Skip to main content

The Process of Custom Designing Replacement Cranial Bone Patches in Human Body

  • Conference paper
  • First Online:
The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering (RCTEMME 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 993 Accesses

Abstract

In this study, a comprehensive process for the design, fabrication, and validation of artificial cranial bone for patients with craniofacial defects was developed. The main goal of this research is to introduce a simple method for redesigning and fabricating defective parts of the skull. Computerized Tomography (CT) data were used to reconstruct a 3D point clouds of the skull. In combination with digital image acquisition techniques, the 3D model of a large artificial bone can be designed. This design was then analyzed and compared with the mechanical properties for its cortical bone using Finite Element Analysis (FEA). The simulation results of the implant structure showed that the values of deformation distribution, strain distribution, and von Mises stress were within the allowable values of the material under intracranial pressure. Designing, fabricating cranial replacement patches, and implanting them on the patient showed the suitability of the design to the patient’s damaged area, ensuring shape, stable structure, and good aesthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bogu, V.P., Ravi Kumar, Y., Khanara, A.K.: Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities. Acta Bioeng. Biomech. 19(1), 125–131 (2017). https://doi.org/10.5277/ABB-00547-2016-04

    Article  Google Scholar 

  2. Mohammed, M.I., Fitzpatrick, A.P., Malyala, S.K., Gibson, I.: Customised design and development of patient specific 3D printed whole mandible implant. In: Solid Freeform Fabrication 2016 Proceedings 27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference SFF 2016, January 2018, pp. 1708–1717 (2016)

    Google Scholar 

  3. Feroze, A.H., Walmsley, G.G., Choudhri, O., Lorenz, H.P., Grant, G.A., Edwards, M.S.B.: Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. J. Neurosurg. 123, 1098–1107 (2015). https://doi.org/10.3171/2014.11.JNS14622.Disclosure

    Article  Google Scholar 

  4. Han, X., et al.: Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. J. Clin. Med. 8(2), 240 (2019). https://doi.org/10.3390/jcm8020240

    Article  Google Scholar 

  5. Alonso-Rodriguez, E., CebriĂ¡n, J.L., Nieto, M.J., Del Castillo, J.L., HernĂ¡ndez-Godoy, J., Burgueño, M.: Polyetheretherketone custom-made implants for craniofacial defects: report of 14 cases and review of the literature. J. Cranio-Maxillofacial Surg. 43(7), 1232–1238 (2015). https://doi.org/10.1016/j.jcms.2015.04.028

    Article  Google Scholar 

  6. Honigmann, P., Sharma, N., Okolo, B., Popp, U., Msallem, B., Thieringer, F.M.: Patient-specific surgical implants M\made of 3D printed PEEK: material, technology, and scope of surgical application. Biomed Res. Int. 2018, 1–8 (2018). https://doi.org/10.1155/2018/4520636

    Article  Google Scholar 

  7. Wang, C., et al.: Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants. J. Mech. Behav. Biomed. Mater. 90, 460–471 (2019). https://doi.org/10.1016/j.jmbbm.2018.10.031

    Article  Google Scholar 

  8. Rammos, C.K., Cayci, C., Castro-Garcia, J.A., Feiz-Erfan, I., Lettieri, S.C.: Patient-specific polyetheretherketone implants for repair of craniofacial defects. J. Craniofac. Surg. 26(3), 631–633 (2015). https://doi.org/10.1097/SCS.0000000000001413

    Article  Google Scholar 

  9. Punchak, M., et al.: Outcomes following polyetheretherketone (PEEK) cranioplasty: systematic review and meta-analysis. J. Clin. Neurosci. 41, 30–35 (2017). https://doi.org/10.1016/j.jocn.2017.03.028

    Article  Google Scholar 

  10. Herring, S.W., Ochareon, P.: Bone-special problems of the craniofacial region. Orthod. Craniofacial Res. 8(3), 174–182 (2005). https://doi.org/10.1111/j.1601-6343.2005.00328.x

    Article  Google Scholar 

  11. Panayotov, I.V., Orti, V., Cuisinier, F., Yachouh, J.: Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 27(7), 1–11 (2016). https://doi.org/10.1007/s10856-016-5731-4

    Article  Google Scholar 

  12. Pal, S.:  Design of Artificial Human Joints & Organs, vol. 1, pp. 1–419 (2014)

    Google Scholar 

  13. Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32), 4845–4869 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.013

    Article  Google Scholar 

  14. Sampaio, M., et al.: Effects of poly-ether-ether ketone (PEEK) veneer thickness on the reciprocating friction and wear behavior of PEEK/Ti6Al4V structures in artificial saliva. Wear 368–369, 84–91 (2016). https://doi.org/10.1016/j.wear.2016.09.009

    Article  Google Scholar 

  15. Omidi, A., Jeannin, C., Nazari, M.A., Panahi, M.S.: Analysis of temporomandibular joint prosthesis using finite element method and a patient specific design. Eng. Solid Mech. 7(1), 83–92 (2019). https://doi.org/10.5267/j.esm.2018.10.001

    Article  Google Scholar 

  16. Roberts, W.E., Huja, S.S., Roberts, J.A.: Bone modeling: biomechanics, molecular mechanisms, and clinical perspectives. Semin. Orthod. 10(2), 123–161 (2004). https://doi.org/10.1053/j.sodo.2004.01.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Kim Cuc Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, T.K.C., Hai, H., Binh, C., Dung, V. (2022). The Process of Custom Designing Replacement Cranial Bone Patches in Human Body. In: Le, AT., Pham, VS., Le, MQ., Pham, HL. (eds) The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering. RCTEMME 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1968-8_76

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1968-8_76

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1967-1

  • Online ISBN: 978-981-19-1968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics