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Abstract. Magnetic Resonance Imaging (MRI) is widely adopted in medical
diagnosis. Due to the spatial coding scheme, MRI image is degraded by various
noise. Recently, massive methods have been applied to the MRI image denoising.
However, they lack the consideration of artifacts in MRI images. In this paper, we
propose an unsupervised MRI image denoising method called UEGAN based on
decoupled expression. We decouple the content and noise in a noisy image using
content encoders and noise encoders.We employ a noising branch to push the noise
decoder only extract the noise. The cycle-consistency loss ensures that the content
of the denoised results match the original images. To acquire visually realistic
generations, we add an adversarial loss on denoised results. Image quality penalty
helps to retain rich image details. We perform experiments on unpaired MRI
images from Brainweb datesets, and achieve superior performances compared to
several popular denoising approaches.

Keywords: Unsupervised · MRI image denoising · GAN · Decouple expression

1 Introduction

MRI image can provide various kinds of detailed information with respect to physical
health. However, external errors, inappropriate spatial encoding, body motion etc. may
jointly result in the undesirable effects of MRI and the harmful noise. CleanMRI images
could increase the accuracy of computer vision assignments [1, 2], like semantic seg-
mentation [3] and object detection [4]. In the past, a wide variety of denoising methods
have been proposed such as filtering methods [5, 6], transform domain method [7]. Nev-
ertheless, these methods are restricted to numerous objective factors such as undesirable
texture changes caused by violation of assumptions and heavy computational overhead.
Recently, deep learning methods have made great progress in the field of image denois-
ing. These means helps to acquire the impressive effects in MRI image denosing. Due
to the scarcity of medical images, researchers need to use unpaired data during training.
Generative adversarial network (GAN) [8] have been found to be more competitive in
image generation tasks [9, 10]. One of the solutionmight be directly using some unsuper-
visedmethods (DualGAN [11], CycleGAN [12]) to find themappings between clear and
noised image domains. However, these general methods often encode some irrelevant
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characteristics such as texture features rather than noise attributes into the generators,
and thus will not produce high-quality denoised images.

Under the guidance of aforementioned theories, we present a MRI image denoising
method called UEGAN which uses GAN based on decoupled expression to generate
visually realistic denoised images. More specifically, we decouple the content and noise
from noised images to accurately encode noise attributes into the denoising model.
As shown in Fig. 1, the content encoders encode content information and the noise
encoder encode noise attributes from unpaired clear and noised MRI images. However,
this type of structure can’t guarantee that the noise encoder encodes noise attributes
only - it may encode content information as well. So we employ the nosing branch to
limit the noise encoder to encode the content attributes of n. The denosing generator
Gclear and the noising generator Gnoised take corresponding content information on
condition of noise attributes to generate denoised MRI images and noised MRI images.
Based on CycleGAN [12], we apply the adversarial loss and the cycle-consistency loss
as the regularizers to help the generator generate a MRI image which closes to the
original image. In order to further reduce the undesirable banding artifacts introduced
byGnoised andGclear , we apply the image quality penalty into this structure. We conduct
experiments on Brainweb MRI datasets, and obtain qualitative and quantitative results
that are competitive with several conventional methods and a deep learning method.

2 Related Work

Since the proposed model structure makes most use of the popular denoising network
and the latest technology of image disentangled representation, in this part, we briefly
review the generative adversarial network, single image denoising and disentangled
representation.

2.1 Generative Adversarial Network

Generative adversarial network [8] is brought forward to train generative models. Rad-
ford et al. [13] propose GANs of CNN version called DCGANs. Arjovsky et al. [14]
introduce a novel loss calledwasserstein intoGANat train time. Zhang et al. [15] propose
Self-Attention GAN which applies attention mechanism to the field of image creation.

2.2 Disentangled Representation

Recently, there is a rapid development in learning disentangled representations, namely
decoupled expression. Tran et al. [16] unravel posture and identity components for
face recognition, which called DRGAN. Liu et al. [17] present an identity extraction
and elimination autoencoder to disentangle identity from other characteristics. Xu et al.
propose FaceShapeGene [18]which correctly disentangles the shape features of different
semantic facial parts.
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2.3 Single Image Denosing

Image noise has caused serious damages to image quality. There are many deep learning
methods that focus on image denoising tasks. Jain et al. [19] firstly introduce Convolu-
tional neural networks (CNN) which has a small receptive field into image denoising.
Chen et al. [20] joint Euclidean and perceptual loss functions to find more edge infor-
mation. According to deep image prior (DIP), present by Ulyanov et al. [21], abundant
prior knowledge for image denosing already exist in the pre-train convolutional neural
network.

