejhad MJ et al (2012) Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin induced diabetic rats. Mol Biol Rep 39:5299–5306

    CAS  PubMed  Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106(19):7762–7767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neeha VS, Kinth P (2013) Nutrigenomics research: a review. J Food Sci Technol 50:415–428

    CAS  PubMed  Google Scholar 

  • O’Brien MA, Costin BN, Miles MF (2012) Using genome-wide expression profiling to define gene networks relevant to the study of complex traits: from RNA integrity to network topology. In: Chesler EJ, Haendel MA (eds) International review of neurobiology. Academic, London, pp 91–133

    Google Scholar 

  • Ohnoutkova L, Zitka O, Mrizova K et al (2012) Electrophoretic and chromatographic evaluation of transgenic barley expressing a bacterial dihydrodipicolinate synthase. Electrophoresis 33(15):2365–2373

    CAS  PubMed  Google Scholar 

  • Oommen AM, Griffin JB, Sarath G et al (2005) Roles for nutrients in epigenetic events. J Nutr Biochem 16:74–77

    CAS  PubMed  Google Scholar 

  • Ordovas JM, Corella D (2004) Nutritional genomics. Annu Rev Genomics Hum Genet 5:71–118. https://doi.org/10.1146/annurev.genom.5.061903.180008

    Article  CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    CAS  PubMed  Google Scholar 

  • Patient D, Ainsworth P (1994) The chemistry of flour and bread. Nutr Food Sci 94(3):22–24

    Google Scholar 

  • Piskol R, Ramaswami G, Li JB (2013) Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 93:641–651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porteus MH (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13(2):438–446

    CAS  PubMed  Google Scholar 

  • Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763

    PubMed  Google Scholar 

  • Public Health Nutrition (n.d.) ISSN: 1475-2727 (electronic), 1368–9800 (paper)

    Google Scholar 

  • Ramesh SA, Choimes S, Schachtman DP (2004) Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol 54(3):373–385

    CAS  PubMed  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5(5):374–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S (2001) Nutritional status of Indian population. J Biosci 26(4):481–489

    CAS  PubMed  Google Scholar 

  • Rosentrater KA, Evers AD (2018) Feed and industrial uses for cereals. In: Kent’s technology of cereals. Woodhead Publishing, Abington, pp 785–837

    Google Scholar 

  • Sarwar M (2008) Laboratory studies on different wheat genotypes for their resistance against Khapra Beetle Trogoderma granarium everts (Coleoptera: Dermestidae). Pak J Seed Technol 2(11&12):46–53

    Google Scholar 

  • Schaefer EJ (2002) Lipoproteins, nutrition, and heart disease. Am J Clin Nutr 75:191–212

    CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    CAS  PubMed  Google Scholar 

  • Sharma M, Majumdar PK (2009) Occupational life style diseases: an emerging issue. Indian J Occup Environ Med 13(3):109–112

    PubMed  PubMed Central  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    CAS  PubMed  Google Scholar 

  • Shetty PS (2002) Nutrition transition in India. Public Health Nutr 5(1A):175–172

    PubMed  Google Scholar 

  • Shi J, Wang H, Schellin K et al (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25(8):930–937

    CAS  PubMed  Google Scholar 

  • Shin YM, Park HJ, Yim SD et al (2006) Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm. Plant Biotechnol J 4:303–315

    CAS  PubMed  Google Scholar 

  • Shumskaya M, Wurtzel ET (2013) The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci 208:58–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu AS, Zheng Z, Murai N (1997) The pea seed storage protein legumin was synthesized, processed, and accumulated stably in transgenic rice endosperm. Plant Sci 130:189–196

    Google Scholar 

  • Sinha R, Anderson DE, McDonal SS et al (2003) Cancer risk and diet in India. J Postgrad Med 49:222–228

    CAS  PubMed  Google Scholar 

  • Smith JP (1999) Healthy bodies and thick wallets: the dual relation between health and economic status. J Econ Perspect 13(2):144–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solanky KS, Bailey NJ, Beckwith-Hall BM et al (2003) Application of biofluid 1H nuclear magnetic resonance based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323:197–204

    CAS  PubMed  Google Scholar 

  • Steinmetz KL, Pogribny IP, James SJ et al (1998) Hypomethylation of the rat glutathione S-transferase p (GSTP) promoter region isolated from methyl-deficient livers and GSTP positive liver neoplasms. Carcinogenesis 19(8):1487–1494

    CAS  PubMed  Google Scholar 

  • Sun Y, Jiao G, Liu Z et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    PubMed  PubMed Central  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    CAS  PubMed  Google Scholar 

  • Swanson KS, Schook LB, Fahey GC Jr (2003) Nutritional genomics: implications for companion animals. J Nutr 133:3033–3040

    CAS  PubMed  Google Scholar 

  • Szczelkun MD, Tikhomirova MS, Sinkunas T et al (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 111(27):9798–9803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepek M, Brondani V, Büchel J et al (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793

