
Chapter 11
Get Together! Multi-robot Systems:
Bio-Inspired Concepts and Deployment
Challenges

Vivek Shankar Varadharajan and Giovanni Beltrame

11.1 Objectives of the Chapter

At the end of this chapter, you will:

• understand the different types of multi-robot systems,
• be aware of the task allocation problem,
• be able to point out the different types of swarm programming techniques,
• be familiar with the fundamentals of swarm programming,
• understand the real-world deployment challenges with robot swarm.

11.2 Introduction

Swarm robotics is a branch of robotics that focuses on multi-robot systems that coor-
dinate to perform complex tasks through simple behavioral rules. Swarm robotics
combines multi-robot systems with swarm intelligence (Bonabeau et al., 1999), a
field that studies how complex behaviors emerge from simple and local interactions
(Dorigo et al., 2021) in natural systems like schools of fish, flocks of birds and
colonies of insects (see Fig. 11.1). These natural systems are of high interest because
they exhibit efficiency, robustness, parallelism and adaptivity. Ant colonies are an
excellent model for swarm intelligence, as ants work in parallel and use incredibly
low amounts of energy to perform tasks (efficiency), the loss of several ants does not
compromise the colony (robustness), and they can overcome complex environmen-
tal challenges: as an example, fire ants can form rafts with their bodies to carry the
colony to safety in case of floods (adaptivity). Swarm robotics research started out
as an use case to swarm intelligence on virtual and physical agents. Swarm intelli-
gence is a property of groups of simple individuals whose collective behavior exhibit
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Fig. 11.1 Some examples of natural swarms are a flock of birds, colony of bees, schools of
fish and swarms of ants. Credits Bee colony—flickr.com/Sy, Fish school—iStock.com/armiblue,
Army ants—flickr.com/Axel Rouvin, Ant raft—wikimedia.org/TheCoz and Starling swarm—
wikimedia.org/Walter Baxter

capabilities that are beyond the capacity of a single individual. The phenomenon of
having many simple things performing complex activities when working as a group
is known as emergence.

Swarm intelligence was initially applied to virtual agents as an approach to solve
optimization problems that are otherwise considered very hard. Some examples of
such computational algorithms are ant colony optimization (Dorigo et al., 2006) and
particle swarm optimization (Kennedy & Eberhart, 1995). Ant colony optimization
applies the foraging behavior observed in ants to optimization: a group of simulated
agents move randomly in the search space (i.e., the space of possible parameters),
locate optimal solutions and lay virtual pheromones (analogue to the chemical traces
left by real ants) to direct other agents. Similarly, particle swarm optimization uses a
group of agentsmoving in a search space. These techniques have been very successful
in a wide range of domains like antenna design (Chang et al., 2012), vehicle routing
(Bell & McMullen, 2004), and scheduling problems (Xing et al., 2010).

Applying swarm intelligence to multi-robot systems in the real world is not as
straightforward as for virtual agent based optimization algorithms: robots need to
perceive their environment, determine their position, interact with other robots and
the (potentially unstructured) environment itself. Performing all these activities in
a single complex robot is already a daunting challenge, and having them emerge
from the interaction of many simple robots requires novel approaches to design and
synthesize robotic systems. This additional complexitymeans that only a very limited
number of works have demonstrated out-of-the-laboratory operation capability and
there is no real-world application to date that directly uses swarm robotics design
principles (Dorigo et al., 2021). However, swarm robotics is rapidly finding new
application domains (logistics, agriculture, space exploration, and many others) in
which it can provide a definite advantage, and swarm-based real-world applications
are bound to happen in the near future.
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In this chapter, we will provide a brief introduction to multi-robot and swarm
system design approaches, swarm programming concepts and finally outline some
challenges to be addressed in realizing a real-world swarm system.

An Industry Perspective

Patrick Edwards-Daugherty

Spiri Robotics

My formal education was in mathematics, applied to theoretical physics. I
began programming at a young age, among my other interests in chess, music,
and science fiction. As a child, I was inspired by the positive and hopeful
thinking of imaginative writers and scientists. About a year after graduating in
1998, I started a tech company. I pivoted to robotics in 2012. The use of robots
for space exploration had always been interesting to me from a distance. But
that year, when I saw early displays of small drones able to maneuver without
human control, I became convinced of a tangible possibility to create truly
autonomous robots that could improve the human condition.
When my company’s robotics team was at the first major public exhibition
of our work, at the most embarrassing moment, our batteries caught fire in
their recharging cradles. For the rest of the conference, a security guard with
a fire extinguisher was stationed next to our display. He was very pleasant and
supportive. In my journey with robotics, I have found the biggest cliffs are the
ones right between the “completion” of a design and algorithm on the board,
and the first field test that works out. As a result, at my company, we try to fail
fast and often (and as much as possible, inexpensively) as part of our method.
Ensemble action by autonomous agents, sometimes called swarming or flock-
ing, first needed a basic method for group communications and consensus.
The way a flock of starlings or a school of anchovy can move as one is an
inspiration. The communications part has come a long way in the past decade.
The next challenge, which will remain a challenge for a long time, is to figure
out what actions are useful for the robotic ensembles to engage in, and what,
specifically, are the desired outcomes, so these can be programmed and opti-
mized. The communication part is the underlying first step, and each action
can be thought of as analogous to a group behavior of an animal species. There
are many, and they are very particular to the need and context.
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11.3 Types of Multi-robot Systems

Robot swarms are a special type of multi-robot systems that rely on three guiding
principles: (a) control is decentralized (i.e., there are no external controlling entities);
(b) there are no leaders or predefined roles; and (c) robots make decisions based on
local interaction with other robots. To better understand robot swarms, we must
introduce a taxonomy of multi-robot systems, clarifying the differences between
decentralized approaches (such as robot swarms) and other types of multi-robot
systems. Multi-robot systems (MRS) are generally considered to have two or more
robots that coordinate to perform a task. The robots in an MRS can be simple, as the
actual potential of the system can lie within group’s emergent behavior. Consider
the task of collaborative transport (as seen in natural ant colonies): robots need to
lift and move an object that would be too heavy for a single robot. In this case,
a single robot is incapable of performing the task, but several robots can, although
requiring a high degree of coordination. In general, multi-robot systems are preferred
for large, spatially distributed tasks which benefit from the inherent parallelism of
using multiple robots.

An MRS can be homogeneous or heterogeneous: a homogeneous MRS is com-
posed of identical robots (same sensors, computing resources and actuators), while
a heterogeneous MRS contains robots that are fundamentally different (in sensors,
computing resources and/or actuators). Homogeneous MRSs are the most common
typeofMRSbecause they are relatively simple to design andmanage,whereas hetero-
geneous MRS design needs sophisticated task planning to determine the appropriate
type of robot to perform each task.

MRSs can be further classified into centralized, distributed and decentralized
based on the decision making strategy that they use, as illustrated in Fig. 11.2. In
Fig. 11.2: (a) centralized system with each robot connecting to a central server, the
centralized server performs the decision making. (b) One of the robots is elected to
perform decision making in a distributed system. (c) All the robots in a decentralized
system perform decision making on-board by collecting information from other
robots.

Fig. 11.2 Decision making architecture classes: a centralized, b distributed and c decentralized
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Similar to other fields of research, decision making in an MRS can be considered
as a process of analyzing a sequence of alternatives to determine the best choice of
action to perform, using the available information.Most general forms ofMRSdesign
brakes down the global problem into smaller sub-problems that can be assigned to
individual robots. Individual robots take up one or more of these sub-problems and
work toward solving them. Task allocation (TA) is a process of optimally assigning
tasks to a robot that will maximize the overall system performance and it can be
considered as an example of decision making. TA in a MRS is commonly referred to
as Multi-Robot Task Allocation (MRTA), where a set of tasks are assigned optimally
to a set of robots to maximize the overall performance of the system.

