
Chapter 2
Machine Learning

Machine learning is currently a mainstream research hotspot in the AI industry,
entailing multiple disciplines such as probability theory, statistics, and convex
optimization. This chapter first introduces the definition of “learning” in learning
algorithms and the process of machine learning. On this basis, it offers some
commonly used machine learning algorithms. Our readers will learn about some
key concepts such as hyperparameters, gradient descent, and cross-validation.

2.1 Introduction to Machine Learning

Machine learning (including its branch deep learning) is the study of “learning
algorithms”. The so-called “learning” here refers to the situation that the perfor-
mance of a computer program measured by performance metric P on a certain task T
improves itself with experience E, then we call this computer program learning from
experience E. For instance, identifying junk email is a task T. We can complete such
tasks easily, because we have lots of experiences in doing so in daily life. These
experiences may come from daily emails, spam messages or even advertisements on
TV. We can summarize and conclude from these experiences that emails from
unknown users that contain the words like “discount” and “zero risk” are more
likely to be spam. Referring to the learnt knowledge, we can distinguish whether an
email that has never been read before is spam, as shown in Fig. 2.1a. So, can we
write a computer program to simulate the above process? As shown in Fig. 2.1b, we
can prepare a number of e-mails, and pick out the junk emails by hands, as the
experience E for this program. However, the program cannot automatically summa-
rize these experiences. At this time, it is necessary to train the program through
machine learning algorithms. The computer program that has been trained is called a
model, and in general the larger the number of emails is used for training, the better
the model may be trained, and the larger the value of the performance metric P will
be.

© The Author(s) 2023
Huawei Technologies Co., Ltd., Artificial Intelligence Technology,
https://doi.org/10.1007/978-981-19-2879-6_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-2879-6_2&domain=pdf
https://doi.org/10.1007/978-981-19-2879-6_2#DOI

Spam identification is very difficult to achieve through traditional programming
methods. Theoretically, we should be able to find a set of rules in line with the
features of all junk emails, rather than that of the regular emails. This method of
using explicit programming to solve problems is known as a rule-based approach.
However, in practice, it is almost impossible to find such a set of rules. Therefore, to
solve this problem, machine learning adopts the statistical-based method. We can
basically claim that machine learning is a method to let machines to learn rules
automatically through samples. Compared with using the rule-based method,
machine learning can learn more complex rules and the rules that are difficult to
describe, so as to handle more complicated tasks.

Machine learning is highly adaptable and can solve many problems in the AI
field, but this does not mean that machine learning will always be used preliminary
in all cases. As shown in Fig. 2.2, machine learning is suitable for problems which
require a complex solution or involve a large amount of data, but the probability
distribution of the data is unknown. Machine learning can certainly solve the
problem in other cases, but the cost is often higher than traditional methods. Take
the second quadrant shown in Fig. 2.2 as an example. If the size of the problem is
small enough to be solved by artificial rules, then there is no need to use machine
learning algorithms. There are two main application scenarios in general for machine
learning.

1. The rules are quite complicated or unable to be described, such as face recogni-
tion and voice recognition.

2. The data distribution itself changes over time, and the program needs to be
constantly re-adapted, such as predicting the trend of commodity sales.

Fig. 2.1 Learning mode

44 2 Machine Learning

2.1.1 Rational Understanding of Machine Learning
Algorithms

The nature of machine learning algorithms is function fitting. Let f be the objective
function, the purpose of the machine learning algorithm is to give a hypothetical
function g that makes g(x) and f(x) as close as possible to the input x in any defined
domain. A simple example is the probability density estimation in statistics. By the
law of large numbers, the height of all Chinese population should follow a normal
distribution. Although the probability density function f of this normal distribution is
unknown, we can estimate the mean and variance of the distribution by sampling,
and then estimate f.

The relationship between the hypothesis function and the objective function is
shown in Fig. 2.3. For a given task, we can collect a large amount of training data.
These data must fit a given objective function f, otherwise, it is meaningless to learn
such a task. Next, the learning algorithm can analyze these training data and give a
hypothetical function g that is similar to the objective function f as much as possible.

Fig. 2.2 Application scenarios of machine learning

Fig. 2.3 The relationship between the hypothesis function and the objective function

2.1 Introduction to Machine Learning 45

Therefore, the output of the learning algorithm is always not perfect and cannot be
completely consistent with the objective function. However, with the expansion of
the training data, the degree of approximation of the hypothesis function g to the
objective function f is gradually improved, and finally a satisfactory level of accu-
racy can be achieved in machine learning.

It is worth mentioning that the objective function f is sometimes very abstract in
existence. For the classic image classification task, the objective function means the
mapping from the image set to the category set. In order to let a program to process
logical information such as images and classes, it is necessary to use certain
encoding methods to map images or categories one by one into scalars, vectors or
matrices. For example, you can number each category from 0, thereby mapping the
class to a scalar. You can also use different one-hot vectors to represent different
classes, which is called one-hot encoding. The encoding of image is a little more
complicated, and is generally represented by a three-dimensional matrix. With this
encoding method, we can see the domain of definition the objective function f as a
collection of three-dimensional matrices and its range as a collection of a series of
serial numbers for classes. Although the encoding process is not part of the learning
algorithm, in some cases, the choice of encoding method will also affect the
efficiency of the learning algorithm.

2.1.2 Major Problems Solved by Machine Learning

Machine learning can deal with various types of problems, including the most
typical ones such as classification, regression, and clustering. Classification and
regression are the two major types of prediction problems, taking up of 80–90% of
all the problems. The main difference is that the output of classification is discrete
serial numbers of classes (generally called as “labels” in machine learning), while the
output of regression is continuous value.

The classification problem requires the program to indicate which of the k classes
does the input belong to. To solve this problem, machine learning algorithms usually
output mapping from domain D to category labels {1, 2, . . ., k}. Image classification
task is a typical classification problem.

In regression problems, the program needs to predict the output value for a given
input. The output of a machine learning algorithm is usually a mapping from the
domain D to the real number domain R. For instance, predicting the claim amount of
the insured (used to set insurance premium), or predicting the price of securities in
the future are all relevant cases. In fact, classification problems can also be reduced
to regression problems. By predicting the probability of the image belonging to each
class, the machine learning can obtain the result of the classification.

The clustering problem needs to divide the data into multiple categories
according to the inherent similarity of the data. Unlike the classification problem,
the dataset of the clustering problem does not contain manually labeled labels. The
clustering algorithm makes the data similar to each other within the class as much as

46 2 Machine Learning

possible, while the data similarity between the classes is relatively small, so as to
implement classification. Clustering algorithms can be used in scenarios like image
retrieval, user portrait generation and etc.

2.2 Types of Machine Learning

According to whether the training dataset contains manually tagged labels, machine
learning can be generally divided into two types—supervised learning and
unsupervised learning. Sometimes, in order to distinguish it from unsupervised
learning, supervised learning is also called learning under supervision. If some
data in the dataset contains labels and the majority of the data does not, then this
learning algorithm is called semi-supervised learning. Reinforcement learning
mainly focuses on multi-step decision-making problems, and automatically collects
data for learning in the interaction with the environment.

2.2.1 Supervised Learning

Generally speaking, supervised learning is allowing the computer to compare stan-
dard answers when it is trained to answer the multiple-choice questions. The
computer tries its best to adjust its model parameters, expecting that the inferred
answer is as consistent as possible with the standard answer, and finally learn how to
solve the question. Using samples of known labels, supervised learning can train an
optimal model meeting the required performance. Using this model, any input can be
mapped to the corresponding output, so as to predict the unknown data.

Figure 2.4 shows a supervised learning algorithm that is highly simplified. The
features in the graph can be understood as data items. Although this interpretation is
not sufficient to some extent, it will not affect our description on this supervised
learning algorithm. The supervised learning algorithm takes features as input and the
predicted value of the targets as output. Figure 2.5 shows a practical example. In this
example, we hope to make an overall prediction that whether a user enjoys exercises

Fig. 2.4 Supervised learning algorithm

2.2 Types of Machine Learning 47

by taking weather conditions into account. Each row in the table is a set of training
examples that records the weather characteristics of a specific day and the user’s
enjoyment of exercises. Similar algorithms can be applied to other scenarios such as
product recommendations.

The input (feature) and output (target) of a supervised learning algorithm can be
either continuous or discrete. When the value of the target variable is continuous, the
output of the supervised learning algorithm is called a regression model. The
regression model reflects the features of the attribute values in the sample dataset,
and expresses the relationship of the sample mapping through functions to show the
dependency between the attribute values. The attribute value mentioned here
includes feature and target. Regression model is widely used in time series forecast-
ing. For instance, how much money can you earn form stocks next week? What will
the temperature be tomorrow? So on and so forth. Correspondingly, when the target
variable takes discrete values, the output of the supervised learning algorithm is
called a classification model. Through the classification model, the samples in the
sample dataset can be mapped to the given classes. Such as whether there will be
traffic jams on a highway during the morning rush hour tomorrow? Which one is
more attractive to customers, a five-yuan voucher or a 25%-off discount? Etc.

Although the range of the regression model can be an infinite set, the output of the
classification model is often finite. This is because the size of the dataset cannot grow
indefinitely, and the number of classes in the dataset should to the most be the same
with the number of training examples. Therefore, the number of classes is not
infinite. When training a classification model, an artificially designated class set L
is often needed for the model to select category output. The size of the set L is
generally recorded as K, which is the number of possible classes.

2.2.2 Unsupervised Learning

Compared with supervised learning, unsupervised learning is like letting the com-
puter do multiple-choice questions without telling it what the correct answer is. In
this case, it is difficult for the computer to secure the correct answer. But by
analyzing the relationship between these questions, the computer can classify the
questions so that the multiple-choice questions in each class have the same answer.

Fig. 2.5 Sample data

48 2 Machine Learning

The unsupervised learning algorithm does not require labeling samples, but directly
modeling the input dataset, as shown in Fig. 2.6.

Clustering algorithm is a typical unsupervised learning algorithm that can be
summarized by the proverb: “birds of a feather flock together”. The algorithm only
puts the samples of high similarity together. For newly input samples, it only needs
to calculate their similarity with the existing samples, and then classify them
according to the degree of similarity. Biologists have used the concept of clustering
to study the interspecies relationship for a long time. As shown in Fig. 2.7, after
classifying the iris flowers based on the size of sepal and petal, the iris has been
divided into three categories. Through the clustering model, the samples in the
sample dataset can be divided into several categories, making the similarity of
samples under the same category relatively higher. The scenarios of application
for the clustering model include that what kinds of audiences like to watch movies of
the same subject, and which components are damaged similarly, etc.

Fig. 2.6 Unsupervised learning algorithm

Fig. 2.7 Example of
clustering algorithm

2.2 Types of Machine Learning 49

2.2.3 Semi-supervised Learning

Semi-supervised learning is a combination of supervised learning and unsupervised
learning. This algorithm attempts to allow the learner to automatically utilize a large
amount of unlabeled data to assist the learning of a small amount of labeled data.
Traditional supervised learning algorithms need to learn from a large number of
labeled training samples to build a model for predicting the labels of new samples.
For example, in a classification task, the label suggests the class of the sample. And
in a regression task, the label suggests the real-valued output of the sample. With the
rapid development of human’s ability to collect and store data, in many practical
tasks, it is very easy to acquire a large amount of unlabeled data, and labeling them
often consumes a lot of efforts and materials. For example, for webpage recommen-
dation, users are required to mark web pages they interest in. But few users are
willing to spend a lot of time to mark, so the web pages with marked information are
limited. But there are countless web pages that are not marked, or marked, which can
be used as unmarked data.

As shown in Fig. 2.8, semi-supervised learning does not require manual labeling
on all the samples like supervised learning, nor is it completely independent from the
target like unsupervised learning. In the semi-supervised learning datasets, generally
speaking, there are only a few samples labeled. Taking the iris classification problem
presented in Fig. 2.7 as an example. A small amount of supervised information is
added to the dataset, as shown in Fig. 2.9. Let’s assume the circle represents the
Setosa sample, the triangle represents the Versicolor sample, the square represents
the Virginica sample, and the star represents the unknown sample. The clustering
algorithm has been introduced in unsupervised learning, suppose its output is shown
by the dotted circle in Fig. 2.9. Counting the circles including the highest number of
known samples and then this class can be used as the class for this cluster. To be
more specific, the upper-left cluster belongs to Setosa, while the upper right cluster
obviously belongs to Virginica. By combining unsupervised algorithm and super-
vised information, semi-supervised algorithm can achieve higher accuracy with
lower labor costs.

Fig. 2.8 Semi-supervised learning algorithm

50 2 Machine Learning

2.2.4 Reinforcement Learning

Reinforcement learning is mainly used to solve multi-step decision-making prob-
lems, such as Go game, video games, and visual navigation. Unlike the problems
studied by supervised learning and unsupervised learning, these problems are often
difficult to find accurate answers. Taking Go as an example. It takes about 10,170
operations to exhaust the results of the game (there are only 1080 atoms in the
universe). So, for a given and common situation, it is difficult to find the
perfect move.

Another characteristic of the multi-step decision problem is that it is easy to define
a reward function to evaluate whether the task has been completed. The reward
function of Go can be defined as whether to win the game; the reward function of
electronic games can be defined as the score. The goal of reinforcement learning is to
find an action strategy to maximize the value of the reward function.

As shown in Fig. 2.10, the two most important parts of a reinforcement learning
algorithm are the model and the environment. In different environments, the model
can determine its own actions, and different actions may have different effects on the

Fig. 2.9 Iris flower dataset
with supervised information

Fig. 2.10 Reinforcement learning algorithm

2.2 Types of Machine Learning 51

environment. Still, in the case of solving test questions, the computer can give the
answer randomly, and the teacher will give a score based on the answer given. But if
the situation is only limited to this case, it is impossible for the computer to learn how
to solve the question, because the teacher’s grading does not contribute to the
training process. In this case, the importance of status and rewards and punishments
are highlighted. A higher test score can make the teacher satisfied and then give the
computer a certain reward. On the contrary, a lower test score may incur penalties.
As a “motivated” computer, it is bound to hope that by adjusting its own model
parameters, it can get more rewards because of its answers. In this process, no one
provides training data for the learning algorithm or tells the reinforcement learning
system how to make the correct move. All data and reward signals are dynamically
generated during the interaction between the model and the environment and are
automatically and dynamically learned. No matter it is good behavior or bad
behavior, it can help the model to learn.

2.3 The Overall Process of Machine Learning

A complete machine learning project often involves data collection, data cleaning,
feature extraction and selection, model training, model evaluation and testing, model
deployment and integration, as shown in Fig. 2.11. This section introduces the
concepts related to data collection and data cleaning, which are fundamental to
understand what is feature selection. After selecting reasonable features, it is neces-
sary to train and evaluate the model based on these features. This is not a one-kick
process, but requires constant feedback and iteration to harvest satisfactory results.
At last, the model needs to be deployed to the specific application scenarios to put
theories into practice.

Fig. 2.11 The overall process of machine learning

52 2 Machine Learning

2.3.1 Data Collection

A dataset is a set of data used in a machine learning project, and each data is called a
sample. The items or attributes that reflect the performance or nature of the sample in
a certain aspect are called features. The dataset used in the training process is called
the training set, and each sample is called a training sample. Learning (training) is the
process of learning a model from data. The process of using the model to make
predictions is called testing, and the dataset used for testing is known as the test set.
Each sample in the test set is called a test sample.

