Skip to main content

Corneal Cross-Linking in Keratoconus

  • Chapter
  • First Online:
Book cover Keratoconus
  • 374 Accesses

Abstract

Corneal cross-linking (CXL) was first introduced into clinical practice over 20 years ago for the treatment of corneal ectasia, keratoconus. CXL was defined by the “Dresden protocol” which specified that keratoconic corneas ≥400 μm in thickness could be saturated in 0.1% riboflavin (after epithelial cell debridement), then irradiated with 365–370 nm ultraviolet (UV)-A energy at an intensity of 3 mW/cm2 UV-A irradiation for 30 min to deliver a total UV-A fluence of 5.4 J/cm2. This chapter documents the insight into the CXL photochemical reactions, the discovery that oxygen is an essential component of the CXL reaction, and the progress that has been made in not only developing accelerated, higher-intensity CXL-for-ectasia treatments, but also epithelium-on CXL, using approaches like iontophoresis delivery of riboflavin to the corneal stroma through an intact epithelium, the use of penetration enhancers, pulsed UV irradiation, and supplemental oxygen. A side benefit of the UV-riboflavin photochemical reaction is that the production of reactive oxygen species (ROS), not only cross-links the molecules of the corneal stroma together, but through steric hindrance, also reduces the metalloproteinase-binding sites available, protecting the stroma from enzymatic digestion. The ROS also bind and lyse pathogen cell membranes and intercalate with pathogen nucleic acids, inhibiting their reproduction. Practically, this means that a cross-linked cornea is rendered sterile at the end of the procedure, and this antibiotic-free pathogen-killing effect has not gone unnoticed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Surv Ophthalmol. 2015;60(6):509–23.

    Article  PubMed  Google Scholar 

  2. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.

    Article  CAS  PubMed  Google Scholar 

  3. Berman MB. Collagenase inhibitors: rationale for their use in treating corneal ulceration. Int Ophthalmol Clin. 1975;15(4):49–66.

    Article  CAS  PubMed  Google Scholar 

  4. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  5. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond). 2004;18(7):718–22.

    Article  CAS  Google Scholar 

  6. Ruane PH, Edrich R, Gampp D, Keil SD, Leonard RL, Goodrich RP. Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion. 2004;44(6):877–85.

    Article  CAS  PubMed  Google Scholar 

  7. Reddy HL, Dayan AD, Cavagnaro J, Gad S, Li J, Goodrich RP. Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev. 2008;22(2):133–53.

    Article  PubMed  Google Scholar 

  8. Heaselgrave W, Kilvington S. Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin. Appl Environ Microbiol. 2010;76(17):6010–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodrich RP. The use of riboflavin for the inactivation of pathogens in blood products. Vox Sang. 2000;78(Suppl-2):211–5.

    CAS  PubMed  Google Scholar 

  10. Bertollo CM, Oliveira AC, Rocha LT, Costa KA, Nascimento EB Jr, Coelho MM. Characterization of the antinociceptive and anti-inflammatory activities of riboflavin in different experimental models. Eur J Pharmacol. 2006;547(1–3):184–91.

    Article  CAS  PubMed  Google Scholar 

  11. Toyosawa T, Suzuki M, Kodama K, Araki S. Effects of intravenous infusion of highly purified vitamin B2 on lipopolysaccharide-induced shock and bacterial infection in mice. Eur J Pharmacol. 2004;492(2–3):273–80.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar V, Lockerbie O, Keil SD, Ruane PH, Platz MS, Martin CB, Ravanat JL, Cadet J, Goodrich RP. Riboflavin and UV light-based pathogen reduction: extent and consequence of DNA damage at the molecular level. Photochem Photobiol. 2004;80:15–21.

    Article  CAS  PubMed  Google Scholar 

  13. Naseem I, Ahmad M, Hadi SM. Effect of alkylated and intercalated DNA on the generation of superoxide anion by riboflavin. Biosci Rep. 1988;8(5):485–92.