AnMRTAis generallymodeled as a combinatorial optimizationproblem: consider
Nt to be the number of sub-tasks that need to be assigned to Nr robots to minimize
the global combined cost, or maximize the reward. The cost function (a metric to
define the quality of global task performance) and the customized constraints on
the optimization for each of the robots depend on the specific task performed by
the robots. The goal of the optimization problem is to obtain a specific sub-task
assignment for the robots, which is generally defined by the tuple (ri , ti ), where
ti ∈ 1, . . . , Nt and ri ∈ 1, . . . , Nr . A generalized MRTA problem is of the following
form:

max
NR∑

ri=1

NT∑

ti=1

bit xit (11.1)

subject to
NR∑

ri=1

xit ≤ 1 ∀ti ∈ 1, . . . , NT

NT∑

ti=1

xit ≤ LT ∀ri ∈ 1, . . . , NR

xit ∈ {0, 1} ∀ri ∈ 1, . . . , NR ∀ti ∈ 1, . . . , NT

where bit is the reward accumulated by assigning the task ti to robot ri . xit ∈ {0, 1}
is a binary variable indicating whether robot ri is assigned to task ti . The constraint∑NR

ri=1 xit ≤ 1,∀ti ∈ 1, . . . , NT restricts that assignment of one single task to one
robot. LT indicates the maximum number of tasks that can be assigned to each
robot; when LT = 1, it is referred to as single-assignment problem, where every
single robot only performs one task.
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11.3.1 Centralized Multi-robot System

CentralizedMRSgenerally have a single hub, either a server or a robot, which gathers
the sensory data from all the robots and aggregates a global view to then perform
task allocation. A centralizedMRS effectively is one large systemwith a global view
of the environment and the states of all the robots, and hence, this system has the
ability to produce globally optimal task assignment and plans. There exists a wide
variety of centralized decision systems (Luna & Bekris, 2011; Wurm et al., 2008;
Yan et al., 2010). Some of them rely heavily on centralized localization (like Global
Positioning System, GPS) and a few other approaches (McLurkin, 2009) suited
for indoor applications use motion capture systems or ceiling-mounted camera. An
interesting example of a centralized system is the Intel Shooting Star drones, which
have been used in several light shows. These aerial robots form a large pack that
operate synchronously to create 3D visual effects in the night sky. These drones
have a centralized coordination stations to plan predetermined GPS trajectories and
perform role-specific behaviors that are pre-scripted.

While these pre-scripted displays are impressive, the ability of centralized
approaches to handle dynamic environments is limited and does not scale efficiently
for larger numbers of robots. Centralized approaches also have other drawbacks—
they are not robust to robot failure and are vulnerable to security threats due to
their single point of failure: if the centralized hub malfunctions or compromised, the
system is rendered useless.

11.3.2 Distributed Multi-robot System

Distributed MRS uses opportunistic centralization, where one robot in the system
(referred to as the “master”) is elected to act as a centralized hub that receives task-
related information from all robots for TA. The term opportunistic centralization is
used mainly because centralization is performed only for the time being until the TA
is performed; for the next round of TA, a different robot or the same robot is used.
Distributed MRS is used in a wide range of application domains, for instance, in
formation control (Michael et al., 2008), exploration control (Sheng et al., 2006) and
navigation control (Fan et al., 2020). Distributed MRS is comparable to a distributed
computing cluster (Hwang et al., 2013). The main difference with a distributed com-
puting cluster and a distributed MRS is that the nodes rely on a static topology with
reliable communication, failures are rare (nodes operate in safe server rooms), and
state of the system is completely controllable. The election of a master compute node
and task assignment in a distributed MRS is generally done through auction, voting
and assignment. In an assignment, the master node aggregates all the information of
other nodes and makes a decision on the task assignment without any feedback from
the other nodes in the system. In contrast to assignment, both auction and voting
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involves receiving a resource estimate (bid) or a preference for performing a certain
task from each robot in the system to perform the TA.

Auction
An auction can be generally considered an activity in which a seller presents an item
for sale to a set of buyers. For instance, in a distributed MRS, the auctions are for
assigning a particular sub-task to a given robot in the system, with the seller being
the central robot and the buyers being all other robots in the system. An auction is
a preferred routine when the sellers do not have a good estimate on the buyers true
value of an item. Here, we will briefly discuss the common types of auctions, and
for a more detailed comparison, you can refer to Chap.9 of Easley et al. (2012).

• English auctions: This type of auctions is also known as the ascending-bid auction.
In this type of auction, the seller raises the price of an item and the bidders drop out
of the auction gradually until there remains only one final buyer, who is declared
as the winner.

• Dutch auction: This type of auctions is also known as the descending-bid auction.
In this type of auction, the bidders gradually decrease the price of the item until
one of the bidder accepts the current price. The bidder that accepts the current
price is declared as the winner.

• Japanese auction: In this type of auction, the value of the item starts with a zero
price. The bidders gradually increase the price, bidder leave auctionwhen the price
becomes too high and the last bidder standing is declared as the winner.

• First-price sealed-bid: In this type of auction, the bidders submit closed bids that
are unknown to other bidders. The highest bidder is declared as the winner.

• Second-price sealed-bid: This type of auctions are also known as the Vickery
auctions, named after the Noble price winner Willium Vickrey. In this type of
auction, the bidders submit closed bids to the seller; the highest bidder is declared
as the winner and will pay the second-highest bid value.

The auctions can be further classified into sequential, parallel and combinatorial
based on the order the tasks are sold by the seller. In a sequential auctions, the seller
sells the items one at a time until all the items are sold; the auction lasts several rounds
until all the items are sold. Parallel auction requires the seller to sell all the items at
once and the buyers bid on it in parallel; the auction of all the items is performed
in one single round. In a combinatorial auction, the seller sells a combination of
different items, and the bids are cast on packages of items; the seller sells the items
based on an assignment that maximize the revenue.

In a MRS, the bids are generally determined by the sellers’ cost (resources
required) in performing the task. For example, if the tasks (item) correspond to spatial
goals the robots have to reach, the cost of reaching the goal (distance) is fixed. First
price sealed bid is one of the most commonly used type of auction in MRS (Otte
et al., 2020), mainly because of the nature of the tasks involved and the auctions can
be performed in a single round rather than multiple rounds (as in English, Dutch and
Japanese auction). However, there are type of tasks that are favorable for multi-round
auctions that use other type of auctions. We refer the reader to Otte et al. (2020) for
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more information on types of auctions that are used in MRS for different types of
tasks.

Voting
The voting is generally considered to be an activity in which a group of individuals
express their preference over a sequence of alternatives which are aggregated to
obtain the preference of the whole group. Voting and auctions are both used to
aggregate information across a group; thus, it might be hard to completely distinguish
between the two. However, the circumstances under which voting and auction are
used can be clearly distinguished. Voting is applied when the group is trying to
reach a single distinct decision that defines the group preference using individual
preferences, whereas auction is applied when an estimate on the choices (bids) can
be used to aggregate the preferences.

In voting, there exists a set of alternativesm that needs be rankedby each individual
as strictly dominating A ≺i B or as weakly dominating A �i B, with A and B being
the two alternatives. A ≺i B means that individual i strictly prefers alternative A
over alternative B and A �i B means A is preferred weekly by individual i over
B. With these individual preferences in hand, different types of rules are applied in
various voting systems to aggregate the individual preference.

• Plurality: This type of voting is also called the majority rule and considered the
most natural way of voting on alternatives. In this type of voting, each alternative
receives a score when it is ranked first and the group preference is a ranking that
is produced with the aggregated score.

• Borda Count: An alternative receives a score of m when it is ranked first by
an individual, receives m-1 when it is ranked second and 0 when it is ranked
last. A summation of all the individual ranking scores are produced to obtain the
aggregated group preference.

• Copeland Count: Elections are conducted pairwise between individuals; the alter-
natives that win a pairwise election receive a score of two, a score of one for a tie
and no points for a defeat. An aggregated score of all the alternatives are produced
to obtain the group ranking. The alternative that wins the most pairwise election
is ranked first.

• Bucklin: The alternative that receives a first ranking from more than half of the
voters is placed as the first group ranking alternative; if there is no alternative that is
preferred first, then the second alternative preferred by more than half of the voters
is ranked first. This process of selecting the alternative is iteratively performed to
obtain the group ranking.

• STV: The alternative that receives the least votes is removed in each round of
voting and the last standing alternative is ranked first.

• Slater: A combined ranking is produced with alternatives that is consistent with
the majority of the pairwise elections.

• Kemeny: A group ranking of alternatives is produced based on as few disagree-
ments as possible. For each disagreement, an alternative is pushed behind in rank-
ing, and a final ranking is produced with this final disagreement ranking of alter-
natives.
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These voting procedures are reasonable and produce desirable properties, but it
might be difficult to clearly distinguish the advantages between these procedures
(Kacprzyk et al., 2020). A well founded set of evaluation criterion might be required
to evaluate the different advantages of these systems. In the context ofMRS, plurality
or majority count is commonly used, since it is the most natural form of voting and
applies to the type of tasks dealt in MRS (Karpov et al., 2016). There are some
application scenarios like formation selection (Iocchi et al., 2003), where voting
procedures like Bucklin is applied to select a formation that is preferred by more
than half of robots.

Many of these voting systems produce different group preferences based on the
order the voting is conducted; this gives rise to two important properties: Unanimity
and independence of irrelevant alternatives (IIA). Unanimity states thatwhen A ≺i B
is the preference of every individual in the group, then the group ranking should
reflect this preference. Whereas, IIA requires that the group ranking between A and
B should only depend on the individual preferences between A and B and not on
the preference of other alternatives. Using these two properties, we can now state
Arrow’s impossibility theorem: A voting system that satisfies both unanimity and IIA
must correspond to a dictatorship by one individual, when there are three alternatives
or more.

Arrows impossibility theorem essentially means the voting system that satisfies
both Unanimity and IIA will not suffer from the drawback of the order in which
voting is conducted. However, there is no voting system that will satisfy both these
properties for more than two alternatives.

11.3.3 Decentralized Multi-robot System

Robot swarms being a subset of decentralized multi-robot systems, arise from the
intersection of two domains: collective robots and swarm intelligence.

The key design principle that is followed in the design of decentralized systems
are:

• Control should be decentralized: All robots in the system are considered to equip
independent decision making capability.

• No leaders: There should be no master node that coordinates and manages the
agents in the system.

• No predefined agent roles: There should be no fixed role for agents in the system.
• Simple, local interactions: All the interactions with the agents should be simple
and should happen only on a local scale (within the communication range).

These rules directly apply to a concept generally referred to as emergence. Emer-
gence is a property that a system exhibits which the individual parts of the system
are incapable of exhibiting on their own, a behavior that demonstrate emergence is
called emergent behavior. In the context of multi-robot systems, emergent behavior
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can be thought of as collective behavior that is exhibited by the system as a whole
when they aggregate together. These kind of collective behaviors are widely found
in natural swarms. Consider, a school of fish that exhibits a circling behavior as a
measure to protect itself from predators (Fig. 11.1 shows one such circling behav-
ior). The system that demonstrates emergence is in general very attractive because
they exhibit some inherent capability to produce the following properties: scalabil-
ity, efficiency, robustness, parallelism and adaptivity. Swarm robotics is the field of
engineering that study emergence in robots.

Swarm robotics design problem
The problem of the design of swarm systems (see Fig. 11.3) can be defined as: given a
set of high-level requirements for a swarm, how can these requirements be translated
into a set of robot rules. For instance, consider the task of cleaning a room, the high-
level requirements is cleaning the room and the designer task is to derive a set of
robot commands to satisfy the requirements. In formal terms, the design problem
is to drive the states of all the robots from an initial state to a desired final state.
Consider the state of the swarm S0 = {s1, s2, . . . , sn}, with si being the initial state
of robot i ; the goal is to derive a function f : S0 → ST that will drive the system to a
desired final state ST = {s1,T , s2,T , . . . , sn,T } within the swarm state space S. Before
we delve into the methods available to design these rules, it might be useful to first
understand what are the states of the system and how could one model a swarm
system.

Swarm states
The swarm state space (S) contains all the possible configurations for all the robots in
the swarm, and each of these configurations is called a swarm state, i.e., a combination
of all the individual robot states. Each individual robot has a different perception of
the environment, communicates with different neighbors and hence has a potentially
unique internal state. Figure11.4 shows the individual robot states that are combined
to form the overall swarm state. The individual robot state in the swarm can be broken
down into:

• environmental state se: the state of the robot surroundings,

Fig. 11.3 The swarm robotics design problem: how do we translate swarm-level instructions to
commands for each robot? More formally, how do we change the system state S0 ∈ S to a desired
ST ?
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Fig. 11.4 States of the robots in a swarm are a combination of the environmental state, internal
state, physical state and communication state of the robot

• internal state si: e.g., battery level, memory use, etc.,
• physical state sp: the state of the sensors, actuators, and other mechanical parts of
the robot,

• communication state sc: the internal state resulting from communication with
neighbors.

Consider, si = {se, si, sp, sc} the state of the robot i , the state of the swarmwould be
S = {si }, i ∈ (1, n)} with n the number of robots in the swarm. As one can observe,
the swarm state contains the state of all robots, making the formal modeling of
swarms rather challenging.

A swarm of robots is generally considered as a single machine with evolving
state, and it is generally called an open machine, since only a parts of its state is
controllable. The environmental state se around the robot is dynamic, and it can only
be partially modeled because the sensors of the robot are only capable of capturing a
subset of the environmental state with some amount of uncertainty. Furthermore, the
environment around the robot keeps evolving as the robot is performing its task and
can only be considered partially controllable. Similarly, the physical state sp of the
robot is also only partially controllable (e.g., the battery level cannot be controlled).
Another reason for sp being partially controllable is due to the presence of a non-zero
probability for a hardware failure. On the contrary, the internal state of the robot si
is considered to be fully controllable by the robots through programming.

The communication state sc depends on the underlying communication topology
created by the robots and the state of the communication medium. When more and
more robots are sending information, the chances of collisions and packet drops
increase. Every robot in a swarm is assumed to have a limited communication range
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Fig. 11.5 Communication topology created by a swarm of 100 robots: on the left the robots form
a cluster topology and on the right a scale-free topology

based on its underlying communication hardware. The ability of the robots to com-
municate can be represented by a graph structure called the communication topology.
In a communication topology graph, the nodes represent the robots and the edges
represent the communication links between them. Figure11.5 shows some types
of communication topology, scale-free, and cluster topology. The communication
topology of a MRS is continuously affected by the movement of the robots, and the
communication affects movements; hence, only a part of this state is controllable.
The problem of connectivity maintenance (i.e., maintaining a desired communica-
tion topology) is usually formulated as a dual problem that addresses both movement
and communication simultaneously.

Design of swarm robotic systems
The task of programming a swarm robotic system starts by the definition of the
requirements that definewhat the swarm is required to accomplish. The requirements
are then translated into a set of robot rules defining the behavior of each of the
robot in the swarm. The task of the programmer is to create these robot rules from
the requirements, which can be generally referred to as the control software design
process. The design of control software for robot swarms can bemanual or automatic.

Automatic methods
The task of control software design is formulated as an optimization problem where
the parameters for optimal robot behavior are found via search (see Fig. 11.6). The
search in automaticmethods generally involves a robot simulator and a set of template
alternative robot control architectures. The performance of a given alternative on the
swarm is then evaluated using a performance metric. The performance metric ideally
captures the efficiency and effectiveness of the swarm when completing the given
task. The configuration space that contains all possible alternatives to the template
control architecture is referred to as the design space. The candidate solutions from
the design space are drawn with some search rules to identify the optimal solution
that maximize the performance metric.
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Fig. 11.6 An illustration of automatic design in its basic form, the sensory input of the robots are
considered to be two binary IR sensors (IR1 and IR2), and the actuators of the robot are two motors
(M1 and M2) taking real value inputs. In this scenario, an evolutionary algorithm could be used to
obtain the weights of the neural network that performs the task of aggregation (similar the behavior
observed in ants while forming rafts, as seen in Fig. 11.1)

The combinatorial nature of the design space demands the use of metaheuristics
like evolutionary algorithm to search the design space using the performance metric
as an objective function to evaluate the quality of the solutions. The most common
form of automatic design is to use an evolutionary algorithm (EA) to search the
design space paired with an artificial neural network (see Chap. 15 for more infor-
mation on artificial neural networks) to act as the template control architecture. EA
is a population-based optimization procedure inspired from biological evolution. In
EA metaheuristics, a virtual population containing best performing candidate solu-
tions are maintained; in each round of optimization, two candidate solutions are
selected to be combined and produce an offspring (via procedures like crossover or
recombination), and this new offspring is mutated to introduce some variance and
novelty in the population. The artificial neural network maps the sensory inputs to
actuation commands, and the design space contains all possible combinations of
neural network weights. Some initial studies (Nol & Floreano, 2000) have proven
that automatic control software design is a viable option for design of decentralized
robotic systems.

Some other types of automatic design focus on designing methods that promote
and search for novel behaviors in the design space, such as novelty search (Gomes
et al., 2013). Novelty search promotes diversity over performance: this type of auto-
matic design procedures are known to not suffer from problems like immature con-
vergence or stagnation of solutions around local minima. Apart from using a neural
network, automatic methods can be applied to other control architectures like para-
metric finite state automate (Hecker et al., 2012) or behavioral trees (Kuckling et al.,
2018). Based on the type of systemused to evaluate the candidate solutions, automatic
methods can be further classified as online and offline.

http://dx.doi.org/10.1007/978-981-19-1983-1_15
 26646 26870 a 26646
26870 a
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Offline methods
The offline design process involves generating the control software before the deploy-
ment of the swarm.During the design phase, simulation is typically used to evaluating
a large number of possible settings from the design space and generate and appropri-
ate control software. The use of simulation offers the benefit of being faster than real
robot evaluations and avoids damage to the physical hardware caused by low-quality
candidate solutions. The most common characteristics of offline methods are:

• The behaviors produced are usually for homogeneous swarms, executing an iden-
tical version of the control software.

• The objective function (also known as the performance metric) is evaluated in a
centralized manner for the whole swarm rather than evaluating the performance
of the individual robots.

• A typical evolutionary approach evaluates the populations of up to 200 robots using
the control software settings altered through evolutionary procedures (elitism,
recombination and mutation).

• The general performance metric used is based on the spatial change of the robots
relative to other robots, with an evaluation across 10–30 runs to take unknown
stochastic variables into account.

Online methods
Online methods perform directly on the real deployment environment, and the per-
formance is evaluated directly on the physical hardware. The most natural benefit of
using onlinemethods is that they can benefit from the feedback received by deploying
the robots directly in the operational environment. Onlinemethods generally produce
mission specific control software rather than generalized control software that can be
applied to a wide range of missions. The optimization being performed on deployed
robots, only a limited number of alternatives can be evaluated due to resource limita-
tions, and potentially robot harmful behavior has to be filtered out before evaluation.
In addition, the optimization has to be distributed (with opportunistic centraliza-
tion), since the swarm cannot rely on a centralized node to compute the performance
metrics and guide the design space search. The limitation of using a performance
indicator that can only be evaluated in a local and distributed manner makes online
approaches less effective in comparison to offline design methods. However, use of
hybrid approaches that combine online and offline methods is an effective way of
reaping the benefit of both worlds and is under active research by the community.
Some notable characteristics of online design methods are:

• The robots are asynchronously used to explore a portion of the design space, with
each robot evaluating a sub-population of the evolutionary instance of the control
software.

• the robots continuously exchange the best performing instance of the control soft-
ware allowing other robots to include this information in its local population for
further search.
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• The behaviors executed by the robots are usually heterogeneous in nature; each
robot executes a different control software instance. However, there is a possibility
that the robots will eventually reach a point in the search, where they execute a
similar version of the control software.

• As the robots are completely decentralized, the performance metric used has to
be computed locally, using the information available on the robots. This severely
limits the type of tasks that can apply online approaches.

Manual methods
Manual methods involve the design of the control software for the robots either
by hand using a trial-and-error approach, or using the designer’s expertise. The
general procedure is to use a state machine to model and encode the robot control
software. The state machine allows the robots to decompose the overall goal into
elementary tasks. Some state transitions are performed by the swarm as a whole to
ensure consensus among the individual robots in the swarm.

The designer picks a tool that best fits the task at hand and devises a set of rules that
will allow the robots in a swarm to produce a self-organizing behavior. Some notable
self-organizing behaviors are aggregation, circling and pattern formation. The main
advantage of using manual methods is that the programmer has complete control
over the design software and can customize them to best fit the robotic mission.
One of the downsides of this approach is that it is very hard to manually design a
decentralized behavior for the robots since only a part of the state is controllable and
known to the programmer.

11.4 Swarm Programming

Swarm programming is the process of writing code to describe swarm behaviors.
A swarm programming language is a domain-specific language that can be used for
describing control software for robot swarms. Like other domains in computer sci-
ence, a swarm programming language can be compiled intomachine code containing
a set of instructions that can be executed by each robot. The basic requirements of
a swarm programming language are to provide a rich feature to allow arbitrary mis-
sions and to provide support for most robotic hardware. Other desirable properties
of a swarm programming language are:

1. Composability: The control software should be able to work in parts and as well
as, work as a single control software, when various parts of the code are put
together. For instance, a programmer can design a particular part of the code
separately as a function and test it, when putting together such similar functions,
it should work as a whole behavior.

2. Predictability: When looking at a piece of code, the designer should be able to
reason the behavioral outcome that will be observed on the robots.
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3. Heterogeneous hardware support: The programming language should provide
support for designing swarms that contain various types of robotic hardware.

4. Hardware agnostic: The programming language should produce invariable
behavioral outcome across various robotic hardware. A given piece of control
software designed using the programming language should be compatible to be
deployed on a wide range of robotic hardware.

11.4.1 Swarm Programming Languages

Over a decade of research in the field of swarm robotics have produced a wide
variety of methods that are used in programming the control software for robot
swarms. In this section, we will discuss some of the notable programming languages
and paradigms that are used in design of robot swarms.

Robot oriented
Themain focus in robot-oriented programming is to provide the designer with as pre-
cise control as possible to program every single robot in the group. In robot-oriented
programming, the designer focuses on designing an individual robot behavior that
will work synchronously to realize a desired group behavior, this type of swarm pro-
gramming is also known as bottom-up approach. One of the most common tool used
for robot-oriented programming is the robot operating system (ROS) (Quigley et al.,
2009). ROS is considered to be one of the widely used tools in programming both
single robot and multi-robot systems. ROS being programming language flexible
allows a designer to design a control software using various programming languages
(Python, C/C++ or Java). Chap. 5 introduces the fundamentals of ROS and can be
used as a reference to ROS. One of the main advantages of using ROS is the avail-
ability of several robustified packages and drivers that can be readily used to program
every single robot in the group. On the downside of programming swarms with ROS,
the programmer has to take into account each of the ROS node interactions and its
details (not limited to the naming used to connect ROS nodes). The complexity of
managing the ROS specific details increases exponentially with the number of robots
in the system.

Spatial computing
Spatial computing focuses on providing programming tools for programming the
swarm as a whole rather than considering the individual robot’s behavior. Spatial
computing can be used when the programmer is not interested in programming indi-
vidual robots but would like to design group level behavior; this kind of approach is
called the top-down approach. The robots in spatial computing are considered to be a
collection of communicating compute devices that are distributed in an arbitrary oper-
ational space, capable of performing a local computational task. The frameworks in
spatial computing abstract the individual robot and provide swarm specific primitives
that will allow design of global behaviors. Some examples of spatial computing are

http://dx.doi.org/10.1007/978-981-19-1983-1_5
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Proto (Beal & Bachrach, 2006) and Protelis (Pianini et al., 2015). In proto, the robots
are assumed to be deployed on a manifold of space called amorphous medium with
a physical and computational state. The robot program defines the way they interact
with the neighbors and the environment to perform a location specific behavior in the
amorphous medium. Spatial computing being a powerful tool for designing swarm
behaviors still lose the robot individuality and the capability to program each robot
in the swarm. Programming of heterogeneous robots with spatial computing is not
possible.

Goal oriented and task oriented
Goal-orientedprogramming is considered abottom-upprogrammingapproachwhere
the individual robots are assigned spatial goals. The global task is broken down into
elementary spatial goals and assigned to robots; the robots coordinate and reach
these spatial goals in parallel. The main focus in goal-oriented programmer is placed
on decomposing the global requirements into spatial goal rather than the logic used
to perform the task. Some example of goal-oriented programming languages are
SWARMORPH (O’Grady et al., 2012) and Termes (Petersen et al., 2011). Goal-
oriented programming is more suited when the mission requires spatial organization
among the robots and has minimal to no robot failures, since the approaches do not
have contingent mechanisms for robot failures.

In task-oriented programming, the global task is broken down into a set of sub-
tasks (such as spatial goals) that can be performed by a single robot and opti-
mally assigned to robots. The robotic swarm is considered as a system with parallel
machines that can be scheduled jobs using a scheduler (a system that assigns resource
to a specific task). These type of systems are referred to as deterministic parallel
machines in sequencing and scheduling theory (Pinedo, 2012). The task of control
software design in goal-oriented programming is to formulate the global problem as a
scheduling problem and design a scheduling system that will assign jobs (sub-goals)
to the robots in a swarm. Task-oriented programming is considered to be a bottom-
up approach since the individual robots are assigned tasks separately. Karma (Dantu
et al., 2011) and Voltron (Mottola et al., 2014) are some examples to task-oriented
programming. Task-oriented oriented programming is more suited for missions that
can be decomposed into a set of sub-tasks that can be performed on a single robot.
Task-oriented programming cannot be used inmissions that require active inter-robot
coordination (e.g., when a sub-task require two or more robots to complete it).

11.4.2 Programming in Buzz

Buzz (Pinciroli & Beltrame, 2016) is considered to be a hybrid domain-specific pro-
gramming language that provide programming primitives similar to robot-oriented
programming, spatial computing and goal-oriented programming. It allows program-
mers to maintain desirable levels of abstraction while programming, the swarm can
be programmed as a whole (top-down) or individual robot behaviors can be designed
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(bottom-up) at the same time in a single control software. For instance, the language
provides support for both setting the actuation commands (bottom-up) and support
for neighbors management to consider the swarm as a whole and perform operations
in the neighborhoods (top-down). A pure bottom-up approach suffers from scalabil-
ity issues and conversely; a top-down approach suffers from inability to fine-tune
individual robot behaviors. A concurrent design used in Buzz allows the designer to
pick the right amount of abstraction required at the various stages of the mission.

Buzz satisfies most of the desirable properties of a swarm programming language:
the code can be organized as functions and classes (composible), language syntax
is intuitive with similarities to Python and Lua (predictable), swarm programming
constructs allows concurrent use of heterogeneous robots in a swarm (heterogeneous
hardware support) and unified Buzz virtual machine (BVM) for use with various
hardware platform (hardware agnostic). These properties make Buzz a promising
approach to design control software for robot swarms and hence, in this chapter, we
will provide a detailed introduction to programming in Buzz.

Communication and execution model
The reference communication model used in Buzz is situated communication; it is
a communication paradigm introduced by Stroy et al. (2001) and commonly used
in swarm robotics. In situated communication, the receiver of a message knows
the positional information (distance and bearing) of the sender using a specialized
communication device. The robots using Buzz either equip such a communication
device or simulate situated communication through other sensorymeasurements. The
measurements in a situated communication device are obtained as a positional and
payload pair. As illustrated in Fig. 11.7 left, the positional data includes the relative
range (distance) and bearing (angle) of the sender in the receivers’ coordinate frame.
The payload part of the message includes a serialized messages from the internal
behavior programmed on the robots. The robots in a swarm, broadcast messages, the
robots in communication range receive these messages (often assumed to be line-of-
sight, a requirement for situated communication devices) and process thesemessages.
The information flow in the swarm happens in a gossip based communication (i.e.,
from one neighborhood of robots to another) until all the robots in the swarm have
similar information.

The execution of the control software follows a discretized step wise execution
phase with each step denoting one control loop (illustrated in Fig. 11.7 right). During
each control loop, the robots perform the following actions in order: reading the
sensors, processing the input messages, performing a loop of the code, sending
messages and updating the actuation commands.

Buzz Virtual Machine
Buzz considers the swarm as a collection of devices that uses a virtual machine
called Buzz Virtual Machine1 (BVM). The BVM contains an interpreter2 to execute
the control software designed for the robots (a script called Buzz script). BVM is

1 https://github.com/buzz-lang/Buzz.
2 A program used to execute code, for example, Python interpreter.
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Fig. 11.7 On the left, the reference communication model performing situated communication,
the sender robot in the center broadcast messages within its communication range (R) and the two
receiver robots on the top/bottom, measure the distance (d) and angle (θ) of the sender in their
coordinate frame. On the right, the reference execution model containing the discretized step-wise
execution

written entirely in C and uses a stack (datatype providing a collection of elements)-
based operations to execute the control software. Figure11.8 illustrates the internal
structure of the BVM. For more details on the BVM, we refer the reader to Pinciroli
and Beltrame (2016). BVM is designed to be compact in size (about 12 kB) providing
the possibility to deploy it on most of the robots used in swarm robotics; there
exists a compact BVMoptimized for microcontroller called BittyBuzz.3 The internal
datatype used to store information inside the BVM is key hashable tables (referred
to as data holders). The reference execution architecture discussed earlier directly
translates into BVM operations performed at each step: latest sensor readings and
inputmessages update the respective data holders, the values from the data holders are
used to perform a code step resulting in updating the data holders and the values from
the data holders are used to update the actuation commands and output messages.

In practice, a designerwrites his code inBuzz,which gets compiled into a bytecode
and the bytecode is executed by the BVM. Buzz offers command line tools like bzzc
to compile the buzz script into a BVM interpretable buzz code. The compilation
is generally performed on the programmers machine and the corresponding byte
code is then uploaded onto the robots for execution. Buzz is an extensible language
allowing programmers to attach custom C/C++ functions as closures that can be
called from the Buzz script. For instance, consider, the take_off routine that can be
implemented for flying robots and set_wheels for ground robots. In the compilation
phase, these custom closures are set as symbolic references and referenced during
execution phase.

3 https://github.com/buzz-lang/BittyBuzz.
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Fig. 11.8 Internal structure
of the buzz virtual machine,
figure obtained from
Pinciroli and Beltrame
(2016)
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Deploying Buzz on robots
Deployment of Buzz on robots requires an adapter called the Buzz controller. The
main purpose of a Buzz controller is to connect the robot sensors and actuators to the
BVM data holders that store sensor and actuator information. Buzz controller also
serves the purpose of connecting the communication hardware with the BVM, updat-
ing the in and outmessage queue inside the BVM.Buzz controllers are comparable to
a hardware abstraction layer (HAL) that abstracts the robot specific sensor/actuator
communication to the BVM. There exists several buzz controllers that can be readily
used for robot deployments: 1. ARGoS Buzz controller, a controller that is available
with the BVM implementation and can be used with ARGoS3 simulator (Pinciroli
et al., 2012), 2. BzzKh4,4 a controller for KheperaIV5 robots and 3. ROSBuzz,6

a controller that can be used with ROS compatible robots. Buzz controllers can be
considered more than a HALwrapper to BVMbecause some controllers leverage the
extensible nature of the language (using customC/C++ function-based primitives) to
provide additional features. For instance, ROSBuzz provides features to Geo-Fence
robots (limit the operational space for robots), compute veronoi tessellation for robot
groups (a method used to partition the space into sub-groups), exploration primitives
(methods to plan an exploration path in unknown spaces), etc.

Programming primitives
The programming primitives are pre-built software packages and constructs that can
be used to create a more sophisticated control software for the robots. As men-
tioned earlier, buzz offers constructs for both bottom-up (programming operations
performed on individual robots) and top-down (programming operations performed
with groups of robots) programming. Robot-wise operations available in Buzz are:

4 https://github.com/MISTLab/BuzzKH4.
5 http://www.k-team.com/khepera-iv.
6 https://github.com/MISTLab/ROSBuzz.
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assignment of variables, loops, branching and function definitions. The use of robot-
wise operations is analogous to other scripting languages (like Python). As for the
top-down programming primitives Buzz offer: Neighbor management, swarm man-
agement and virtual Stigmergy. Each of this programming primitive takes inspiration
from natural swarm and virtually replicates a phenomenon from natural swarm intel-
ligence. The basic data types available in Buzz are: nil, Int, float, string, table, closure,
swarm and virtual stigmergy. Data types nil, Int, float and string are analogous to
other scripting languages. Whereas, tables are the only structured datatype available
in Buzz that can be either used as tables or dictionaries. Closures correspond to func-
tion pointers that can be stored as global variables and referenced at the execution
time. Swarm and virtual stigmergy are primitives for top-down programming, and
we will discuss them in the following.

Neighbor management
The neighbor management in Buzz is used either for performing operations with the
positional information or communicating information within the robots’ neighbor-
hood. Figure11.9 shows a comparison of a behavior observed in nature (flocking) and
artificial behavior (boids rule) performing a similar behavior. Neighbors construct
simplifies this implementation by using the function neighbours.foreach that loops
through all the neighbors of a robot and apply a function. The function applied for
each neighbor could compute vectors for all three components (separation, cohesion
and alignment) for this neighbor. The result of this operation would be one aggre-
gated vector for each component (separation, cohesion and alignment) that can be
averaged to obtain the common heading of the robot. There are also other functions
in Buzz that could be leveraged in a neighbor based operation: map, reduce and fil-
ter. Communication functions like neighbours.broadcast and neighbours.listen can
be used to broadcast messages in the robots neighborhood. For instance, neigh-
bours.broadcast can be used to broadcast the value of a Buzz datatype under a topic
and neighbours.listen can be used to register a callback function to execute when a
message is received from a topic.

11.4.2.1 Swarm Management

Programming heterogeneous swarms are a challenging task, locomotion and sensing
used by the different types of robot can be fundamentally different. Consider flying,
legged robots and rolling robots, each of these robot types need different kinds of
sensors and actuators to realize locomotion.With different kinds of sensors and actu-
ators comes different types of programming constructs to operate the robots. Buzz
offers swarm construct that can take into account heterogeneity while programming
the robots. Figure11.10 illustrates swarm construct with a heterogeneous swarm
containing flying and ground robots. Sub-groups within the robots can be created
to perform robot specific operations; these virtually tagged robot groups are called
a swarm. From a programming perspective, swarm.create() function can be used to
create a virtual group (swarm) and functions like swarm.select() and swarm.join()
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Fig. 11.9 Illustration of flocking: on the right, a starling swarm flocking and on the left, artificial
swarm intelligence performing the equivalent behavior using boids rule (separation, alignment
and cohesion). This behavior require looping through a robot’s neighbors to compute the current
movement, neighbors construct in Buzz provides neighbors.foreach function to loop through all
neighbors and compute the current heading vectors.Credits Starling swarm—wikimedia.org/Walter
Baxter

Fig. 11.10 Illustration of swarm construct in Buzz, a group of robots can be virtually tagged to
assign group specific behavior, flying robots are assigned takeoff task and ground robots are assigned
a wall following behavior

can be applied to join a swarm. As in Fig. 11.10, the function swarm.exec() can be
used to assign a group specific function to execute for a given swarm.

Virtual stigmergy
Virtual stigmergy is a programming construct derived from natural swarm intelli-
gence called stigmergy. Stigmergy is widely found in insect swarms, consider ter-
mites, they change the structure of the mold they build to communicate with other
termites, in this case the information flow is environment mediated. Another exam-
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Fig. 11.11 Stigmergy in termites modifying the mold structure to communicate with other termites
(right), a virtual implementation of this phenomenon (virtual stigmergy) provide (key, value) tuples
to propagate information (left). Credits Termite mound—flickr.com/Justin Hall

ple to stigmergy can be found in ants; they spray pheromones to communicate the
shortest path to a food source. The environment acts as a medium to relay infor-
mation to other insects. Virtual stigmergy is a programming construct that allows
programmers to replicate this phenomenon in a virtual manner on the robots. Unlike
stigmergy in insects, the robots using virtual stigmergy make use of data structures
to store and propagate information. From a usage point of view, virtual stigmergy
is comparable to shared memory and distributed ledgers, acting as a black board
for writing information from one robot and reading it on other robots. Figure11.11
illustrates virtual stigmergy on robots by making comparison to termite swarms. In
programming robots, virtual stigmergy table can be created using stigmergy.create(),
stigmergy.put() can be used to add ormodify entries and stigmergy.get() can be used to
read the latest value. The internal implementation of virtual stigmergy optimizes the
information to be broadcast to achieve a guaranteed network wide propagation. The
information flow happens in a gossip-based fashion from one robots’ neighborhood
to another until a unified information is present in the whole group.

