Skip to main content

Isolation and Primary Culture of Various Mammalian Cells

  • Reference work entry
  • First Online:
Practical Approach to Mammalian Cell and Organ Culture
  • 723 Accesses

Abstract

Isolation and primary culture of four major mammalian cells comprise the major contents of this chapter. The cells described here are endothelial cells, smooth muscle cells, fibroblasts, and epithelial cells. While endothelial cells are present only in the various micro- and macrovascular beds, smooth muscle cells and fibroblasts are present both in the vascular and nonvascular regions of a mammalian body. However, epithelial cells are present in the epithelium, located exclusively in the nonvascular regions. The epithelium is the thin tissue layer or multiple layers of epithelial cells, forming the inner or outer surface of organs, glands, mouth, nostrils, trachea, alveoli, ducts lumen of mammary glands, the lining of the alimentary canal, and urinary bladder. This chapter focuses on the following basic aspects of the isolation and culture of these mammalian cells: (1) the basic concept of these cells; (2) locations of the body at which these cells are present; (3) various instruments and materials are needed to isolate these cells; (4) various isolation and culture procedures of these cells; (5) phenotypic and protein maker-based identification of these cells; and finally, (6) utility to culture prospects of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bose DC, et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 1992;99:683–90.

    CAS  PubMed  Google Scholar 

  • Aird WCA. Phenotypic heterogeneity of the endothelium: I. structure, function, and mechanisms. Circ Res. 2007a;100:158–73.

    CAS  PubMed  Google Scholar 

  • Aird WCB. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007b;100:174–90.

    CAS  PubMed  Google Scholar 

  • An SJ, Liu P, Shao TM, Wang ZJ, Lu HG, Jiao Z, et al. Characterization and functions of vascular adventitial fibroblast subpopulations. Cell Physiol Biochem. 2015;35:1137–50.

    CAS  PubMed  Google Scholar 

  • Ballard PL, Lee JW, Fang X, Chapin C, Allen L, Segal MR, et al. Regulated gene expression in cultured type II cells of adult human lung. Am J Physiol Lung Cell Mol Physiol. 2010;299:L36–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bals R, Beisswenger C, Blouquitb S, Chinet T. Isolation and air-liquid interface culture of human large airway and bronchiolar epithelial cells. J Cyst Fibros. 2004;3:49–51.

    CAS  PubMed  Google Scholar 

  • Batistatou A, Stefanou D, Arkoumani E, Agnantis NJ. The usefulness of p63 as a marker of breast myoepithelial cells. In Vivo 2003;17:573–576.

    Google Scholar 

  • Beamish JA, He P, Kottke-Marchant K. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev. 2010;16:467–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell L, Hollins AJ, Al-Eid A, Newman GR, vonRuhland C, Gumbleton M. Caveolin-1 expression and Caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochem Biophys Res Comm. 1999;262:744–51.

    CAS  PubMed  Google Scholar 

  • Corti M, Brody AR, Harrison JH. Isolation and primary culture of murine alveolar type II cells. Am J Respir Cell Mol Biol. 1996;14:309–15.

    CAS  PubMed  Google Scholar 

  • Das M, Dempsey EC, Reeves JT, Stenmark KR. Selective expansion of fibroblast subpopulations from pulmonary artery adventitia in response to hypoxia. Am J Physiol Lung Cell Mol Physiol. 2002;282:L976–86.

    CAS  PubMed  Google Scholar 

  • Dimri G, Band H, Band V. Mammary epithelial cell transformation: insights from cell culture and mouse models. Breast Cancer Res. 2005;7:171–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbs LG. Isolation and culture of alveolar type II cells. Am J Phys. 1990;258:L134–47.

    CAS  Google Scholar 

  • Fu N, Lindeman GJ, Visvader JE. The mammary stem cell hierarchy. Curr Top Dev Biol. 2014;107:133–60. https://doi.org/10.1016/B978-0-12-416022-4.00005-6.

    Article  CAS  PubMed  Google Scholar 

  • Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS, et al. Molecular distinctions between the stasis and telomere attrition senescence barriers demonstrated by long-term culture of normal human mammary epithelial cells. Cancer Res. 2009;69:7557–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garlanda C, Dejana E. Heterogeneity of endothelial cells. Specific markers. ArteriosclerThromb Vasc Biol. 1997;17:1193–202.

    CAS  Google Scholar 

  • Gerhart DZ, Broderius MA, Drewes LR. Cultured human and canine endothelial cells from brain microvessels. Brain Res Bull. 1988;21:785–93.

    CAS  PubMed  Google Scholar 

  • Goldman WE, Baseman JB. Selective isolation and culture of a proliferating epithelial cell population from the hamster trachea. In Vitro. 1980;16:313–9.

    CAS  PubMed  Google Scholar 

  • Gomm JJ, Browne PJ, Coope RC, Liu QY, Buluwela L, Coombes RC. Isolation of pure populations of epithelial and myoepithelial cells from the normal human mammary gland using immunomagnetic separation with Dynabeads. Anal Biochem. 1995;226:91–9.

    CAS  PubMed  Google Scholar 

  • Gräfe M, Auch-Schwelk W, Graf K. Isolation and characterization of macrovascular and microvascular endothelial cells from human hearts. Am J Phys. 1994;267:H2138–48.

    Google Scholar 

  • Gruber M, Weiss E, Siwetz M, Hiden U, Gauster M. Flow-through isolation of human first trimester umbilical cord endothelial cells. Histochem & Cell Biol. 2021;156:363–75.

    CAS  Google Scholar 

  • Jackson CJ, Nguyen M. Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. Int J Biochem Cell Biol. 1997;29:1167–77.

    CAS  PubMed  Google Scholar 

  • Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins C, Milsted A, Doane K, Meszaros G, Toot J, Ely D. A cell-culture model using rat coronary artery adventitial fibroblasts to measure collagen production. BMC Cardiovasc Disord. 2007;7:13.

    PubMed  PubMed Central  Google Scholar 

  • Jin L, Qu Y, Gomez LJ, Chung S, Han B, Gao B, et al. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture. Oncotarget. 2018;9:11503–14.

    PubMed  Google Scholar 

  • Keira SM, Ferreira LM, Gragnani A, Duarte IS, Santos IAN. Experimental model for fibroblast culture. Acta Cir Bras. 2004;19:11–6. https://doi.org/10.1590/S0102-86502004000700004.

    Article  Google Scholar 

  • Kirschenlohr HL, Metcalfe JC, Weissberg PL, Grainger DJ. Adult human aortic smooth muscle cells in culture produce active TGF-beta. Am J Physiol Cell Physiology. 1993;265:C571–6.

    CAS  Google Scholar 

  • Kothari MS, Ali S, Buluwela L, Livni N, Shousha S, Sinnett HD, et al. Purified malignant mammary epithelial cells maintain hormone responsiveness in culture. British J Cancer. 2003;88:1071–6.

    CAS  Google Scholar 

  • Kuroda K, Tajima S. HSP47 is a useful marker for skin fibroblasts in formalin-fixed, paraffin-embedded tissue specimens. J Cutan Pathol. 2004;31:241–6.

    CAS  PubMed  Google Scholar 

  • LaBarge MA, Garbe JC, Stampfer MR. Processing of human reduction mammoplasty and mastectomy tissues for cell culture. J Vis Exp. 2013;71:50011.

    Google Scholar 

  • Lam HC, Choi AM, Ryter SW. Isolation of mouse respiratory epithelial cells and exposure to experimental cigarette smoke at air liquid interface. J Vis Exp. 2011;48:pii. 2513.

    Google Scholar 

  • Latza U, Niedobitek G, Schwarting R, Nekarda H, Stein H. Ber-EP4: new monoclonal antibody which distinguishes epithelia from mesothelial. J. Clin Pathol. 1990;43:213–221.

    Google Scholar 

  • Mao P, Wu S, Li J, Fu W, He W, Liu X, et al. Human alveolar epithelial type II cells in primary culture. Physiol Rep. 2015;3:e12288.