    CAS  PubMed  Google Scholar 

  • Tamas C, Kisgyorgy BN, Rakszegi M et al (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28(7):1085–1094

    CAS  PubMed  Google Scholar 

  • Tang G, Qin J, Dolnikowski GG et al (2009) Golden Rice is an effective source of vitamin A. Am J Clin Nutr 89:1776–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G, Hu Y, Yin SA et al (2012) β-carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children. Am J Clin Nutr 96:658–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, He X, Luo Y et al (2013) Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize. J Sci Food Agric 93:1049–1054

    CAS  PubMed  Google Scholar 

  • Tang L, Mao B, Li Y et al (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):14438

    PubMed  PubMed Central  Google Scholar 

  • Tanumihardjo SA, Palacios N, Pixley KV (2010) Provitamin A carotenoid bioavailability: what really matters? Int J Vitam Nutr Res 80:336–350

    CAS  PubMed  Google Scholar 

  • Trayhurn P (2000) Proteomics and nutrition—a science for the first decade of the new millennium. Br J Nutr 83:1–2

    CAS  PubMed  Google Scholar 

  • Trijatmiko K, Duenas C, Tsakirpaloglou N et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo E, Davis C, Milner J (2006) Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J Am Diet Assoc 106:403–413

    CAS  PubMed  Google Scholar 

  • Tsui TK, Li H (2015) Structure principles of CRISPR-Cas surveillance and effector complexes. Annu Rev Biophys 44:229–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker KL, Smith CE, Lai CQ et al (2013) Quantifying diet for nutrigenomic studies. Annu Rev Nutr 33:349–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Department of Health and Human Services and U.S. Department of Agriculture (2015) 2015–2020 Dietary Guidelines for Americans, 8th Edition. https://health.gov/sites/default/files/2019-09/2015-2020_Dietary_Guidelines.pdf

  • Van der Oost J, Jore MM, Westra ER et al (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407

    PubMed  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    CAS  Google Scholar 

  • Wakasa K, Hasegawa H, Nemoto H et al (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069–3078

    CAS  PubMed  Google Scholar 

  • Wang C, Zeng J, Li Y et al (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65(9):2545–2556

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2018) https://apps.who.int/iris/rest/bitstreams/1137482/retrieve

  • WHO (2019) https://apps.who.int/iris/bitstream/handle/10665/311696/WHO-DAD-2019.1-eng.pdf

  • WHO (2020) https://www.who.int/data/gho/publications/world-health-statistics

  • Wickramasinghe S, Rincon G, Islas-Trejo A et al (2012) Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics 13:45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    CAS  PubMed  Google Scholar 

  • World Health Organization (1990) Diet, nutrition and the prevention of chronic diseases. Report of a WHO Study Group (WHO technical report series, no. 797), Geneva

    Google Scholar 

  • World Health Organization (2003) Diet, nutrition and the prevention of chronic diseases. WHO, Geneva. ISSN 0512-3054

    Google Scholar 

  • Xiaoyan S, Yan Z, Shubin W (2012) Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. J Agric Biotechnol 20:766–773

    Google Scholar 

  • Xudong Y, al-Babili S, Klöti A et al (2000) Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Google Scholar 

  • Yang SH, Moran DL, Jia HW et al (2002) Expression of a synthetic porcine alpha-lactalbumin gene in the kernels of transgenic maize. Transgenic Res 11:11–20

    PubMed  Google Scholar 

  • Yang QQ, Zhang CQ, Chan ML et al (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67(14):4285–4296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye SQ, Kwiterovich PO (2000) Influence of genetic polymorphisms on responsiveness to dietary fat and cholesterol. Am J Clin Nutr 52(Suppl 5):1275S–1284S

    Google Scholar 

  • Zhao ZY, Glassman K, Sewalt V et al (2002) Nutritionally improved transgenic sorghum. In: Plant biotechnology 2002 and beyond. Springer, Dordrecht, pp 413–416

    Google Scholar 

  • Zheng A, Sumi K, Tanaka K et al (1995) The bean seed storage protein β-phaseolin is synthesized, processed and accumulated in the vacuolar type-II protein bodies of transgenic rice endosperm. Plant Physiol 109:777–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Cheng Z, Ai C et al (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5(4):e10190

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cai H, Xiao J et al (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381–1390

    CAS  PubMed  Google Scholar 

  • Zhu T, Peterson DJ, Tagliani L et al (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci U S A 96(15):8768–8773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S et al (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105(47):18232–18237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Song N, Sun S et al (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genom 43:5–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S.K., Yadav, P., Chinnusamy, V. (2023). Nutrigenomics in Cereals. In: Deshmukh, R., Nadaf, A., Ansari, W.A., Singh, K., Sonah, H. (eds) Biofortification in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-4308-9_12

Download citation

Publish with us

Policies and ethics