3 Proposed Method

Inspired by GAN, single image denosing, decoupled expression, we proposed a MRI
image Unsupervised denoising method called UEGAN which has well designed loss
functions based on decoupled expression. This structure combines the advantages of the
above three classic models and is made up of four parts: 1) content encoders Econt

N for
noisy image domain and Econt

C for clear image domain; 2) noise encoder Enoise; 3) noised
and clear image generator Gnoised and Gclear ; 4) noised and clear image discriminators
DN andDC . Given a train sample n∈N in the noised image domain and c ∈C in the clear
image domain, the content encoders Econt

N and Econt
C acquire content information from

corresponding samples and Enoise extract the noise attributes fromN. Then Enoise(n) and
Econt
C (c) are feed into the Gnoised to generate a noised image cn, meanwhile, Enoise(n)

and Econt
N (n) are feed into the Gclear to generate a clear image nc. The discriminators

Dnoise and Dclear differentiate the real from generated examples. The final structure is
shown in Fig. 1.

3.1 Decoupling Noise and Content

It is not easy to decouple content information from a noised image because the ground
truth image is not available in the unpaired setting. since the clear image c is not affected
by noise, the content encoder Econt

C (c) is equivalent to encoding the content character-
istics only. We share the weights of the last layer which existing in the Econt

N (n) and
Econt
C (c) respectively to encode as much content information from noised image domain

as possible.
Meanwhile, the noise encoder should only encode noise attributes. So We feed the

outputs of Enoise(n) and Econt
C (c) into the Gnoised to generate cn. Since cn is a noised

version of c, cn does not contain any content information of n in the whole process. This
nosing branch further limits the noise encoder to encode the content information of n.
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Fig. 1. The architecture of our network. The denoising branch (bottom noising branch) is rep-
resented by full line (dotted line). Econt

N and Econt
C are content encoders for noised and clear

images. Enoise is a noise encoder. Gnoised and Gclear are noised image and clear image gener-
ators. GAN losses are added to differentiate cn from noised images, and nc from clear images.
Cycle-consistency loss is employed to n and n′, c and c′. IE loss is applied to n and nc.

3.2 Adversarial Loss

In order to acquire a cleaner output, we introduce the adversarial loss function into
the content domain and the noise domain. For the clear image domain, we define the
adversarial loss as LDC :

LDC = Ec∼p(c)[log DC(c)] + En∼p(n)[log(1 − DC(Gclear(E
cont
N (n), z)))]. (1)

where z = Enoise(n) and DC devotes to maximize the objective function to differentiate
denoised images from real clear images. In contrast,Gclear tries tominimize the objective
function to make denoised images look similar to real samples in clear image domain.
For the clear image domain, we define the loss as LDN :

LDN = En∼p(n)[log DN (n)] + Ec∼p(c)[log(1 − DN (Gnoise(E
cont
C (c), z)))]. (2)

3.3 Image Quality Penalty

We have observed that the denoised images nc usually contains unpleasant banding
artifacts in the experiment. So we introduce the Image information entropy (IE) [22]
which is utilized to compute the amount of information in an image to reduce the banding
artifacts. And IE loss is employed to guide the generator to produce MRI images with
less noise. The loss is defined as:

LIE(Gclear(z)) =
∑d

i=0, p(i)�=0
p(i)log

1

p(i)
. (3)
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where d is the range of image intensity and p(i), i = 0, 1,2,…, d is the probability
distribution of the intensity of the output Gclear(x).

3.4 Cycle-Consistency Loss

Gclear should have the ability to generate visually realistic and clear images after the
minmax game. However, without the guidance of pairwise supervision, the denoised
image nc may rarely retains the content information of the original noised sample n.
Therefore, we introduce the cycle-consistency loss to ensure that the denoised image
nc can be renoised to construct the original noised image and cn can be translated back
to the original clear image domain. The loss preserves more content information of
corresponding original samples. In more detail, we define the forward translation as:

nc = Gclear(E
cont
N (n), Enoise(n)),

cn = Gnoised (E
cont
C (c), Enoise(n)). (4)

And the backward translation as:

n′ = Gnoised (E
cont
C (cn),Enoise(nc)),

c′ = Gclear(E
cont
N (nc),Enoise(nc)). (5)

We perform the loss on both domains as follows:

Lcc = Ec∼p(c)
[∥∥c − c′∥∥

1

] + En∼p(n)
[∥∥n − n′∥∥

1

]
. (6)

Meanwhile, we carefully balance the weights among the aforementioned losses to
prevent nc from staying too close to n.