    PubMed  PubMed Central  Google Scholar 

  • Mebazaa A, Wetzel R, Cherian M, Abraham M. Comparison between endocardial and great vessel endothelial cells: morphology, growth, and prostaglandin release. Am J Phys. 1995;268:H250–9.

    CAS  Google Scholar 

  • Mehrke G, Pohl U, Daut J. Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and Guinea-pig coronary endothelial cells. J Physiol Lond. 1990;437:277–99.

    Google Scholar 

  • Meleady P, O’ Sullivan F, McBride S, Clynes M. Isolation, cultivation and differentiation of lung type II epithelial cells. In: Clynes, M. (eds) Springer Lab Manual. Springer, Berlin, Heidelberg. Animal Cell Cult Techn. 1998:357–70. https://doi.org/10.1007/978-3-642-80412-0_19, ISBN (Print): 978-3-540-63008-1.

  • Pahk K, Joung C, Jung SM, Song HY, Park JY, Jung Woo J, et al. Visualization of synthetic vascular smooth muscle cells in atherosclerotic carotid rat arteries by F-18 FDG PET. Sci Rep. 2017;7:6989.

    PubMed  PubMed Central  Google Scholar 

  • Proudfoot D, Shanahan C. Human vascular smooth muscle cell culture. Methods Mol Biol. 2012;806:251–63.

    CAS  PubMed  Google Scholar 

  • Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raouf A, Sun YJ. In vitro methods to culture primary human breast epithelial cells. Methods Mol Biol (Clifton, NJ). 2013;946:363–81.

    CAS  Google Scholar 

  • Rensen SSM, Doevendans PAFM, van Eys GJJM. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15:100–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • SeluanovA VA, Gorbunova V. Establishing primary adult fibroblast cultures from rodents. Vis Exp. 2010;44:2033.

    Google Scholar 

  • Shatos MA, Orfeo T, Doherty JM, Penar PL, Collen D, Mann KG. Alpha-thrombin stimulates urokinase production and DNA synthesis in cultured human cerebral microvascular endothelial cells. Arterioscler Thromb Vasc Biol. 1995;15:903–11.

    CAS  PubMed  Google Scholar 

  • Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Jun Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11:259–73.

    CAS  PubMed  Google Scholar 

  • Stampfer MR, Yaswen P. Culture systems for study of human mammary epithelial cell proliferation, differentiation and transformation. Cancer Surv. 1993;18:7–34.

    CAS  PubMed  Google Scholar 

  • Stevens T. Functional and molecular heterogeneity of pulmonary endothelial cells. Proc Am Thorac Soc. 2011;8:453–7.

    CAS  PubMed  Google Scholar 

  • Takashima A, Establishment of fibroblast cultures. Curr Protoc Cell Biol. 2001; Chapter 2, Unit 2.1. https://doi.org/10.1002/0471143030.cb0201s00.

  • Vangipuram M, Ting D, Kim S, Diaz R, Schüle B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp. 2013;77:e3779.

    Google Scholar 

  • Wang J, Edeen K, Manzer R, Chang Y, Wang S, Chen X, et al. Differentiated human alveolar epithelial cells and reversibility of their phenotype in vitro. Am J Respir Cell Mol Biol. 2007;36:661–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cellular & Develop Biol. 1988;24:420–8.

    CAS  Google Scholar 

  • Zubeldia-Plazaola A, Ametller E, Mancino M, de Puig MP, López-Plana A, Guzman F, et al. Comparison of methods for the isolation of human breast epithelial and myoepithelial cells. Front Cell Dev Biol. 2015;3:32.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukherjee, T.K. (2023). Isolation and Primary Culture of Various Mammalian Cells. In: Mukherjee, T.K., Malik, P., Mukherjee, S. (eds) Practical Approach to Mammalian Cell and Organ Culture. Springer, Singapore. https://doi.org/10.1007/978-981-19-1731-8_8-1

Download citation

Publish with us

Policies and ethics