11.5 Deployment of Real-World Swarm Systems

Swarm robotics is a very young field of robotics that has received an increasing
attention over the past decade due to its inherent benefits. However, the field has
not matured enough to have robust real-world deployments, mainly due to the fact
that some of the underlying engineering concepts are not completely clear for full
autonomy. These challenges have given rise to creation of technologies that can allow
humans to supervise and manage the system once deployed.
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11.5.1 Human Swarm Interaction

Rapid advances in artificial intelligence are driving the adoption of robotics and
automation in transport and logistics, providing new solutions to highway systems
(Shladover, 2018), passenger transport (Pavone, 2015), last-mile delivery (Grippa et
al., 2019), and automatedwarehouses (Enright&Wurman, 2011). For the foreseeable
future, humanswill remain indispensable to supervise andmanage suchfleets because
we are transitioning from systems that are generally already in use; technology gaps
prevent us from performing all of the required functions autonomously; and particu-
larly in visible, safety-critical applications, society’s trust in decentralized technology
will be earned gradually. However, integrating increasingly sophisticated AI tech-
niques leads to increasingly opaque robot control programs. Furthermore, human
supervisors’ cognitive capacities are challenged (and eventually exceeded) as the
size of autonomous fleets grows. The difficulty of ensuring operational performance
is compounded when incoming information is scattered, delayed, asynchronous or
unreliable. These factors lead to increased pressure on human supervisors’ cogni-
tive resources and their ability to maintain situational awareness, detect problems
and make successful decisions. There are some methodologies and approaches (St-
Onge et al., 2019b) for the supervision of AI-driven swarm systems, deployed across
domains such as transportation and logistics.

Given that the operator is indispensable in a robotic fleet to solve complex tasks and
communicatewith the swarm, themajor focus in the field of human swarm interaction
(HSI) are the following: 1. Operator cognitive complexity, 2. Communication with
the swarm, 3. Control architectures, 4. Level of autonomy and 5. Methods to interact
with operator. All of these modules that the field focus on are tightly coupled with
one another, for instance, the level of communication of robot states depends on the
level of autonomy, which in turn affects the operator effort to control the swarm. A
detailed consideration to the concepts in HSI can be found in Kolling et al. (2015).

Operator cognitive complexity
In the field of computer science, the term computational complexity is defined as the
resources (such as time and memory) required to solve an algorithmic problem. The
required resources are generally considered to be a function of the size of the input.
Computational complexity is used to classify the solvable computational algorithm
from the unsolvable ones. Higher computational complexity algorithm might work
reasonably for smaller number of inputs and fail for larger number of inputs. In HSI,
a similar concept exists called the cognitive complexity for the robot control task;
instead of the algorithm, an operator is replaced. The main task of an operator in
a swarm system is to supervise and manage the robots by performing a sequence
of actions on observation of a robot status. Operators cognitive load can be defined
as the complexity of actions to perform by the operator on observation of a status.
The analogy between computational complexity and cognitive complexity was first
drawn in Lewis (2013).

Consider a group of aerial robots are performing a search operation in the forest
to locate human survivors, when the robots are managed individually by the opera-
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tor (checking each of the robot camera feed individually for a human and sending
commands to further explore) then the cognitive complexity of this mission is O(n).
Conversely, when the operator deploys the robots and selects a search area, the robots
subdivide the tasks autonomously, run a human detection algorithm internally using
the camera feeds and send the operator of only a possible human detection for ver-
ification then the complexity here is O(1), which is the minimal possible cognitive
complexity. Another term that relates to cognitive complexity is the negligence tol-
erance, the time required by the robots to show performance degradation when left
unattended. For optimal operation of the fleet, the operator has to attend to the robots
before negligence tolerance time. In reality, the cognitive complexity of the system lie
between O(1) and O(n) could also be sometimes worse than O(n), when the operator
has to deal with a cascade of tasks for a given robot in the swarm.

Communication with the swarm
An operator communicating with the swarm is an essential routine in real-world
missions, the current level of robot autonomy demands an operator to be present in
the system. An operator generally use a specialized device called the base station
to communicate with the swarm. There are two types of communication that might
be necessary between a base station and the operator: 1. The operator has to relay
high-level goals to the system (commands) and 2. Operator has to obtain situational
awareness on the robot fleet (states). Realizing both the goals require a reliable com-
munication infrastructure within the system. Maintaining a reliable communication
among the robots in the fleet is a challenging problem. The robots need to move to
perform their mission, the movement in turn results in the change of communication
topology, the swarm needs to realize the communication topology change for infor-
mation propagation. One common approach to communication in robot swarms is
to design a connectivity maintenance algorithm that will maintain a desired level of
connectivity in the swarm allowing a base station to connect to the swarm.

Control architecture
The control architecture used in the swarm system defines the possible controls the
operator can have over the system. Control architecture used in the system might
influence the operator cognitive complexity, since it limits the possible controls the
operator can have over the system. The desired cognitive complexity of controlling
a swarm system is O(1), where the operator treats the swarm as a whole, as if it were
a single robot with complex dynamics. The current types of control architectures
available requiremore fine grained interactions than swarm-level interaction, demand
the operator to interact with sub-groups of robots. Some of the common control
architectures used in robot swarms are:

1. Behavior library: Where a set of behaviors are implemented for the robots and
the operator selects an appropriate behavior from the behavioral set based on the
current situational awareness.

2. Parameter adaptation: A generic behavior is implemented initially and the oper-
ator is left to adapt the parameters of the system to control the robotic swarm.
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3. Environment mediated control: The operator is made a part of the swarm and
interacts with the swarm through the environmental medium (with modalities
like gesture control).

4. Leader based control: A selective set of robots are assigned a leader role and the
rest of the robots follow the leader robots, the operator continuously interacts
with leader robot to control the swarm system. For example: the operator could
teleop the leader robots to control the swarm.

Level of autonomy
The level of autonomy (LOA) of a swarm system can be defined as the degree to
which the swarm system can make decisions on its own without external support
(like an operator). LOA is generally defined through a 10 point scale, initially pro-
posed by Sheridan and Verplank (1978). A scale of 1 defines the swarm to take
absolutely no decisions and actions; the operator must perform all the tasks in the
system. Conversely, a scale of 10 denotes the system completely disregards the
human and performs all actions exclusively autonomously. It is commonly referred
(Kolling et al., 2015) that the swarm system lie somewhere in or above a scale of
7, which means the system performs actions autonomously and informs the humans
of the choices. The level of autonomy has no influence on the amount of situational
awareness an operator acquires to interact with the swarm.

Methods to interact with operator
The method of interaction with the operator is an important factor to consider in
system with operators and highly influence the cognitive complexity of the system.
There are two methods to operator swarm interaction: 1. Remote interaction and
2. Proximal interactions. In remote interactions, the operator is considered to be
monitoring a remote control node called the ground station. The ground station is
a specialized computer that is used to obtain situational awareness on the robots
mission and send commands back to the system to provide them with directives.
Proximal control is another paradigm that considers the operator to be a physical
part of the swarm as a special swarm member and these specialized swarm members
provide directives to the swarm. Some approaches to proximal control are using
gesture control, voice control and expressive motion. In these approaches, the user
performs a certain gesture or voice command, which in turn creates a local interaction
with the swarm to perform a task. However, the level of control that can be achieved
with proximal control is minimal, since the swarm is controlled as a whole.

Human swarm interaction in Buzz
Within the framework ofBuzz, severalHSI approaches (St-Onge et al., 2019a, 2019b)
have been designed to facilitate the operator interaction with the swarm. These works
generally use ROSBuzz executing a Buzz script to realize the operator interactions.
The operator is considered to be a virtual swarm member and the system uses a
ground station to communicate with the operator (remote interaction). The ground
station being a virtual swarm member, deploy a similar buzz script and receiving
the same states that every other robot in the swarm is receiving. This system has
been tested with two types of ground stations: 1. A traditional computer node and
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2. A tangible robot fleet interface. A traditional computer node in this setup use a
specialized visualization software to visualize and command the swarm. In tangible
robot fleet interface, the operator uses a table topmapwithminiature robots indicating
the status of the robots in the swarm. These miniature robots are used to interact with
the swarm deployed in the field. The idea behind the use of tangible interface is
that, the operator modifies a replica of the swarm, which in turn applies the changes
to the actual swarm. The infrastructure in St-Onge et al. (2019a) was used within
the framework of Pangaea-X in Lanssorate Spain, where a group of astronauts used
the above elaborated interface (computer node and tangible interface) to control the
swarm, while the cognitive load on the astronauts was evaluated.

11.5.2 Data Management, Communication and Mobility

In general, multi-robot systems need to collect large amounts of data from their envi-
ronment, and often these data need to be aggregated, shared and distributed. Consider
the task of distributed map merging (Mangelson et al., 2018) and inter-robot loop-
closure detection in simultaneous localization and mapping (SLAM) (Lajoie et al.,
2020), where robots need to exchange large amounts of data in the form of map frag-
ments and/or pose graphs along with certain key-frame images. Many multi-robot
systems are designed to share state information and commands, but their communi-
cation infrastructure is often too limited for significant data transfers. A mechanism
called SOUL (Varadharajan et al., 2020a) allows members of a fully distributed sys-
tem to share data with their peers. SOUL leverage a BitTorrent-like strategy to share
data in smaller chunks, or datagrams,with policies thatminimize reconstruction time.
The main challenges addressed in this approach are: 1—cope with dynamic network
topologies, 2—optimize the data fragmentation and reconstruction, and 3—optimize
the distribution of the datagrams (chunks of injected data). Since peer-to-peer (P2P)
file sharing mechanisms are well established in literature, with ample research to
demonstrate their robustness and scalability (Reid, 2015), this method leverages
some of their strategies (e.g., with the use of distributed hash tables) and integrates
additional concepts from decentralized robotic systems. There are few other methods
like Swarm mesh (Majcherczyk & Pinciroli, 2020) that provide location based data
storage, referred to as spatial consensus to allow robot in a swarm to leverage the
storage space on all robots.

Thekeyprinciple that needs to be addressed for real-world deployments is address-
ing the perception-action-communication loop in robot swarm. Real-world robot
deployments need to perform the following cascading action loop: to perceive the
environment, estimate its state, perform an action, communicate its state to its neigh-
bors. This cascading sequence of actions affects the other robots in the swarm and
hence is a tightly coupled state that affects each other. A control software designer
must consider the presence of perception-action-communication loop at design time.

The ability of a swarm to coordinate and exchange information depends largely
on the underlying communication graph. A reliable communication infrastructure
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allows the robots to exchange information at any time. However, real deployments
includemany potential sources of failures (environmental factors, mobility, wear and
tear, etc.) that can break connectivity and compromise the mission. The underlying
assumption taken by severalworks (St-Onge et al., 2017) includes the robots ability to
exchange information. There are twogeneral approaches to connectivitymaintenance
inmulti-robot systems: strict end-to-end connectivity (Stephan et al., 2017) or relaxed
intermittent connectivity (Kantaros et al., 2019). Many of these approaches are either
computationally intensive or cannot integrate the presence of an operator. There
are some alternatives that use lightweight algorithm (Varadharajan et al., 2020b)
allowing a heterogeneous group of robots to navigate to a target in complex 3D
environments while maintaining connectivity with a ground station by building a
chain of robots. The fully decentralized algorithm is robust to robot failures, can heal
broken communication links and exploits heterogeneous swarms: when a target is
unreachable by ground robots, the chain is extended with flying robots.

11.5.3 Fault Handling

When multi-robot systems are deployed in real-world scenarios, there is an increas-
ing concern regarding the safety and reliability of the system. Robots that are faulty
could potential harm humans or infrastructure. The robot control designed for the
robots needs to explicitly design mechanisms that can tolerate some common mal-
functions at the minimum. Faults in robotic hardware are inevitable, reliable mech-
anism incorporation within the control software could minimize the risks caused by
faulty hardware. There are generally two kinds of robot failures: 1. Endogenous and
2. Exogenous faults. Endogenous faults are generally faults that occurs within the
robotic hardware and exogenous faults are the faults that occur as a result of factors
in the environment, and the robots interaction with the environment.

There are twokinds of approaches to detect faults in robot swarms: 1. Introspection
and 2. Extrospection. In introspection, the robots run some kind of internal diagnos-
tics to determine if the hardware is faulty. Extrospection is using the diagnostics of
the neighboring robots to determine if a given robot is faulty. Some kinds of faults can
be addressed using introspection and others require extrospection, currently resolved
using an operator in the loop. Extrospection is an interesting solution, when dealing
with multi-robot systems, for instance, a deviation from normal operation of a robot
can be detected by other robots. Some existing approaches to fault detection are:

• Communication based (Christensen et al., 2009;Ozkan et al., 2010): Robots inabil-
ity to communicate is detected by using periodic pingmessages between the robots.
These method can only detect completely failed robots or robots with communi-
cation issues.

• Model based (Millard et al., 2014): Robots use a model to compare their behavior
to determine normal operation.
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• Task effort based (Lau et al., 2011): Robots compute their contribution to the
fulfilment of the task and estimate if they are contributing to the global task to
determine their fault state.

• Online methods (Tarapore et al., 2017): An online classification model is learnt
to distinguish between faulty and normal behavior of the robots; robots evaluate
their behavior with the neighbor to determine faultiness. There are some methods
that use a immunology inspired models to predict faulty robots (Tarapore et al.,
2015).

11.6 Chapter Summary

This chapter provides an introduction to the different types ofmulti-robot systems and
introduces the task allocation problem used in assigning tasks to different robots in a
multi-robot system. A particular concentration is given to decentralized systems and
various methods available to design decentralized control software. Fundamentals of
programming a robotic swarm is discussed using the Buzz programming language.
Toward the end of the chapter, a discussion is made regarding the necessity of an
operator in a swarm system and the challenges toward the real-world deployment of
swarm systems.

11.7 Chapter Revision

Question #1
What are the fundamental differences between centralized, distributed and decen-
tralized systems?

Question #2
What are the design rules followed in the design of decentralized system?

Question #3
What are different methods to design control software for robot swarms?

Question #4
What are the desirable properties expected from a swarm programming language?

Question #5
What is the reference communication and execution model used in Buzz?
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Question #6
When a operator needs to send individual commands to each robot in a swarm, what
is the operator cognitive complexity in this situation?

Question #7
What are the types of information that needs to be exchanged between an operator
and a robot swarm?

Question #8
How many point scales are generally used to identify the level of autonomy in a
swarm robotic system?

Question #9
What are the common methods used for operator interaction with the swarm?

Question #10
Why is it important to maintain a desired communication topology in robot swarms?

Question #11
What are the types of faults that arise in robot swarms?

11.8 Further Reading

For further information on distributed multi-robot methods such as auction and vot-
ing, we refer the reader to Chaps. 9 and 23 of Easley et al. (2012), respectively. For
more information on decentralized control software design, we refer the reader to
Francesca and Birattari (2016). For more information on the Buzz programming, we
refer the reader to Beltrame (2016). As a further reading on human swarm integra-
tion, we refer the reader further reading on human swarm integration, we refer the
reader to Kolling et al. (2015).
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