The total objective function is a combination of all the losses from (1) to (6) with
respective weights:

L = λadvLadv + λIELIE + λccLcc. (7)

3.5 Testing

In the process of testing, the noising branch is removed. Provided a test image a, Econt
N

and Enoise extract the content information and noise attributes. Then Gclear takes the
outputs and generates the denoised image A:

A = Gclear(E
cont
N (a), Enoise(a)). (8)
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4 Experiments and Analysis

We compare the MRI image denoising performance between our work with non-local
means (NLM) [23] and a deep learning method DIP. To analyze the performance of
denoisingmethods quantitatively, peak signal to noise ratio (PSNR), structural similarity
index (SSIM) are employed.We evaluate the proposedmodel onBrainwebMRI datasets.
The unpaired train set with 150 MRI images consists of the following two parts:

1) Samples from the noise image domain consist of seventy-five slices, whose slice
thickness is 1 mm, and additional gaussian noise standard deviation sigma is 25.

2) Samples (no additional gaussian noise) from the clear image domain consist of
seventy-five slices, whose slice thickness is 1 mm.

4.1 Implementation Details

We train our network UEGAN using Pytorch 1.4.0 package on a computer with Intel
i9 9300k CPU, NVIDIA RTX 2080Ti GPU, 32 Gb memory and windows10 OS with
Brainweb MRI datasets. The UEGAN is optimized using the gradient-based Adam-
optimizer whose hyper-parameter is set as β1= 0.5, β2= 0.999, Nepoch= 100000, and
the learning rate of all generators is 2e−4, the learning rate of all discriminators is 1e−4.
We utilize 208 × 176 original size with batch size of 4 for training. We experimentally
set hyper-parameters: λadv = 1, λcc = 10, λIE = 10.

4.2 Experimental Results

In this section, we compare our method with NLM and DIP, and the denosing perfor-
mance is shown in Fig. 2. For NLM, the denoising results is blurry and a great quantity
of local details are missing. However, our visual results have the sharper texture and
more structure details.

ForDIP, it produces artifacts and cannot recovermeaningfulMRI image information.
On the contrary, ourmodelUEGANobtainsmore distinct results and less noise especially
on local regions.

The UEGAN achieves the best visual performance in denosing and image informa-
tion recovering.

4.3 Quantitative Analysis

Two quantitative analysis strategies PSNR and SSIM are adopted to assess the effects
of a traditional image denoising method NLM, a deep learning method DIP and our
work UEGAN. The denoisong results of our work shows superior performance to other
algorithms on above two quantitative evaluation indexes as shown in Table 1 and Table 2.
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Fig. 2. Visual denoising results in three selected MRI slices. Column: noised image, NLM, DIP,
the proposed method UEGAN, noise-free image in order from left to right.

Table 1. PSNR comparison

Methods Slice 1 Slice 2 Slice 3 Average

NLM 22.4307 23.5221 22.7302 22.8943

DIP 27.5301 27.7642 26.8247 27.3730

UEGAN 28.2248 27.1062 28.1143 27.8151

Table 2. SSIM comparison

Methods Slice 1 Slice 2 Slice 3 Average

NLM 0.6133 0.5036 0.5725 0.5631

DIP 0.5810 0.7738 0.7285 0.6944

UEGAN 0.7526 0.7310 0.7069 0.7302

5 Conclusion

In this paper, we concentrate on generating high-quality denoised MRI images with a
deep-learning method which called UEGAN based on decoupled expression. We utilize
the noise encoder and the content encoder to decouple the content information and noise
attributes in a noisy MRI image. In order to obtain rich content characteristics from the
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original image, we add the adversarial loss and the cycle-consistency loss. We add the
nosing branch into model so as to limit the noise encoder to encoding noise attributes
as much as possible. The IE loss helps to remove the banding artifacts which consisting
in the outputs of generator. After competing with several popular methods, both visual
effects and quantitative results show that our work is extremely promising.
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