Figure 2.12 shows a typical dataset. In this dataset, each row indicates a sample,
and each column refers to a feature or label. When the task is determined, such as
predicting housing prices based on floor area, school district, and house orientation,
the features and labels are also determined. Therefore, the row and column headers
of the dataset should remain unchanged throughout the machine learning project.
The training set and the test set are relatively free to split, and the researcher can
determine which samples belong to the training set based on experience. A too low
proportion of the test set may result in randomness of model testing, not able to
properly evaluate the performance of the model. While a high proportion of the
training set may result in low sample utilization and the model cannot learn thor-
oughly. Therefore, the common ratio between training set and dataset is that the
training set accounts for 80% of the total number of samples, and the test set
accounts for 20%. In this example, there are four samples in the training set and
one sample in the test set.

2.3.2 Data Cleaning

Data is vital to the model and determines the limit of the model’s capabilities.
Without good data, there will be no good models. However, data quality is a

Fig. 2.12 Sample dataset

2.3 The Overall Process of Machine Learning 53

commonly problem bothering real data, as shown in Fig. 2.13. Following are some
typical problems on data quality.

1. Incomplete: Data lacks attributes or containing missing values.
2. Noisy: Data contains erroneous records or outliers.
3. Inconsistent: Data contains conflicting records or discrepancies.

Such data is called “dirty” data. The process of filling in missing values, finding and
eliminating data abnormalities is called data cleaning. In addition, data
preprocessing often involves data dimensionality reduction and data standardization.
The purpose of data dimensionality reduction is to simplify data attributes and avoid
dimensional explosion; while the purpose of data standardization is to unify the
dimensions of each feature, thereby reducing the difficulty of training. The content
of data dimensionality reduction and data standardization will be introduced in detail
in the later passages, and this section only talks about data cleaning.

What are handled by the machine learning model are all features. The so-called
feature is the numerical representation of the input variable that can be used in the
model. In most cases, the collected data can be used by the algorithm after
preprocessing. The preprocessing operation mainly includes the following
procedures.

1. Data filtering.
2. Handling missing data.
3. Handling possible errors or outliers.
4. Combining data from multiple sources.
5. Data aggregation.

The workload of data cleaning is often quite heavy. Research shows that data
scientists spend 60% of their time on cleaning and organizing data in machine
learning researches, as shown in Fig. 2.14. On the one hand, this shows how difficult
data cleaning is, and that the data collection featuring different methods and contents
will require different methods for data cleaning. What is more, it also shows that data
cleaning plays a crucial role in subsequent model training and optimization. Another

Fig. 2.13 “Dirty” data

54 2 Machine Learning

important role is that the more thoroughly the data is cleaned, the less likely the
model is to be affected by abnormal data, thus ensuring the model’s training
performance.

2.3.3 Feature Selection

Usually, there are many different features in a dataset, some of which may be
redundant or unrelated to the target. For example, when predicting housing prices
based on floor area, school district, and daily temperature, the daily temperature is
apparently an irrelevant feature. Through feature selection, these redundant or
irrelevant features can be eliminated, so that the model is simplified and easier to
be interpreted by users. At the same time, feature selection can also effectively
reduce the time of model training, avoid dimensional explosion, improve the gen-
eralization performance of the model, and avoid overfitting. Common methods for
feature selection include filter methods, wrapper methods, and embedded methods,
which will be introduced successively in the following passages.

The filter method is independent when selecting features and has nothing to do
with the model itself. By measuring the correlation between each feature and the
target attribute, filter method applies a statistical measurement to score each feature.
By sorting these features on the basis of the scores, you can decide to keep or
eliminate specific features. Figure 2.15 shows the machine learning process using
filter methods. Statistical measures commonly used in filtering include Pearson’s
correlation coefficient, Chi-Square coefficient, and mutual information. Since filter

Fig. 2.14 The importance
of data cleaning

Fig. 2.15 The machine
learning process using the
filtering

2.3 The Overall Process of Machine Learning 55

does not consider the relationship between features, it is only prone to select
redundant variables.

The wrapper method uses a predictive model to score a subset of features, and
considers the feature selection problem as a search problem, where the wrapper will
evaluate and compare different feature combinations, and the predictive model will
be used as a tool for evaluating feature combinations. The higher the accuracy of the
prediction model, the more the feature combination should be retained. Figure 2.16
displays the machine learning using the wrapper method. One of the popular
wrapper methods is recursive feature elimination (RFE). Wrapper methods usually
provide the best-performing feature set for a specific class of model, but it needs to
train a new model for each feature subset, so the amount of operations is extensive.

The embedded method uses feature selection as part of model building, as shown
in Fig. 2.17. Unlike the filter and wrapper method, the model using the embedded
method actively learns how to perform feature selection during training. The most
common embedded feature selection method is regularization. Regularization is also
called the penalty method. By introducing additional constraints when optimizing
the prediction algorithm, the complexity of the model is reduced, namely, the
number of features is reduced. Common regularization methods include ridge
regression and Lasso regression.

2.3.4 The Construction of Machine Learning Models

After finishing data cleaning and feature extraction, it is time to build the model.
Taking supervised learning as an example, model construction generally follows the
steps shown in Fig. 2.18. The core of model construction is model training, verifi-
cation and testing. This section briefly explains the training and prediction process
using one simple example. More details will be introduced in the following chapters.

Fig. 2.16 The machine
learning process using
wrappers

Fig. 2.17 The machine
learning process using
embedded method

56 2 Machine Learning

In the example of this section, we need to use a classification model to determine
whether someone needs to change suppliers under certain features. Assuming that
Fig. 2.19 shows the cleaned dataset, the task of the model is to predict the target as
accurately as possible on the basis of the known features. During the training
process, the model can learn the mapping relationship between features and targets
based on the samples in the training set. After training, we can get the following
model:

Fig. 2.18 Overall process of model construction

Fig. 2.19 Training set and test set

2.3 The Overall Process of Machine Learning 57

def model(city, age):
if city == “Miami”: return 0.7
if city == “Orlando”: return 0.2
if age > 42: return 0.05 * age + 0.06
else: return 0.01 * age + 0.02

The output of the model is the probability of truth value of the target. We know
that as the training data increases, the accuracy of the model will also increase
accordingly. So why not use all the data for training, instead of only taking a part of it
as the test set? This is because that the performance of the model in the face of
unknown data, not the known data, is what we should look at. The training set is like
an exam bank that students read through while preparing for an examination. It is not
a surprising thing no matter how high the accuracy rate will be for the students,
because the exam bank always has a limitation. As long as they have a good
memory, the students can even memorize all the answers after all. Only the formal
examination can really test the students’ acquisition of knowledge, because the
questions in the official examinations may be something they have never seen
before. The test set is equivalent to an examination prepared by the researchers for
the model. In other words, in the entire dataset (including training set and test set),
the model has the right to consult only the features of the training set and test set. The
target of the test set can only be used by the researchers when evaluating the
performance of the model.

2.3.5 Model Evaluation

What is a good model? The most important evaluation indicator is the model’s
generalization ability, also known as the prediction accuracy of the model dealing
with actual business data. There are also some engineering indicators that can be
used to evaluate the model: interpretability, which describes the degree of straight-
forwardness of the model’s prediction results; prediction rate, which refers to the
average time it takes for the model to predict each sample; plasticity, which refers to
the acceptability of model prediction rate in actual business process as the business
volume expands.

The goal of machine learning is to make the learned model applicable to new
samples, not just on training samples. The ability of the learned model to apply to
new samples is called generalization ability, also addressed as robustness.
The difference between the predicted result of the learned model on the sample
and the true result of the sample is called error. The training error refers to the error of
the model on the training set, and the generalization error refers to the error of the
model on the new sample (test set). Obviously, we want to have a model with smaller
generalization error.

58 2 Machine Learning

Once the model is formed and fixed, all possible functions will construct a space,
which is called hypothesis space. The machine learning algorithm can be seen as an
algorithm that searches for a suitable fitting function in the hypothesis space. A
mathematical model that is too simple, or the training time is too short, will cause an
increasing training error for the model. This phenomenon is called underfitting. For
the former, it should use a more complex model for retraining; for the latter, it only
needs to extend the time to effectively eliminate underfitting. However, to accurately
determine the cause of under-fitting often requires certain experience and methods.
On the contrary, if the model is too complex, it may lead to a small training error, but
a weaker generalization ability, which means a larger generalization error known as
overfitting. There are many methods to reduce over-fitting. The common ones
include appropriately simplifying the model, ending training before the over-fitting
occurs, and using dropout and weight decay. Figure 2.20 shows the results of
underfitting, good fitting and overfitting for the same dataset.

The capacity of a model refers to its ability to fit a variety of functions, also
known as the complexity of a model. When the capacity is compatible for the
complexity of the task and the amount of training data provided, the algorithm
will usually have the best performance. A model with insufficient capacity cannot
handle the complex tasks, thus underfitting may be provoked. As shown in
Fig. 2.20a, the data distribution is in a shape of hook, but the model is linear and
cannot describe the data distribution properly. A model with a high capacity can
handle complex tasks, but when the capacity surpasses the level that the task needs,
overfitting may be provoked. As shown in Fig. 2.20c, the model tries to fit the data
with a very complex function. Although the training error is reduced, it can be
inferred that such a model cannot predict the target value of a new sample properly.
The effective capacity of the model is limited by algorithms, parameters, and
regularization methods.

Generally speaking, the generalization error can be interpreted as:
Total error ¼ Bias 2 + Variance + Unresolvable error
Among them, bias and variance are two sub-forms that we need to pay attention

to. As shown in Fig. 2.21, the Variance is the degree of deviation of the model’s
prediction results near the mean, which is an error derived from the sensitivity of the
model to small fluctuations on the training set. Bias is the difference between the
average value of the model’s prediction results and the correct value we are trying to
predict. The unresolvable error refers to the error caused by the imperfection of the

Fig. 2.20 Underfitting, good fitting and overfitting

2.3 The Overall Process of Machine Learning 59

model and the finiteness of the data. In theory, if there is an infinite amount of data
and a perfect model, the so-called unresolvable errors can be resolved. But in fact, it
is impossible to realize, so the generalization error can never be eliminated.

Ideally, we want to choose a model that can accurately capture the laws in the
training data and can also summarize the invisible data (the so-called new data).
However, generally speaking, it is impossible for us to accomplish these two things
at the same time. As shown in Fig. 2.22, as the complexity of the model increases,
the training error gradually decreases. At the same time, the test error will decrease to
a certain point as the complexity increases, and then increase in the opposite
direction, forming a concave curve. The lowest point of the test error curve suggests
the ideal level of model complexity.

When measuring the performance of the regression model, commonly used
indicators include mean absolute error (MAE), mean square error (MSE), and
correlation coefficient R2. Assuming that the true target values of the test example

Fig. 2.21 Variance and bias

Fig. 2.22 The relationship between model complexity and error

60 2 Machine Learning

are y1, y2,. . ., ym, and the corresponding predicted values areby1, by2, ⋯, bym, then the
definition of the above indicators is as follows:

MAE ¼ 1
m

Xm
i¼1

yi �byij j

MSE ¼ 1
m

Xm
i¼1

yi � byið Þ2

R2 ¼ 1� RSS
TSS

¼ 1�
Pm

i¼1 yi �byið Þ2Pm
i¼1 yi � yið Þ2

Where, TSS represents the difference between the sample values, and RSS repre-
sents the difference between the predicted value and the sample value. The values of
the MAE and MSE indicators are both non-negative, and the closer to 0, the better
the performance of the model. The value of R2 is not greater than 1, and the closer to
1, the better the performance of the model.

When evaluating the performance of a classification model, a method called
confusion matrix is often used, as shown in Fig. 2.23. The confusion matrix is a
k-dimensional square matrix, where k represents the number of all categories. The
value in the i-th row and the j-th column in Fig. 2.23 represents the number of
samples that are actually the i-th type but are judged to be the j-th type by the model.
Ideally, for a classifier with higher accuracy, most of the examples should be
represented by the diagonal of the confusion matrix, while other values are 0 or
close to 0. For the two-classifier confusion matrix shown in Fig. 2.23, the definition
of each symbol is as follows.

1. Positive tuple P: tuple of the major classes of interest.
2. Negative tuple N: other tuples except P.
3. True positive example TP: positive tuples correctly classified by the classifier.
4. True negative example TN: the negative tuple correctly classified by the

classifier.

Fig. 2.23 Confusion matrix
for a binary classifier

2.3 The Overall Process of Machine Learning 61

5. False positive example FP: a negative tuple that is incorrectly marked as a
positive tuple.

6. False negative example FN: A positive tuple that is incorrectly marked as a
negative tuple.

Figure 2.24 shows the rest concepts in the binary classifier confusion matrix.
Here let us cite the example of document retrieval to clarify the concepts of

precision and recall. The precision describes the proportion of documents that are
truly related to the subject among all the documents retrieved. The recall describes
the retrieved documents related to the search subject, and the proportion of all related
documents in the library.

At the end of this section, let’s take an example to illustrate the calculation of the
confusion matrix of the binary classifiers. Assuming that a classifier can identify
whether there is a cat in an image and 200 images are now used to verify the
performance of this model. Among them, 170 are labeled as images with cats and
30 are labeled not. The performance of the model is as shown in Fig. 2.25. It can be
seen that the recognition result of the model is that 160 images are marked with cats
and 40 pictures not. It can be calculated that the precision of the model is
140/160 ¼ 87.5%, the recall is 140/170 ¼ 82.4%, and the accuracy is (140 + 10)/
200 ¼ 75%.

Fig. 2.24 The other concepts in confusion matrix for a binary classifier

62 2 Machine Learning

2.4 Model Parameters and Hyperparameters

Parameters, as part of what the model has learned from historical training data, are
the key to machine learning algorithms. Generally speaking, the model parameters
are not manually set by the researchers, but are obtained by data estimation or data
learning. Identifying the parameter values of the model is equivalent to defining the
function of the model, so the model parameters are usually saved as part of the
learning model. When implementing model predictions, parameters are also an
indispensable component. Examples of model parameters include weights in artifi-
cial neural networks, support vectors in support vector machines, and coefficients in
linear regression or logistic regression.

There are not only parameters but also hyperparameters in the model. Different
from parameters, hyperparameters are external configurations of the model and are
often used in the process of estimating model parameters. The most fundamental
difference between the two is that the parameters are automatically learned by the
model, while the hyperparameters are manually engineered. When handling differ-
ent prediction modeling problems, it is usually necessary to adjust the
model hyperparameters. In addition to being directly specified by the researcher,
model hyperparameters can also be set using heuristic methods. Common model
hyperparameters include the penalty coefficient in Lasso or ridge regression, the
learning rate, number of iterations, batch size, activation function, and number of
neurons in the training neural network, the C and σ of the support vector machine,
and the K in KNN, the number of decision tree models in the random forest, etc.

Model training generally refers to optimizing model parameters, and this process
is completed by a gradient descent algorithm. According to the training effect of the
model, a series of hyperparameter search algorithms can be used to optimize the
hyperparameters of the model. This section first introduces the gradient descent
algorithm, and then the concept of the validation set, and then elaborates on the
hyperparameter search algorithm and cross-validation.

Fig. 2.25 Cases of
confusion matrix

2.4 Model Parameters and Hyperparameters 63

2.4.1 Gradient Descent

The optimization idea of the gradient descent algorithm is to use the negative
gradient direction of the current position as the search direction, which is the fastest
descent direction of the current position, as shown in Fig. 2.26a. The formula for
gradient descent is as follows:

wkþ1 ¼ wk � η∇f wk xð Þ

Where, η is called the learning rate, and w represents the parameters of the model. As
w gets closer to the target value, the amount of change in w gradually decreases.
When the value of the objective function barely changes or reaches the maximum
number of iterations of gradient descent, then it reaches algorithm convergence. It is
worth noting that when using the gradient descent algorithm to find the minimum
value of a non-convex function, different initial values may lead to different results,
as shown in Fig. 2.26b.

When applying gradient descent to model training, multiple variants can be used.
Batch Gradient Descent (BGD) uses the gradient mean of the samples in all datasets
at the current point to update the weight parameters. Stochastic Gradient Descent
(SGD) randomly selects a sample in a dataset, and updates the weight parameters
through the gradient of this sample. Mini-batch Gradient Descent (MBGD) com-
bines the characteristics of BGD and SGD, and selects the gradient mean of n
samples in the dataset to update the weight parameters each time. Figure 2.27
shows the different performances of the three variants of gradient descent. Among
them, the bottom-up curve corresponds to BGD, the top-down curve corresponds to
SGD, and the right-to-left curve corresponds to MBGD. BGD is the most stable at
runtime, but because every update needs to traverse all samples, it consumes a lot of
computing resources. Each update of SGD randomly selects samples, although it
improves the computational efficiency, it also brings instability, which may cause
the loss function to produce turbulence or even reverse displacement during the

Fig. 2.26 Gradient descent algorithm

64 2 Machine Learning

process of dropping to the lowest point. MBGD is a method after SGD and BGD are
balanced, and it is also the most commonly used gradient descent algorithm in
machine learning.

2.4.2 Validation Set and Hyperparameter Search

The training set is a collection of samples used in model training. During the training
process, the gradient descent algorithm will try to improve the model’s prediction
accuracy for the samples in the training set. This causes the model to perform better
on the training set than on the unknown dataset. In order to measure the generaliza-
tion ability of the model, people often randomly select a part of the entire dataset as a
test set before training, as shown in Fig. 2.28. The samples in the test set are not
involved in training, so they are unknown to the model. It can be approximated that
the performance of the model on the test set is the performance of the model under
unknown samples.

The optimization goal of hyperparameters is to improve the generalization ability
of the model. The most intuitive idea is to try different hyperparameter values,
evaluate the performance of these models on the test set, and select the model with

Fig. 2.27 Comparison of the efficiency of gradient descent algorithms

Fig. 2.28 Training set, validation set and test set

2.4 Model Parameters and Hyperparameters 65

the strongest generalization ability. The problem is that the test set cannot participate
in model training in any form, even for hyperparameter search. Therefore, some
samples should be randomly selected from the training set, and the set of these
samples is called the validation set. The samples of the validation set also do not
participate in training, and are only used to verify the effect of hyperparameters.
Generally speaking, the model needs to be optimized repeatedly on the training set
and validation set to finally determine the parameters and hyperparameters and be
evaluated on the test set. Methods commonly used to search model hyperparameters
include grid search, random search, heuristic intelligent search, and Bayesian search.

Grid search attempts to exhaustively search for all possible hyperparameter
combinations to form a grid of hyperparameter values, as shown in Fig. 2.29a. In
practice, the range and step length of the grid often need to be manually designated.
In the case of a relatively small number of hyperparameters, grid search is applicable,
so grid search is feasible in general machine learning algorithms. However, in the
case of neural networks, grid search is too expensive and time-consuming, so it is not
adopted in most cases.

In the case of a large hyperparameter search space, the result of using random
search will be better than grid search, as shown in Fig. 2.29b. Random search
implements random sampling of parameters, where each setting is to sample from
the distribution of possible parameter values, trying to find the best subset of
parameters. To use random search, you need to “coarse adjustment” first and then
“fine adjustment”. Namely, searching in a coarse range first, and then narrowing the
search range according to the position where the best result appears. It is worth
noticing that some hyperparameters may be more important than others in actual
operation. In this case, the most important hyperparameters will directly affect the
search bias, while the secondary hyperparameters may not be well optimized.

Fig. 2.29 Grid search and random search

66 2 Machine Learning

2.4.3 Cross-validation

The above-mentioned method of dividing the verification set has two main prob-
lems: the chance of sample division is great, and the verification result is not
convincing; and the number of samples that can be used for model training is further
reduced. In order to solve this problem, the training set can be divided into k groups
for k-fold cross-validation. K-fold cross-validation will perform k rounds of training
and verification, where one set of data is used as the verification set in turn, and the
remaining k � 1 sets of data are used as the training set. This will get k models and
their classification accuracy on the validation set. The average of these
k classification accuracy rates can be used as a performance indicator for the
generalization ability of the model.

K-fold cross-validation can avoid contingency in the process of dividing the
validation set, and the validation results are more convincing. However, using k-
fold cross-validation requires training k models. If the dataset is large, the training
will be time-consuming. Therefore, k-fold cross-validation is generally applicable to
smaller datasets.

The k value in k-fold cross-validation is also a hyperparameter, which needs to be
determined through experiments. In an extreme case, the value of k is the same as the
number of samples in the training set. This approach is called leave-one-out cross-
validation, because one training sample is left as a validation set during each
training. The training result of leaving-one-out cross-validation is better, because
almost all training samples are involved in the training. But leaving-one-out cross-
validation takes a longer time, so it is only suitable for small dataset.

2.5 Common Algorithms of Machine Learning

As shown in Fig. 2.30, there are many common algorithms for machine learning, and
a detailed introduction of these algorithms may take a long as a whole book.
Therefore, this section only briefly introduces the principles and basic ideas of
these algorithms. Readers who are interested in this topic can refer to other books
for in-depth understanding.

2.5.1 Linear Regression

Linear regression is a statistical analysis method that uses regression analysis in
mathematical statistics to determine the quantitative relationship between two or
more variables. It belongs to supervised learning. As shown in Fig. 2.31, the model
function of linear regression is a hyperplane:

2.5 Common Algorithms of Machine Learning 67

h xð Þ ¼ wTxþ b

Where, w is the weight parameter, b is the bias, and x is the sample.
The relationship between the predicted value of the model and the true value is as

follows:

y ¼ h xð Þ þ ε

Where, y represents the true value and represents the error. The error is affected by
many factors. According to the central limit theorem, the error obeys the normal
distribution.

Fig. 2.30 Common algorithms of machine learning

Fig. 2.31 Linear regression

68 2 Machine Learning

ε � N 0, σ2
� �

Where, the probability distribution of the true value can be obtained.

y � N h xð Þ, σ2� �
According to the maximum likelihood estimation, the goal of model optimization is

argmax
h

Ym
i¼1

P Y ¼ yi X ¼ xijð Þ ¼ argmax
h

Ym
i¼1

1ffiffiffiffiffi
2π

p
σ
exp � h xið Þ � yið Þ2

2σ2

� �

Where, argmax represents the maximum point, which is h that maximizes the value

of the objective function. In the objective function,
ffiffiffiffiffi
2π

p
σ

� ��1
is a constant that has

nothing to do with h, and multiplying or dividing the objective function by a constant
will not change the position of the maximum point, so the optimization objective of
the model can be transformed into

argmax
h

Ym
i¼1

exp � h xið Þ � yið Þ2
2σ2

� �

Because the logarithmic function is monotonic, taking ln for the objective function
will not affect the maximum point.

argmax ln
h

Ym
i¼1

exp � h xið Þ � yið Þ2
2σ2

� � !
¼ argmax

h

Xm
i¼1

� h xið Þ � yið Þ2
2σ2

By taking the negative of the objective function, the original maximum point will
become the minimum point. At the same time, we can also multiply the objective
function by a constant to convert the optimization goal of the model into

argmin
h

1
2m

Xm
i¼1

h xið Þ � yið Þ2

Obviously, the loss function is

J wð Þ ¼ 1
2m

Xm
i¼1

h xið Þ � yið Þ2

We hope that the predicted value is as close as possible to the true value, that is, to
minimize the loss value. The method of gradient descent can be used to find the

2.5 Common Algorithms of Machine Learning 69

weight parameter w when the loss function is minimized, and then the model
construction is completed.

Polynomial regression is a branch of linear regression. Generally, the complexity
of the dataset would exceed the possibility of fitting with a straight line, that is, using
the original linear regression model will obviously underfit. The solution is to use
polynomial regression, as shown in Fig. 2.32, the formula is

h xð Þ ¼ w1xþ w2x
2 þ⋯þ wnx

n þ b

Where, n represents the polynomial regression dimension.
The polynomial regression dimension is a hyperparameter. If you choose it

carelessly, it may cause overfitting. Applying regularization helps reduce overfitting.
The most common regularization method is to add a square sum loss on top of the
objective function

h xð Þ ¼ w1xþ w2x
2 þ⋯þ wnx

n þ b

Where k•k2 represents the L2 regular term. The linear regression model using this
loss function is also called the ridge regression model. Similarly, the linear regres-
sion model with the added absolute value loss is called the Lasso regression model,
and its formula is

J wð Þ ¼ 1
2m

Xm
i¼1

h xið Þ � yið Þ2 þ λ
X

wk k1

Where k•k1 represents the L1 regular term.

Fig. 2.32 Comparison of
linear regression and
polynomial regression

70 2 Machine Learning

2.5.2 Logistic Regression

Logistic regression model is a classification model used to solve classification
problems. The definition of the model is as follows:

h xð Þ ¼ P Y ¼ 1 Xjð Þ ¼ g wTxþ b
� �

Where g represents the sigmoid function, w represents the weight, and b, the bias. In
the formula, is a linear function of x, so logistic regression, like linear regression,
belongs to the generalized linear model.

The definition of the sigmoid function is as follows:

g xð Þ ¼ 1
1þ exp �xf g

The image of the sigmoid function is shown in Fig. 2.33.
By comparing the magnitude relationship between P(Y ¼ 1|X) and the threshold

t, the classification result corresponding to x can be obtained. The threshold t here is a
hyperparameter of the model, which can be chosen arbitrarily. It can be seen that
when the threshold is large, the model tends to judge the sample as a negative
example, so the precision rate will be higher; when the threshold is smaller, the
model tends to judge the sample as a positive example, so the recall rate will be
higher. Generally, 0.5 can be used as the threshold.

According to the idea of maximum likelihood estimation, when the sample is a
positive example, we expect P(Y ¼ 1|X) to be larger; when the sample is a negative
example, we expect P(Y¼ 0|X) to be larger. In other words, we expect the following
equation to be as large as possible whatever the sample is:

P ¼ P Y ¼ 1 Xjð ÞyP Y ¼ 0 Xjð Þ1�y

Replace P(Y ¼ 1|X) and P(Y ¼ 0|X) with h(x) to get

Fig. 2.33 Sigmoid function

2.5 Common Algorithms of Machine Learning 71

P ¼ h xð Þy � 1� h xð Þð Þ1�y

Therefore, the goal of model optimization is

argmax
h

Ym
i¼1

Pi ¼ argmax
h

Ym
i¼1

h xð Þy 1� h xð Þð Þ1�y

The derivation process similar to linear regression can take the logarithm of the
objective function without changing the position of the maximum point. Therefore,
the optimization goal of the model is equivalent to

argmax
h

Xm
i¼1

y ln h xð Þ þ 1� yð Þ ln 1� h xð Þð Þð Þ

Multiplying the objective function by the constant �1/m will cause the original
maximum point to become the minimum value point, which is

argmin
h

�1
m

Xm
i¼1

y ln h xð Þ þ 1� yð Þ ln 1� h xð Þð Þð Þ

Therefore, the loss function of logistic regression is

J wð Þ ¼ � 1
m

X
y ln h xð Þ þ 1� yð Þ ln 1� h xð Þð Þð Þ

Where, w represents the weight parameter, m is the number of samples, x is the
sample, and y is the true value. The value of the weight parameter w can also be
obtained through the gradient descent algorithm.

Softmax regression is a generalization of logistic regression, which is applicable
for k classification problems. Essentially, the softmax function compresses (maps) a
k-dimensional arbitrary real number vector into another k-dimensional real number
vector to represent the probability distribution of the category of the sample. The
softmax regression probability density function is as follows:

P Y ¼ c xjð Þ ¼ exp wT
c xþ b

� �Pk
l¼1 exp wT

c xþ b
� �

As shown in Fig. 2.34, the softmax function assigns probability values to each
category in the multi-class problem, and these probabilities add up to 1. Among
these categories, the probability value of the sample category being apple is the
largest, which is 0.68, so the predicted value of the sample should be the apple.

72 2 Machine Learning

2.5.3 Decision Tree

Decision tree is a tree structure (binary or non-binary) classifier, as shown in
Fig. 2.35. Each non-leaf node represents a test on a feature attribute, each branch
represents the output of this feature attribute in a certain value range, and each leaf
node stores a category. The process of using a decision tree to make a decision is to
start from the root node, test the corresponding feature attributes in the items to be
classified, and select the output branch according to its value until the leaf node is
reached, and the category stored in the leaf node is used as the decision result.

The most important thing in the decision tree model is the structure of the tree.
The construction of the so-called decision tree is to select attributes to determine the
topological structure between each feature attribute. The key step in constructing a
decision tree is to perform the division operation according to all the feature

Fig. 2.34 An example of
the softmax function

Fig. 2.35 An example of decision tree

2.5 Common Algorithms of Machine Learning 73

attributes, compare the purity of the result set of all the division operations, and
select the attribute with the highest purity as the data point of the split dataset. The
learning algorithm of the decision tree is the algorithm that constructs the decision
tree, and the commonly used algorithms include ID3, C4.5 and CART. The differ-
ence between these algorithms is mainly in the quantitative indicators of purity, such
as information entropy and Gini coefficient:

H Xð Þ ¼ �
XK
k¼1

p k log 2p k

Gini ¼ 1�
XK
k¼1

p2 k

Where, pk represents the probability that the sample belongs to class k, and
K represents the total number of categories. The greater the difference in purity
before and after segmentation, the more conducive that judging a certain feature is to
the improvement of the accuracy of the model, indicating that it should be added to
the decision tree model.

In general, the process of building a decision tree consists of the following three
stages.

1. Feature selection: select a feature from the features of the training data as the split
criterion for the current node (different criteria for feature selection produce
different decision tree algorithms).

2. Decision tree generation: According to the selected feature evaluation criteria,
child nodes are generated recursively from top to bottom until the dataset is
inseparable, then the decision tree growth is stopped.

3. Pruning: By reducing the size of the tree to suppress the overfitting of the model,
it can be divided into pre-pruning and post-pruning.

Figure 2.36 shows a case of classification using a decision tree model. The classi-
fication result is affected by three attributes: tax refund, marital status and taxable

Fig. 2.36 Building a decision tree

74 2 Machine Learning

income. From this example, we can see that the decision tree model can not only
handle the case where the attribute takes two values, but also the case where the
attribute takes multiple values or even continuous values. In addition, the decision
tree model is interpretable, and we can intuitively analyze the importance relation-
ship between attributes based on the structure chart shown in Fig. 2.36b.

2.5.4 Support Vector Machine

Support vector machine (SVM) is a linear classifier with the largest interval defined
in the feature space. The learning algorithm of SVM is an optimal algorithm for
solving convex quadratic linear programming. In summary, the core concepts of
SVM include the following two aspects.

1. Search for the optimal hyperplane in the feature space based on the structural risk
minimization theory, so that the learner obtains global optimization, and the
expectation in the entire sample space satisfies a certain upper bound with a
certain probability.

2. For linearly inseparable data, map the linearly inseparable samples of the
low-dimensional input space to the high-dimensional feature space to make
them linearly separable based on a nonlinear mapping algorithm, so that the
high-dimensional feature space adopts the linear algorithm for the nonlinearity
of the sample Linear analysis of features becomes possible.

Straight lines are used to divide the data into different categories, but in fact we can
find multiple straight lines to separate the data, as shown in Fig. 2.37. The core idea
of SVM is to find a straight line that meets the above conditions, and make the points
closest to the straight line as distant as possible from this straight line. This will give
the model a strong generalization ability. These points closest to the straight line are
called support vectors.

Linear SVM can perform properly on linear separable datasets, but we cannot use
straight lines to divide non-linear datasets. At this time, a kernel function is needed to
construct a nonlinear SVM. The kernel function allows the algorithm to fit the
hyperplane in the transformed high-dimensional feature space, as shown in

Fig. 2.37 Performance of linear classifier

2.5 Common Algorithms of Machine Learning 75

Fig. 2.38. Common kernel functions include linear kernel function, polynomial
kernel function, Sigmoid kernel function and Gaussian kernel function. The Gauss-
ian kernel function can map samples to infinite dimensional space, so the effect is
also better, and it is one of the most commonly used kernel functions.

2.5.5 K-Nearest Neighbor Algorithm

The K-nearest neighbor (KNN) algorithm is a theoretically mature method and one
of the simplest machine learning algorithms. The KNN algorithm is a non-parametric
method, which tends to perform better in datasets with irregular decision boundaries.
The idea of this method is: if most of the K nearest samples (i.e., nearest neighbors in
the feature space) of a sample in the feature space belong to a certain category, then
the sample also belongs to this category.

The core concept of the KNN algorithm is “What’s around cinnabar goes red, and
what’s around ink turns black”, featuring a concise logic. But like k-fold cross-
validation, K in the KNN algorithm is also a hyperparameter. This means that it is
difficult to select the K value appropriately. As shown in Fig. 2.39, when the K value
is 3, the prediction result at the question mark will be a triangle; and when the
K value is 5, the prediction result at the question mark will become a square.
Figure 2.40 shows the decision boundary for different K values. It can be found
that as the value of K increases, the decision boundary will become smoother.
Generally speaking, a larger K value will reduce the impact of noise on classification
but will make the boundaries of classes less obvious. The larger the K value is, the
more likely it is to cause under-fitting, because that the decision boundaries are too
blur. Correspondingly, the smaller the K value is, the easier it is to cause over-fitting,
because that the decision boundaries are too sharp.

The KNN algorithm can not only be used for the classification problems, but also
for the regression problems. In the classification prediction problem, it normally
adopts the majority voting method. In the regression prediction problem, the average
method is widely used. Although these methods are seemingly only about the
K samples of the nearest neighbors, the computation volume of the KNN algorithm

Fig. 2.38 Kernel function

76 2 Machine Learning

is very large in fact. This is because that the KNN algorithm needs to traverse all
samples to determine which K samples are the nearest neighbors to the sample to be
tested.

Fig. 2.39 An example of
KNN algorithm

Fig. 2.40 The influence of
K value on decision
boundary

2.5 Common Algorithms of Machine Learning 77

2.5.6 Naive Bayes

Naive Bayes is a simple multi-classification algorithm based on Bayes’ theorem and
assumes that the features are independent. Given the sample feature X, the proba-
bility that the sample belongs to class c is

P C ¼ c Xjð Þ ¼ P X C ¼ cjð ÞP C ¼ cð Þ
P Xð Þ

Where, P(C ¼ c|X) is called the posterior probability, P(C ¼ c) represents the prior
probability of the target, and P(X) represents the prior probability of the feature.
Normally we do not consider P(X), because P(X) can be seen as a fixed value when
classifying, that is

P C ¼ c Xjð Þ / P X C ¼ cjð ÞP C ¼ cð Þ

P(C ¼ c) has nothing to do with X and needs to be determined before training the
model. Generally, the proportion of samples with category c in the dataset is
calculated as P(C ¼ c). It can be seen that the core of classification is to find P(X|
C ¼ c). Suppose feature X is composed of the following elements:

X ¼ X1, X2, ⋯, Xnð Þ

Generally, it can be easily calculated that

Yn
i¼1

P Xi C ¼ cjð Þ

Combining the attribute conditional independence assumption, we can prove

P X C ¼ cjð Þ ¼
Yn
i¼1

P Xi C ¼ cjð Þ

The attribute conditional independence assumption states that given the sample
classification as a condition, the distribution of each attribute value is independent
of the distribution of other attribute values. The reason why Naive Bayes is naive is
precisely because of the attribute independence assumption used in its model.
Making this assumption effectively simplifies the calculation and gives the Bayesian
classifier a higher accuracy and training speed on large databases.

Here is an example. We want to judge a person’s gender C by his height X1 and
weight X2. Suppose that the probability of a person with a height of 180 cm and a
height of 150 cm is male is 80% and 20%, respectively, and the probability of a
person with a weight of 80 kg and 50 kg is male is 70% and 30%, respectively.

78 2 Machine Learning

According to the Naive Bayes model, the probability that a person with a height of
180 cm and a weight of 50 kg is male is 0.8� 0.3¼ 0.24, while the probability that a
person with a height of 150 cm and a weight of 80 kg is male is only
0.7 � 0.2 ¼ 0.14. It can be considered that the two features of height and weight
independently contribute to the probability that this person is male.

The performance of the Naive Bayes model usually depends on the degree to
which the feature independence hypothesis is satisfied. As mentioned in the previous
example, the two features of height and weight are not completely independent. This
correlation will inevitably affect the accuracy of the model, but as long as the
correlation is not large, we can continue to use the Naive Bayes model. In practical
applications, different features are rarely completely independent.

2.5.7 Ensemble Learning

Integrated learning is a machine learning paradigm. In this paradigm, multiple
learners are trained and combined to solve the same problem, as shown in
Fig. 2.41. Thanks to the multiple learners involved, the generalization ability of
ensemble learning can be much stronger than using a single learner. Let’s imagine
you randomly ask a complicated question to several thousands of people, and then
combine their answers together. In most cases, this integrated answer is even better
than an answer provided by an expert. This is the collective intelligence we talk
about.

The implementation methods of ensemble learning can be classified into two
types—bagging and boosting. Bagging independently builds several basic learners,
and then averages their predictions. Typical models of Bagging include random

Fig. 2.41 Ensemble learning

2.5 Common Algorithms of Machine Learning 79

forests and so on. On average, the prediction result of the combined learner is usually
better than any single elementary learner because its variance is reduced. Boosting
constructs the basic learner in a sequential manner, and gradually reduces the
deviation of the comprehensive learner’s prediction. Typical models of Boosting
include Adaboost, GBDT and XGboost. In general, Bagging can reduce the vari-
ance, thereby suppressing over-fitting; while Boosting focuses on reducing the
deviation, thereby increasing the capacity of the model, but it may cause over-fitting.

Random forest algorithm is a combination of the bagging method and the CART
decision tree. The overall process of the algorithm is shown in Fig. 2.42. Random
forest algorithm can be used for classification and regression problems. The basic
principle is to build multiple decision trees and merge them to make more accurate
and stable predictions. During the training process of the decision tree, sampling is
performed at the two levels of sample and feature at the same time. At the sample
level, the bootstrap sampling (sampling with replacement) is used to determine the
sample subset used for decision tree training. At the feature level, before each node
of the decision tree is split, some features are randomly selected to calculate the
information gain. By synthesizing the prediction results of multiple decision trees,
the random forest model can reduce the variance of a single decision tree model, but
the effect of correcting the deviation is not satisfactory. Therefore, the random forest
model requires that every decision tree cannot be underfitted, even if this require-
ment may cause some decision trees to overfit. Also, note that each decision tree
model in the random forest is independent, so the training and prediction processes
can be performed in parallel.

Gradient boosting decision tree (GBDT) is one of the Boosting methods. The
predicted value of the model is the sum of the results of all decision trees. The
essence of GBDT is to continuously use new decision trees to learn the residuals of
all previous decision trees, that is, the error between the predicted value and the true
value. As shown in Fig. 2.43, for a given sample, the prediction result of the first
decision tree is 20 years old, while the true age of the sample is 30. The difference
between the predicted result and the true value is 10. If we can predict this difference
with another decision tree, we can improve the prediction result of 20 and make it
closer to 30. Based on this idea, we introduce the second decision tree to learn the

Fig. 2.42 Random forest algorithm

80 2 Machine Learning

error of the first decision tree, and so on. Finally, the prediction results of the three
learners are added together to get the true value of 30. GBDT improves accuracy by
continuously correcting the deviation of the decision tree, thus allowing a certain
degree of underfitting of the decision tree. However, GBDT cannot correct the
variance, so it is generally not allowed to overfit the decision tree. This is also one
of the biggest differences between the boosting and bagging methods. In addition,
the training data of each decision tree in GBDT depends on the output of the
previous decision tree, so the training process cannot be parallelized.

2.5.8 Clustering Algorithm

K-means clustering algorithm (K-Means clustering) is an algorithm that inputs the
number of clusters K and a dataset containing n data objects, and outputs K clusters
that meet the minimum variance standard, as shown in Fig. 2.44. It shows that the
final obtained cluster meets: the similarity of objects in the same cluster is higher;
and the similarity of objects in different clusters is lower.

Compared to the K-Means algorithm, the hierarchical clustering algorithm also
outputs the tree-like relationship between the samples while outputting the clusters.
As shown in Fig. 2.45, the hierarchical clustering algorithm tries to divide the dataset
at different levels so as to form a tree-shaped clustering structure. The dataset can be
divided either by a “bottom-up” agglomerative strategy, or a “top-down” divisive
strategy. The hierarchy of clusters is represented as a tree diagram, where the root of
the tree represents the ancestor class of all samples, and the leaves are clusters with
only one sample.

Fig. 2.43 GBDT algorithm

2.5 Common Algorithms of Machine Learning 81

2.6 Case Study

By the end of this chapter, we are about to review the overall process of a machine
learning project with one case. Suppose there is a dataset that gives the living area
(1 square foot� 0.09 square meter) and price of 21,613 houses sold in a certain city,
as shown in Fig. 2.46. Based on such data, we hope to train a model to predict the
prices of other houses in the city.

It can be inferred from the data in the house price dataset that the input (house
area) and output (price) in the data are continuous values, so the regression model in
supervised learning can be used. The goal of the project is to build a model function
h(x) to make the model infinitely approximate the function that expresses the true

Fig. 2.44 K-Means
algorithm

Fig. 2.45 Hierarchical clustering algorithm

82 2 Machine Learning

distribution of the dataset. Figure 2.47 shows a scatter plot of the data and a possible
model function.

The goal of linear regression is to find a straight line that best fits the dataset, that
is, to determine the parameters in the model. In order to find the best parameters, we
need to construct a loss function and find the parameter value when the loss function
reaches the minimum value. The equation of the loss function is as follows:

Fig. 2.46 Housing price
dataset

Fig. 2.47 Model assumptions/square foot

2.6 Case Study 83

J wð Þ ¼ 1
2m

X
h xð Þ � yð Þ2

Where m represents the number of samples, h(x) is the predicted value, and y is the
true value. Intuitively, the loss function represents the sum of squared errors from all
samples to the model function, as shown in Fig. 2.48. When this loss function is
reduced to the minimum, all samples should be evenly distributed on both sides of
the fitted straight line. At this time, the fitted straight line is the model function we
require.

As mentioned earlier, the gradient descent algorithm uses an iterative method to
find the minimum value of a function. The gradient descent algorithm first randomly
selects an initial point on the loss function, and then finds the global minimum value
of the loss function according to the negative gradient direction. The parameter value
at this time is the best parameter value we require, as shown in Fig. 2.49. Point

Fig. 2.48 Geometric
meaning of error

Fig. 2.49 Loss surface

84 2 Machine Learning

A represents the position where the parameter w is randomly initialized; point
B represents the global minimum of the loss function, which is the final parameter
value; the connected line between A and B represents the trajectory formed by the
negative gradient direction. For every iteration, the value of parameter w will
change, resulting in the constant change of the regression line.

Figure 2.50 shows an example of an iterative process using gradient descent. It
can be observed that as the points on the loss surface gradually approach the lowest
point, the linear regression fitting line fits the data better and better. Finally, we can
get the best model function h(x) ¼ 280.62x � 43,581.

After the model training is completed, we need to use the test set for testing to
ensure that the model has sufficient generalization capabilities. If there is overfitting
in the test, we can add a regular term to the loss function and adjust the
hyperparameters. If it is under-fitting, we can use more complex regression models,
such as GBDT. After that, the model needs to be retrained, and the test set is reused
for testing until the generalization ability of the model meets expectations. It should
be noted that since real data is used in the project, the role of data cleaning and
feature selection cannot be ignored either.

2.7 Chapter Summary

This chapter mainly introduces the definition, classification and major challenges of
machine learning. Meanwhile, the overall process of machine learning (data collec-
tion, data cleaning, feature extraction and selection, model training, model

Fig. 2.50 Visualization of the gradient descent process

2.7 Chapter Summary 85

evaluation and testing, model deployment and integration, etc.), common machine
learning algorithms (linear regression, logistic regression, decision trees, support
vector machines, naive Bayes, KNN, ensemble learning, K-Means, etc.), gradient
descent algorithms, hyperparameters and other important machine learning knowl-
edge are sorted out and explained; finally, through the use of linear regression, the
housing price prediction case is completed, showcasing the overall process of
machine learning.

2.8 Exercises

1. Machine learning is the core technology of artificial intelligence. Please tell us the
definition of machine learning.

2. The generalization error of the model can be classified into variance, bias, and
irresolvable errors. What is the difference between variance and bias? What are
the characteristics of the variance and bias of an overfitting model?

3. In accordance with the confusion matrix shown in Fig. 2.25, please find the F1
value.

4. In machine learning, the entire dataset is generally divided into three parts:
training set, validation set, and test set. What is the difference between the
verification set and the test set? Why introduce a validation set?

5. Linear regression models use linear functions to fit the data. For nonlinear data,
how to deal with the linear regression model?

6. Many classification models can only handle two classification problems. Taking
SVM as an example, try to find a solution for multi-classification problems.

7. Please refer to the relevant information and answer how does the Gaussian kernel
function in SVM map features to infinite dimensional space?

8. Is gradient descent the only way to train the model? What are the limitations of
this method?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from this chapter or
parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

86 2 Machine Learning

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 2: Machine Learning
	2.1 Introduction to Machine Learning
	2.1.1 Rational Understanding of Machine Learning Algorithms
	2.1.2 Major Problems Solved by Machine Learning

	2.2 Types of Machine Learning
	2.2.1 Supervised Learning
	2.2.2 Unsupervised Learning
	2.2.3 Semi-supervised Learning
	2.2.4 Reinforcement Learning

	2.3 The Overall Process of Machine Learning
	2.3.1 Data Collection
	2.3.2 Data Cleaning
	2.3.3 Feature Selection
	2.3.4 The Construction of Machine Learning Models
	2.3.5 Model Evaluation

	2.4 Model Parameters and Hyperparameters
	2.4.1 Gradient Descent
	2.4.2 Validation Set and Hyperparameter Search
	2.4.3 Cross-validation

	2.5 Common Algorithms of Machine Learning
	2.5.1 Linear Regression
	2.5.2 Logistic Regression
	2.5.3 Decision Tree
	2.5.4 Support Vector Machine
	2.5.5 K-Nearest Neighbor Algorithm
	2.5.6 Naive Bayes
	2.5.7 Ensemble Learning
	2.5.8 Clustering Algorithm

	2.6 Case Study
	2.7 Chapter Summary
	2.8 Exercises

