Skip to main content

A Review Study on Advancement and Development of First Generation to Next Generation Optical Fibers

  • Conference paper
  • First Online:
Advances in Functional and Smart Materials

Abstract

The Optical Fiber is an important structure that upcoming technologies like 5G will employ for a successful connection with customers. Optical fiber has the speed and ability required for daily uses, without any data or distance limitations thus it is a perfect and global future testimonial solution that can solve the industry’s demands for the ages to come and eliminate the current technology for data transfer with its high speed and reception. Optical fiber is robust and communicates waves through unpretentious external factors such as temperature or electromagnetic fields, and signal distortion is very less compared to previous technologies. Telecom service providers, for 5G sector will need to employ a dependable infrastructure, has strong bandwidth, meets speed requirement and safe which only optical fiber will provide. Optical Fiber will have huge applications in every sector where the internet is used which is now everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kao KC, Hockham GA (1966) Dielectric-fibre surface waveguides for optical frequencies. Proc IEE 113(7):1151–1158

    Google Scholar 

  2. Maurer RD (1973) Glass Optical Fibers for optical communications. Proc IEEE 61(4):452–462

    Article  Google Scholar 

  3. Optical Optical Fiber expansion and 5G–correlations and synergies “digital networks and mobility” platform, pp.4 (2017)

    Google Scholar 

  4. Vissers M (2018) Introduction to mobile-optimized multi-service metro OTN (M-OTN). In: Invited talk in ECOC workshop WS15—technology trends for optical networks towards 2020 and beyond. Rome, Italy

    Google Scholar 

  5. Liu X et al. (2019) Enabling technologies for 5G-oriented optical networks. In: Optical fiber communication conference (OFC), Invited paper Tu2B.4

    Google Scholar 

  6. China Mobile Research Institute (2013) C-RAN: the road towards green RAN. Whitepaper v. 2.6, Sep 2013

    Google Scholar 

  7. Sauer M, Kobyakov A, George J (2007) Radio over optical fiber for pico cellular network architectures. IEEE J Lightwave Technol 25(11):3301–3320

    Article  Google Scholar 

  8. Sauer M, Kobyakov A, Fields L, Annunziata F, Hurley J, George J (2006) Experimental investigation of multimode optical fiber bandwidth requirements for 5.2 GHz WLAN signal transmission. In: 2006 optical fiber communications conference (OFC), paper JThB27

    Google Scholar 

  9. De la Oliva A, Hernandez JA, Larrabeiti D, Azcorra A (2016) An overview of the CPRI specification and its application to C-RAN-based LTE scenarios. IEEE Commun Mag 54(2):152–159

    Google Scholar 

  10. 3GPP TR 38.801, Study on new radio access technology: radio access architecture and interfaces, V14.0.0 (2017-03).3GPP TR 38.816, Study on CU-DU lower layer split for NR, V15.0.0 (2017-12)

    Google Scholar 

  11. Nouchi P, de Montmorillon L-A, Sillard P, Bertaina A, Guenot P (2003) Optical optical fiber design for wavelength-multiplexed transmission. C R Phys 4:29–39

    Article  Google Scholar 

  12. ITU-T Recommendation G655 (2006)

    Google Scholar 

  13. ITU-T Recommendation G656 (2007)

    Google Scholar 

  14. ITU-T Recommendation G657 (2006)

    Google Scholar 

  15. ITU-T Recommendation G652 (2005)

    Google Scholar 

  16. Sakabe I, Ishikawa H, Tanji H, Terasawa Y, Ueda T, Ito M (2004) Enhanced bending loss insensitive optical fiber and new cables for CWDM access networks. In: Proceedings of the 53rd international wire and cable symposium, pp 112

    Google Scholar 

  17. Ieda K, Nakajima K, Matsui T, Tsujikawa K, Shibata T, Ikeda S, Tomita S, Sankawa I, Haibara T (2005) Transmission characteristics of a hole-assisted optical fiber cord for flexible optical wiring. In: Proceedings of the 54th international wire and cable symposium, p 63

    Google Scholar 

  18. Matthijsse P, de Montmorillon LA, Krabshuis GJ, Gooijer F (2005) Bend-optimized G652 compatible single mode optical fibers. In: Proceedings of the 54th international wire and cable symposium, p 327

    Google Scholar 

  19. Kuyt G et al. (2007) The impact of new bend-insensitive single-mode optical fibers on FTTH connectivity and cable designs. In: Proceeding of 56th IWCS conference, pp 363–371, Nov 2007

    Google Scholar 

  20. Li M-J (2008) Ultra-low bending loss single-mode optical fiber for FTTH. In: Proceeding of OFC/NFOEC conference, PDP10, Mar 2008

    Google Scholar 

  21. Fini J et al. (2008) Solid low-bend-loss transmission optical fibers using resonant suppression of higher-order modes. In: ECOC’08, paper Mo.4.B. 4

    Google Scholar 

  22. Himeno K, Matsuo S, Guan N, Wada A (2005) Low-bending-loss single-mode optical fibers for optical fiber-to-the-home. IEEE J Lightwave Tech 23:3494

    Article  Google Scholar 

  23. de Montmorillon LA, Matthijsse P, Gooijer F, Achten F, Molin D, Montaigne N, Maury J (2006) Bend-optimized G. 652D compatible trench assisted single mode optical fibers. In: Proceedings of the 55th international wire and cable symposium p 342

    Google Scholar 

  24. Kuyt et al. (2007) The impact of new bend-insensitive single-mode optical fibers on FTTH connectivity and cable designs. In: Proceeding of 56th IWCS conference, pp 363–371, Nov 2007

    Google Scholar 

  25. Kuyt G, Mathijsse P, Gasca L, de Montmorillon L.-A, Berkers A, Doorn M, Nothofer K, Weiss A (2007) Bend-insensitive single mode optical fibers used in new cable designs. In: Proceedings of optical cabling and infrastructure (OC & I) conference Kista, Sweden

    Google Scholar 

  26. Bigot-Astruc M, de Montmorillon L-A, Sillard P (2008) High-power resistance of bend-optimized single-mode optical fibers. In: Proceedings of optical optical fiber communication conference JWA2

    Google Scholar 

  27. Provost L, Overton B, Gasca L, Kuyt G (2008) Cabling and installation aspects of full-silica bend-insensitive single-mode fibres. In: Proceedings of optical cabling and infrastructure (OC & I) conference, Krems, Austria

    Google Scholar 

  28. Hasegawa T et al. (2001) Novel hole-assisted lightguide optical fiber exhibiting large anomalous dispersion and low loss below 1 dB/km. In: Proceedings of optical optical fiber communication (OFC2001), post-deadline paper PD5, Anaheim, CA, USA

    Google Scholar 

  29. Hasegawa T et al. (2003) Bend-insensitive single-mode holey optical fiber with SMF-compatibility for optical wiring applications. In: Proceedings of European conference on optical communications (ECOC2003), paper We2.7.3, Rimini, Italy

    Google Scholar 

  30. Nishioka D et al. (2004) Development of holey optical fiber supporting extra-small diameter bending. SEI Tech Rev 58:42–47

    Google Scholar 

  31. Nakajima K et al (2003) Hole-assisted optical fiber design for small bending and splice loss. IEEE Photonics Technol Lett 15(12):1737–1739

    Article  Google Scholar 

  32. Tsuchida Y et al (2005) Design and characterization of single-mode holey optical fibers with low bending losses. Opt Express 13(12):4470–4479

    Article  Google Scholar 

  33. Guan N et al. (2004) Hole-assisted single-mode optical fibers for low bending loss. In: Proceedings of european conference on optical communications (ECOC2004), paper Mo3.3.5, Stockholm, Sweden

    Google Scholar 

  34. Miyake K et al. (2004) Bend resistant photonic crystal optical fiber compatible with conventional single mode optical fiber. In: Proceedings of European conference on optical communications (ECOC2004), paper Mo3.3.4, Stockholm, Sweden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acharya, P., Tanwar, V.S., Vyas, B. (2023). A Review Study on Advancement and Development of First Generation to Next Generation Optical Fibers. In: Prakash, C., Singh, S., Krolczyk, G. (eds) Advances in Functional and Smart Materials. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-4147-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4147-4_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4146-7

  • Online ISBN: 978-981-19-4147-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics