Skip to main content

Spermatogonial Stem Cells: Their Use in Fertility Restoration

  • Chapter
  • First Online:
Frontier Technologies in Bovine Reproduction
  • 465 Accesses

Abstract

Spermatogonial stem cells (SSCs) are the only adult stem cells in males capable of transmitting their genetic information to the next generation. Over the past two decades, spermatogonial stem cell transplantation has shown colossal potential for fertility restoration and transgenesis in livestock. It is based on the transfer of SSCs from fertile donors or genetically modified cells into the testes of suitable homologous recipients, which confer them the ability to produce donor SSCs derived spermatozoa. After its efficient implementation in rodents, attempts are underway to adopt this technique for livestock as a novel tool for infertility treatment and transgenic animal production. Although the research in this area in livestock species is still at the infant stage, preliminary studies have shown remarkable success. There is additional room for significant improvement in methods for SSC enrichment, long-term in vitro propagation, and endogenous germ cell depletion to improve the offspring production rate using this method. This chapter provides a basic understanding and current status of the SSC transplantation technique in livestock and its potential application for fertility restoration in these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi H, Tahmoorespur M, Hosseini SM, Nasiri Z, Bahadorani M, Hajian M et al (2013) THY1 as a reliable marker for enrichment of undifferentiated spermatogonia in the goat. Theriogenology 80(8):923–932

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Xiao Y, Han L, Hua H, Riaz H, Liang A, Yang LG (2013) Isolation, identification and enrichment of type a spermatogonia from the testis of Chinese crossbred buffaloes (swamp × river). Reprod Domest Anim 48(3):373–381

    Article  CAS  PubMed  Google Scholar 

  • Aponte PM, Soda T, Van De Kant HJG, de Rooij DG (2006) Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology 65(9):1828–1847

    Article  CAS  PubMed  Google Scholar 

  • Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJ, de Rooij DG (2008) Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136(5):543–557

    Article  CAS  PubMed  Google Scholar 

  • Bahadorani M, Hosseini SM, Abedi P, Hajian M, Afrough M, Azhdari Tafti Z et al (2011) Comparative immunohistochemical analysis of VASA, PLZF and THY1 in goats and sheep suggests that these markers are also conserved in these species. J Cytol Histol 2(6):126

    Google Scholar 

  • Bahadorani M, Hosseini SM, Abedi P, Hajian M, Hosseini SE, Vahdati A et al (2012) Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations. J Assist Reprod Genet 29(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Bendel-Stenzel M, Anderson R, Heasman J, Wylie C (1998) The origin and migration of primordial germ cells in the mouse. Semin Cell Dev Biol 9:393–400

    Article  CAS  PubMed  Google Scholar 

  • Blackhall FH, Atkinson AD, Maaya MB, Ryder WDJ, Horne G, Brison DR, Radford JA (2002) Semen cryopreservation, utilisation and reproductive outcome in men treated for Hodgkin's disease. Br J Cancer 87(4):381–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borjigin U, Davey R, Hutton K, Herrid M (2010) Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod Fertil Dev 22(5):733–742

    Article  CAS  PubMed  Google Scholar 

  • Brinster RL (2002) Germline stem cell transplantation and transgenesis. Science 296(5576):2174–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci 91(24):11303–11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci 91(24):11298–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caires KC, de Avila J, McLean DJ (2009) Vascular endothelial growth factor regulates germ cell survival during establishment of spermatogenesis in the bovine testis. Reproduction 138(4):667

    Article  CAS  PubMed  Google Scholar 

  • Ciccarelli M, Giassetti MI, Miao D, Oatley MJ, Robbins C, Lopez-Biladeau B, Oatley JM (2020) Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci 117(39):24195–24204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehmcke J, Hübner K, Schöler HR, Schlatt S (2005) Spermatogonia: origin, physiology and prospects for conservation and manipulation of the male germ line. Reprod Fertil Dev 18(2):7–12

    Article  Google Scholar 

  • Fujihara M, Kim SM, Minami N, Yamada M, Imai H (2011) Characterization and in vitro culture of male germ cells from developing bovine testis. J Reprod Dev 2011:1101260348

    Google Scholar 

  • Goel S, Sugimoto M, Minami N, Yamada M, Kume S, Imai H (2007) Identification, isolation, and in vitro culture of porcine gonocytes. Biol Reprod 77(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Fujihara M, Minami N, Yamada M, Imai H (2008) Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction 135(6):785–796

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Fujihara M, Tsuchiya K, Takagi Y, Minami N, Yamada M, Imai H (2009) Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod Fertil Dev 21(5):696–708

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Reddy N, Mandal S, Fujihara M, Kim SM, Imai H (2010) Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology 74(7):1221–1232

    Article  PubMed  Google Scholar 

  • Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germline stem cells. Proc Natl Acad Sci 99(23):14931–14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrid M, Vignarajan S, Davey R, Dobrinski I, Hill JR (2006) Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132(4):617–624

    Article  CAS  PubMed  Google Scholar 

  • Herrid M, Davey RJ, Hill JR (2007) Characterization of germ cells from prepubertal bull calves in preparation for germ cell transplantation. Cell Tissue Res 330(2):321–329

    Article  PubMed  Google Scholar 

  • Herrid M, Olejnik J, Jackson M, Suchowerska N, Stockwell S, Davey R et al (2009a) Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biol Reprod 81(5):898–905

    Article  CAS  PubMed  Google Scholar 

  • Herrid M, Davey RJ, Hutton K, Colditz IG, Hill JR (2009b) A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod Fertil Dev 21(3):393–399

    Article  CAS  PubMed  Google Scholar 

  • Herrid M, Davey R, Stockwell S, Olejnik J, Schmoelzl S, Suchowerska N et al (2011) A shorter interval between irradiation of recipient testis and germ cell transplantation is detrimental to recovery of fertility in rams. Int J Androl 34(5pt1):501–512

    Article  CAS  PubMed  Google Scholar 

  • Herrid M, Nagy P, Juhasz J, Morrell JM, Billah M, Khazanehdari K, Skidmore JA (2019) Donor sperm production in heterologous recipients by testis germ cell transplantation in the dromedary camel. Reprod Fertil Dev 31(3):538–546

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A, Yang Y (2011) Recent advances in application of male germ cell transplantation in farm animals. Vet Med Int 2011:5

    Google Scholar 

  • Honaramooz A, Megee SO, Dobrinski I (2002) Germ cell transplantation in pigs. Biol Reprod 66(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, Dobrinski I (2003a) Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 69(4):1260–1264

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A, Behboodi E, Blash S, Megee SO, Dobrinski I (2003b) Germ cell transplantation in goats. Mol Reprod Develop 64(4):422–428

    Article  CAS  Google Scholar 

  • Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J et al (2008) Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J 22(2):374–382

    Article  CAS  PubMed  Google Scholar 

  • Huckins C (1971) The spermatogonial stem cell population in adult rats: II. A radioautographic analysis of their cell cycle properties. Cell Prolif 4(4):313–334

    Article  CAS  Google Scholar 

  • Izadyar F, Spierenberg GT, Creemers LB, Ouden KD, De Rooij DG (2002) Isolation and purification of type a spermatogonia from the bovine testis. Reproduction 124(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F, Den Ouden K, Stout TA, Stout J, Coret J, Lankveld DP et al (2003) Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126(6):765–774

    Article  CAS  PubMed  Google Scholar 

  • Jiang FX, Short RV (1995) Male germ cell transplantation in rats: apparent synchronization of spermatogenesis between host and donor seminiferous epithelia. Int J Androl 18(6):326–330

    Article  CAS  PubMed  Google Scholar 

  • Kadam P, Ntemou E, Baert Y, Van Laere S, Van Saen D, Goossens E (2018) Co-transplantation of mesenchymal stem cells improves spermatogonial stem cell transplantation efficiency in mice. Stem Cell Res Ther 9(1):317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K, Ogura A, Toyokuni S, Honjo T, Shinohara T (2003a) Allogeneic offspring produced by male germ line stem cell transplantation into infertile mouse testis. Biol Reprod 68(1):167–173

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T (2003b) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69(2):612–616

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N et al (2008) Long-term culture of male germline stem cells from hamster testes. Biol Reprod 78(4):611–617

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Morimoto H, Shinohara T (2016) Fertility of male germline stem cells following spermatogonial transplantation in infertile mouse models. Biol Reprod 94(5):112–111

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Kim BJ, Kim BG, Lee YA, Kim KJ, Chung HJ et al (2013) Stage-specific embryonic antigen-1 expression by undifferentiated spermatogonia in the prepubertal boar testis. J Anim Sci 91(7):3143–3154

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Kim YH, Lee YA, Kim BJ, Kim KJ, Jung SE et al (2014) Production of transgenic spermatozoa by lentiviral transduction and transplantation of porcine spermatogonial stem cells. Tissue Eng Regen Med 11(6):458–466

    Article  CAS  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004a) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 71(3):722–731

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004b) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci 101(47):16489–16494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuijk EW, Colenbrander B, Roelen BA (2009) The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction 138(4):721–731

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2018) Spermatogonial stem cells transplantation in crossbred bovine and swine males. (Doctoral dissertation. ICAR-NDRI, Karnal

    Google Scholar 

  • Kumaresan A, Elango K, Datta TK, Morrell JM (2021) Cellular and molecular insights into the etiology of subfertility/infertility in crossbred bulls (Bos taurus X Bos indicus): a review. Front Cell Dev Biol 9:696637

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Lee WY, Kim JH, Yoon MJ, Kim NH, Kim JH et al (2013) Characterization of GFR α-1-positive and GFR α-1-negative Spermatogonia in neonatal pig testis. Reprod Domest Anim 48(6):954–960

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Megee S, Rathi R, Dobrinski I (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73(12):1531–1540

    Article  CAS  PubMed  Google Scholar 

  • McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • McLean Z, Appleby SJ, Wei J, Snell RG, Oback B (2019) Testes of DAZL null sheep lack spermatogonia and maintain normal somatic cells. BioRxiv 848036:5

    Google Scholar 

  • Mikkola M, Sironen A, Kopp C, Taponen J, Sukura A, Vilkki J et al (2006) Transplantation of normal boar testicular cells resulted in complete focal spermatogenesis in a boar affected by the immotile short-tail sperm defect. Reprod Domest Anim 41(2):124–128

    Article  CAS  PubMed  Google Scholar 

  • Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL (2001) Transgenic mice produced by retroviral transduction of male germline stem cells. Proc Natl Acad Sci 98(23):13090–13095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Nabeshima YI, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12(2):195–206

    Article  CAS  PubMed  Google Scholar 

  • Oakberg EF (1971) Spermatogonial stem-cell renewal in the mouse. Anat Rec 169(3):515–531

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM (2018) Recent advances for spermatogonial stem cell transplantation in livestock. Reprod Fertil Dev 30(1):44–49

    Article  Google Scholar 

  • Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136(7):1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Dobrinski I, Brinster RL (1999) Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell 31(5):461–472

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Dobrinski I, Avarbock MR, Brinster RL (2000) Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 6(1):29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans Royal Soc 365(1546):1663–1678

    Article  CAS  Google Scholar 

  • Qasemi-Panahi B, Movahedin M, Moghaddam G, Tajik P, Koruji M, Ashrafi-Helan J, Rafat SA (2018) Isolation and proliferation of spermatogonial cells from ghezel sheep. Avicenna J Med Biotechnol 10(2):93

    PubMed  PubMed Central  Google Scholar 

  • Radford JA, Shalet SM, Lieberman BA (1999) Fertility after treatment for cancer: questions remain over ways of preserving ovarian and testicular tissue. Br Med J 319:935

    Article  CAS  Google Scholar 

  • Reding SC, Stepnoski AL, Cloninger EW, Oatley JM (2010) THY1 is a conserved marker of undifferentiated spermatogonia in the prepubertal bull testis. Reproduction 139(5):893–903

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Sosa JR, Dobson H, Hahnel A (2006) Isolation and transplantation of spermatogonia in sheep. Theriogenology 66(9):2091–2103

    Article  PubMed  Google Scholar 

  • Ryu BY, Kubota H, Avarbock MR, Brinster RL (2005) Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci 102(40):14302–14307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu BY, Orwig KE, Oatley JM, Lin CC, Chang LJ, Avarbock MR, Brinster RL (2007) Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells. J Androl 28(2):353–360

    Article  CAS  PubMed  Google Scholar 

  • Sahare M, Kim SM, Otomo A, Komatsu K, Minami N, Yamada M, Imai H (2016) Factors supporting long-term culture of bovine male germ cells. Reprod Fertil Dev 28(12):2039–2050

    Article  CAS  PubMed  Google Scholar 

  • Savvulidi F, Ptacek M, Vargova KS, Stadnik L (2019) Manipulation of spermatogonial stem cells in livestock species. J Animal Sci Biotechnol 10(1):46

    Article  Google Scholar 

  • Schlatt S, Rosiepen G, Weinbauer GF, Rolf C, Brook PF, Nieschlag E (1999) Germ cell transfer into rat, bovine, monkey and human testes. Hum Reprod 14(1):144–150

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shah SM, Saini N, Kaushik R, Singh MK, Manik RS et al (2016) Derivation, enrichment and characterization of goat (Capra hircus) spermatogonial stem cells from prepubertal testes. Indian J Animal Res 50(5):662–667

    Google Scholar 

  • Sharma A, Shah SM, Saini N, Mehta P, Kumar BB, Dua D et al (2019a) Optimization of serum-free culture conditions for propagation of putative buffalo (Bubalus bubalis) spermatogonial stem cells. Cell Reprogram 21(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Lagah SV, Nagoorvali D, Kumar BB, Singh MK, Singla SK et al (2019b) Supplementation of glial cell line-derived neurotrophic factor, fibroblast growth factor 2, and epidermal growth factor promotes self-renewal of putative Buffalo (Bubalus bubalis) Spermatogonial stem cells by upregulating the expression of miR-20b, miR-21, and miR-106a. Cell Reprogram 21(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kumaresan A, Mehta P, Nala N, Singh MK, Palta P et al (2020a) Successful transplantation of transfected enriched buffalo (Bubalus bubalis) spermatogonial stem cells to homologous recipients. Theriogenology 142:441–449

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shah SM, Tiwari M, Roshan M, Singh MK, Singla SK et al (2020b) Propagation of goat putative spermatogonial stem cells under growth factors defined serum-free culture conditions. Cytotechnology 2020:1–9

    Google Scholar 

  • Sharma A, Kumaresan A, Nala N, Tiwari M, Roshan M, Singh MK et al (2020c) Homologous transplantation of fluorescently labelled enriched buffalo (Bubalus bubalis) spermatogonial stem cells to prepubertal. Indian J Anim Sci 90(5):34–38

    Google Scholar 

  • Stockwell S, Herrid M, Davey R, Brownlee A, Hutton K, Hill JR (2009) Microsatellite detection of donor-derived sperm DNA following germ cell transplantation in cattle. Reprod Fertil Dev 21(3):462–468

    Article  CAS  PubMed  Google Scholar 

  • Stockwell S, Hill JR, Davey R, Herrid M, Lehnert SA (2013) Transplanted germ cells persist long-term in irradiated ram testes. Anim Reprod Sci 142(3–4):137–140

    Article  CAS  PubMed  Google Scholar 

  • Tagelenbosch RA, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutation Res 290(2):193–200

    Article  Google Scholar 

  • Takehashi M, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S et al (2007) Adenovirus-mediated gene delivery into mouse spermatogonial stem cells. Proc Natl Acad Sci 104(8):2596–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian R, Yang S, Zhu Y, Zou S, Li P, Wang J et al (2016) VEGF/VEGFR2 signaling regulates germ cell proliferation in vitro and promotes mouse testicular regeneration in vivo. Cells Tissues Organs 201(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Vlajković S, ÄŒukuranović R, Daković Bjelaković M, Stefanović V (2012) Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. Sci World J 2012:1

    Article  Google Scholar 

  • Wu J, Song W, Zhu H, Niu Z, Mu H, Lei A et al (2013) Enrichment and characterization of Thy1-positive male germline stem cells (mGSCs) from dairy goat (Capra hircus) testis using magnetic microbeads. Theriogenology 80(9):1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Honaramooz A (2011) Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod Fertil Dev 23(3):496–505

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yarahmadi M, Honaramooz A (2010) Development of novel strategies for the isolation of piglet testis cells with a high proportion of gonocytes. Reprod Fertil Dev 22(7):1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Tang L, Bondareva A, Honaramooz A, Tanco V, Dores C, Dobrinski I (2013) Viral transduction of male germline stem cells results in transgene transmission after germ cell transplantation in pigs. Biol Reprod 88(1):27–21

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Renfree MB, Short RV (2003) Successful intra-and interspecific male germ cell transplantation in the rat. Biol Reprod 68(3):961–967

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W (2014a) Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction 147(3):R65–R74

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, He Y, An J, Qin J, Wang Y, Zhang Y et al (2014b) THY1 is a surface marker of porcine gonocytes. Reprod Fertil Dev 26(4):533–539

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Kumaresan, A., Vats, P., Chauhan, M.S. (2022). Spermatogonial Stem Cells: Their Use in Fertility Restoration. In: Kumaresan, A., Srivastava, A.K. (eds) Frontier Technologies in Bovine Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-19-3072-0_9

Download citation

Publish with us

Policies and ethics