    Article  CAS  PubMed  Google Scholar 

  14. Tsugita A, Okada Y, Uehara K. Photosensitized inactivation of ribonucleic acids in the presence of riboflavin. Biochim Biophys Acta. 1965;103(2):360–3.

    Article  CAS  PubMed  Google Scholar 

  15. Hafezi F, Randleman JB. PACK-CXL: defining CXL for infectious keratitis. J Refract Surg. 2014;30(7):438–9.

    Article  PubMed  Google Scholar 

  16. Gore DM, O'Brart DP, French P, Dunsby C, Allan BD. A comparison of different corneal iontophoresis protocols for promoting transepithelial riboflavin penetration. Invest Ophthalmol Vis Sci. 2015;56(13):7908–14.

    Article  CAS  PubMed  Google Scholar 

  17. Wollensak G, Sporl E, Seiler T. Treatment of keratoconus by collagen cross linking. Ophthalmologe. 2003;100(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  18. Wittig-Silva C, Chan E, Islam FM, Wu T, Whiting M, Snibson GR. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology. 2014;121(4):812–21.

    Article  PubMed  Google Scholar 

  19. Seyedian MA, Aliakbari S, Miraftab M, Hashemi H, Asgari S, Khabazkhoob M. Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr J Ophthalmol. 2015;22(3):340–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tasci YY, Taslipinar G, Eyidogan D, Sarac O, Cagil N. Five-year long-term results of standard collagen cross-linking therapy in patients with keratoconus. Turk J Ophthalmol. 2020;50(4):200–5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Raiskup F, Theuring A, Pillunat LE, Spoerl E. Corneal collagen crosslinking with riboflavin and ultraviolet-a light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41(1):41–6.

    Article  PubMed  Google Scholar 

  22. Soeters N, Wisse RP, Godefrooij DA, Imhof SM, Tahzib NG. Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol. 2015;159(5):821–828.e3.

    Article  Google Scholar 

  23. Wen D, Song B, Li Q, Tu R, Huang Y, Wang Q, McAlinden C, OʼBrart D, Huang J. Comparison of epithelium-off versus transepithelial corneal collagen cross-linking for keratoconus: a systematic review and meta-analysis. Cornea. 2018;37(8):1018–24.

    Article  PubMed  Google Scholar 

  24. Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wernli J, Schumacher S, Spoerl E, Mrochen M. The efficacy of corneal cross-linking shows a sudden decrease with very high-intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54(2):1176–80.

    Article  PubMed  Google Scholar 

  26. Hammer A, Richoz O, Mosquera S, Tabibian D, Hoogewoud F, Hafezi F. Corneal biomechanical properties at different corneal collagen cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55(5):2881–4.

    Article  PubMed  Google Scholar 

  27. Webb JN, Su JP, Scarcelli G. Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy. J Cataract Refract Surg. 2017;43(11):1458–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mazzotta C, Raiskup F, Hafezi F, Torres-Netto EA, Armia Balamoun A, Giannaccare G, Bagaglia SA. Long-term results of accelerated 9 mW corneal crosslinking for early progressive keratoconus: the Siena eye-cross study 2. Eye Vis (Lond). 2021;8(1):16.

    Article  Google Scholar 

  29. Moramarco A, Iovieno A, Sartori A, Fontana L. Corneal stromal demarcation line after accelerated crosslinking using continuous and pulsed light. J Cataract Refract Surg. 2015;41(11):2546–51.

    Article  PubMed  Google Scholar 

  30. Peyman A, Nouralishahi A, Hafezi F, Kling S, Peyman M. Stromal demarcation line in pulsed versus continuous light accelerated corneal cross-linking for keratoconus. J Refract Surg. 2016;32(3):206–8.

    Article  PubMed  Google Scholar 

  31. Kling S, Richoz O, Hammer A, Tabibian D, Jacob S, Agarwal A, Hafezi F. Increased biomechanical efficacy of corneal cross-linking in thin corneas due to higher oxygen availability. J Refract Surg. 2015;31(12):840–6.

    Article  PubMed  Google Scholar 

  32. Mazzotta C, Bagaglia SA, Sgheri A, Di Maggio A, Fruschelli M, Romani A, Vinciguerra R, Vinciguerra P, Tosi GM. Iontophoresis corneal cross-linking with enhanced fluence and pulsed UV-A light: 3-year clinical results. J Refract Surg. 2020;36(5):286–92.

    Article  PubMed  Google Scholar 

  33. Seiler TG, Komninou MA, Nambiar MH, Schuerch K, Frueh BE, Buchler P. Oxygen kinetics during corneal cross-linking with and without supplementary oxygen. Am J Ophthalmol. 2021;223:368–76.

    Article  CAS  PubMed  Google Scholar 

  34. Hill J, Liu C, Deardorff P, Tavakol B, Eddington W, Thompson V, Gore D, Raizman M, Adler DC. Optimization of oxygen dynamics, UV-A delivery, and drug formulation for accelerated epi-on corneal crosslinking. Curr Eye Res. 2020;45(4):450–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-a and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35(4):621–4.

    Article  PubMed  Google Scholar 

  36. Jacob S, Kumar DA, Agarwal A, Basu S, Sinha P, Agarwal A. Contact lens-assisted collagen cross-linking (CACXL): a new technique for cross-linking thin corneas. J Refract Surg. 2014;30(6):366–72.

    Article  PubMed  Google Scholar 

  37. Mazzotta C, Ramovecchi V. Customized epithelial debridement for thin ectatic corneas undergoing corneal cross-linking: epithelial island cross-linking technique. Clin Ophthalmol. 2014;8:1337–43.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wollensak G, Sporl E. Biomechanical efficacy of corneal cross-linking using hypoosmolar riboflavin solution. Eur J Ophthalmol. 2019;29(5):474–81.

    Article  PubMed  Google Scholar 

  39. Kling S, Hafezi F. An algorithm to predict the biomechanical stiffening effect in corneal cross-linking. J Refract Surg. 2017;33(2):128–36.

    Article  PubMed  Google Scholar 

  40. Wollensak G, Sporl E, Herbst H. Biomechanical efficacy of contact lens-assisted collagen cross-linking in porcine eyes. Acta Ophthalmol. 2019;97(1):e84–90.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Roozbahani M, Piccinini AL, Golan O, Hafezi F, Scarcelli G, Randleman JB. Depth-dependent reduction of biomechanical efficacy of contact lens-assisted corneal cross-linking analyzed by Brillouin microscopy. J Refract Surg. 2019;35(11):721–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sachdev MS, Gupta D, Sachdev G, Sachdev R. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg. 2015;41(5):918–23.

    Article  PubMed  Google Scholar 

  43. Deshmukh R, Hafezi F, Kymionis GD, Kling S, Shah R, Padmanabhan P, Sachdev MS. Current concepts in crosslinking thin corneas. Indian J Ophthalmol. 2019;67(1):8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kaya V, Utine CA, Yilmaz OF. Efficacy of corneal collagen cross-linking using a custom epithelial debridement technique in thin corneas: a confocal microscopy study. J Refract Surg. 2011;27(6):444–50.

    Article  PubMed  Google Scholar 

  45. Torres-Netto EA, Kling S, Hafezi N, Vinciguerra P, Randleman JB, Hafezi F. Oxygen diffusion may limit the biomechanical effectiveness of iontophoresis-assisted transepithelial corneal cross-linking. J Refract Surg. 2018;34(11):768–74.

    Article  PubMed  Google Scholar 

  46. Mazzotta C, Romani A, Burroni A. Pachymetry-based accelerated crosslinking: the “M nomogram” for standardized treatment of all-thickness progressive Ectatic corneas. Int J Kerat Ect Cor Dis. 2018;7(2):137–44.

    Google Scholar 

  47. Hafezi F, Kling S, Gilardoni F, Hafezi N, Hillen M, Abrishamchi R, Gomes JAP, Mazzotta C, Randleman JB, Torres-Netto EA. Individualized corneal cross-linking with riboflavin and UV-A in ultrathin corneas: the Sub400 protocol. Am J Ophthalmol. 2021;224:133–42.

    Article  PubMed  Google Scholar 

  48. Iseli HP, Thiel MA, Hafezi F, Kampmeier J, Seiler T. Ultraviolet a/riboflavin corneal cross-linking for infectious keratitis associated with corneal melts. Cornea. 2008;27(5):590–4.

    Article  PubMed  Google Scholar 

  49. Ting DSJ, Henein C, Said DG, Dua HS. Photoactivated chromophore for infectious keratitis - corneal cross-linking (PACK-CXL): a systematic review and meta-analysis. Ocul Surf. 2019;17(4):624–34.

    Article  PubMed  Google Scholar 

  50. Makdoumi K, Mortensen J, Sorkhabi O, Malmvall BE, Crafoord S. UVA-riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2012;250(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  51. Torres-Netto E, Shetty R, Knyazer B, Chen S, Hosny M, Gilardoni F, Hafezi F. Corneal cross-linking for treating infectious keratitis: final results of the prospective randomized controlled multicenter trial. Poster Presentation, 38th Congress of the ESCRS, Virtual Meeting, Oct 2020.

    Google Scholar 

  52. Lin A, Rhee MK, Akpek EK, Amescua G, Farid M, Garcia-Ferrer FJ, Varu DM, Musch DC, Dunn SP, Mah FS. American Academy of ophthalmology preferred practice pattern cornea and external disease panel. Bacterial keratitis preferred practice pattern®. Ophthalmology. 2019;126(1):P1–P55.

    Article  PubMed  Google Scholar 

  53. Kling S, Hufschmid FS, Torres-Netto EA, Randleman JB, Willcox M, Zbinden R, Hafezi F. High fluence increases the antibacterial efficacy of PACK cross-linking. Cornea. 2020;39(8):1020–6.

    Article  PubMed  Google Scholar 

  54. Nateghi Pettersson M, Lagali N, Mortensen J, Jofre V, Fagerholm P. High fluence PACK-CXL as adjuvant treatment for advanced acanthamoeba keratitis. Am J Ophthalmol Case Rep. 2019;15:100499.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Amescua G, Arboleda A, Nikpoor N, Durkee H, Relhan N, Aguilar MC, Flynn HW, Miller D, Parel JM. Rose Bengal photodynamic antimicrobial therapy: a novel treatment for resistant fusarium keratitis. Cornea. 2017;36(9):1141–4.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cherfan D, Verter EE, Melki S, Gisel TE, Doyle FJ Jr, Scarcelli G, Yun SH, Redmond RW, Kochevar IE. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci. 2013;54(5):3426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Naranjo A, Arboleda A, Martinez JD, Durkee H, Aguilar MC, Relhan N, Nikpoor N, Galor A, Dubovy SR, Leblanc R, Flynn HW Jr, Miller D, Parel JM, Amescua G. Rose Bengal photodynamic antimicrobial therapy for patients with progressive infectious keratitis: a pilot clinical study. Am J Ophthalmol. 2019;208:387–96.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zarei-Ghanavati M. Rose Bengal-green light for collagen cross-linking. J Ophthalmic Vis Res. 2017;12(2):241–2.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Hafezi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hafezi, F., Hillen, M. (2022). Corneal Cross-Linking in Keratoconus. In: Das, S. (eds) Keratoconus. Springer, Singapore. https://doi.org/10.1007/978-981-19-4262-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4262-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4261-7

  • Online ISBN: 978-981-19-4262-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics