Skip to main content

Zebrafish As an Animal Model for Cancer Research

  • Living reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research

Abstract

Zebrafish has emerged as a veritable animal tool used for modeling human cancers. It is currently used to study the development of tumors in several organs in relation to human cancers. This model studies the similarity in the morphology, histology, physiology, and genetic composition of zebrafish cancer model and human malignancies. This model gives room for cancer therapeutic research, drug design, and modification. With the zebrafish as an animal model for cancer, research tools can have relatively short duration and little amount of drug can be easily tested, easily manipulated, transparent, and highly predictable. It is of note that the zebrafish cancer model provides suitable underlying and unique insights into mechanisms of cancers. It may provide possible cancer chemopreventive actions based on the underlying mechanisms. This chapter compiles the biology of zebrafish and its suitability as an animal model for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Astone M, Dankert EN, Alam K, Hoeppner LH (2017) Fishing for cures: the alLURE of using zebrafish to develop precision oncology therapies. NPJ Precis Oncol 1:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Avdesh A, Chen M, Martin-Iverson MT, Mondal A, Ong D, RaineySmith S, Taddei K, Lardelli M, Groth DM, Verdile G, Martins RN (2012) Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J Vis Exp 69:e4196

    Google Scholar 

  • Beekhuijzen M, de Koning C, Flores-Guillén ME, de Vries-Buitenweg S, Tobor-Kaplon M, van de Waart B, Emmen H (2015) From cutting edge to guideline: a first step in harmonization of the zebrafish embryotoxicity test (ZET) by describing the most optimal test conditions and morphology scoring system. Reprod Toxicol 56:64–76

    Article  CAS  PubMed  Google Scholar 

  • Beer RL, Parsons MJ, Rovira M (2016) Centroacinar cells: at the center of pancreas regeneration. Dev Biol 413:8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugman S (2016) The zebrafish as a model to study intestinal inflammation. Dev Comp Immunol 64:82–92

    Article  CAS  PubMed  Google Scholar 

  • Cagan RL, Zon LI, White RM (2019) Modeling cancer with flies and fish. Dev Cell 2019(49):317–324

    Article  Google Scholar 

  • Capiotti KM, Antonioli R Jr, Kist LW, Bogo MR, Bonan CD, Da Silva RS (2014) Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp Biochem Physiol B Biochem Mol Biol 171:58–65

    Article  CAS  PubMed  Google Scholar 

  • Capiotti KM, Siebel AM, Kist LW, Bogo MR, Bonan CD, Da Silva RS (2016) Hyperglycemia alters E-NTPDases, ecto-5′-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio). Purinergic Signal 12:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zheng YM, Zhang JP (2018) Comparative study of different diets-induced NAFLD models of zebrafish. Front Endocrinol (Lausanne) 9:366

    Article  Google Scholar 

  • Chin JSR, Gassant CE, Amaral PM, et al. (2018) Convergence on reduced stress behavior in the Mexican blind cavefish. Dev Biol 441(2):319–327. https://doi.org/10.1016/j.ydbio.2018.05.009

  • Chu J, Sadler KC (2009) New school in liver development: lessons from zebrafish. Hepatology 50(5):1656–1663

    Article  CAS  PubMed  Google Scholar 

  • Clark KJ, Ekker SC (2015) How zebrafish genetics informs human biology. Nat Educ 8(4):3

    Google Scholar 

  • Elo B, Villano CM, Govorko D, White LA (2007) Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J Mol Endocrinol 38:433–440

    Article  CAS  PubMed  Google Scholar 

  • Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345(13):971–980

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Miller YI (2012) Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids. Free Radic Biol Med 53:1411–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6(5):685–694

    Article  CAS  PubMed  Google Scholar 

  • Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131(2):242–256

    Article  CAS  PubMed  Google Scholar 

  • Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D, Akassoglou K, Verdin E, Hirschey MD, Stainier DY (2013) Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol 9(2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Gut P, Reischauer S, Stainier DYR, Arnaout R (2017) Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiol Rev 97:889–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesselson D, Anderson RM, Beinat M, Stainier DY (2009) Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc Natl Acad Sci U S A 106(35):14896–14901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth DL, Yin C, Yeh K, Sadler KC (2013) Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish larvae. Zebrafish 10:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Zhu Z, Lin S, Zhang B (2012) Reverse genetic approaches in zebrafish. J Genet Genomics 39(9):421–433

    Article  CAS  PubMed  Google Scholar 

  • Huiting LN, Laroche F, Feng H (2015) The zebrafish as a tool to cancer drug discovery. Austin J Pharmacol Ther 3:1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Torrealba D, Thwaite R, Gomez AC, Parra D, Roher N (2019) Nanostructured TNFαprotein targets the zebrafish (Danio rerio) immune system through mucosal surfaces and improves the survival afterMycobacterium marinum lethal infection. Aquaculture 510:138–149

    Article  CAS  Google Scholar 

  • Kimmel RA, Meyer D (2016) Zebrafish pancreas as a model for development and disease. Methods Cell Biol 134:431–461

    Article  CAS  PubMed  Google Scholar 

  • Kucinska M, Murias M, Nowak-Sliwinska P (2017) Beyond mouse cancer models: three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. Mutat Res 773:242–262

    Article  CAS  Google Scholar 

  • Kumar S, Lockwood N, Ramel M-C, Correia T, Ellis M, Alexandrov Y et al (2016) Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish. Oncotarget 7:43939–43948

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai JG, Tsai SM, Tu HC, Chen WC, Kou FJ, Lu JW, Wang HD, Huang CL, Yuh CH (2014) Zebrafish WNK lysine deficient protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling. PLoS One 9(8):e106129

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233(4):1560–1570

    Article  CAS  PubMed  Google Scholar 

  • Lilljebjorn H, Fioretos T (2017) New oncogenic subtypes in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 130:1395–1401

    Article  PubMed  Google Scholar 

  • MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14(10):721

    Article  CAS  PubMed  Google Scholar 

  • Mantilla Galindo A, Ocampo M, Patarroyo MA (2019) Experimental models used in evaluating anti-tuberculosis vaccines: the latest advances in the field. Expert Rev Vaccines 18(4):365–377

    Article  CAS  PubMed  Google Scholar 

  • Menke AL, Spitsbergen JM, Wolterbeek AP, Woutersen RA (2011) Review normal anatomy and histology of the adult zebrafish. Toxicol Pathol 39(5):759–775

    Article  PubMed  Google Scholar 

  • Mirbahai L, Williams TD, Zhan H, Gong Z, Chipman JK (2011) Comprehensive profiling of zebrafish hepatic proximal promoter CpG island methylation and its modification during chemical carcinogenesis. BMC Genomics 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss JB, Koustubhan P, Greenman M, Parsons MJ, Walter I, Moss LG (2009) Regeneration of the pancreas in adult zebrafish. Diabetes 58(8):1844–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen AS, Sarras MP Jr, Leontovich A, Intine RV (2012) Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 61:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas L and Francesc P (2014) The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Review in Aquaculture 6 (4): 209–240

    Google Scholar 

  • Rocker AJ, Weiss AR, Lam JS, Van Raay TJ, Khursigara CM (2015) Visualizing and quantifying pseudomonas aeruginosainfection in the hindbrain ventricle of zebrafish using confocal laser scanning microscopy. J Microbiol Methods 117:85–94

    Article  PubMed  Google Scholar 

  • Rovira M, Huang W, Yusuff S, Shim JS, Ferrante AA, Liu JO, Parsons MJ (2011) Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc Natl Acad Sci U S A 108(48):19264–19269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N (2005) A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132(15):3561–3572

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Pabón W, Konradt C, Sansonetti PJ, Phalipon A (2014) New insights into the crosstalk between Shigella and T lymphocytes. Trends Microbiol 22(4):192–198

    Article  PubMed  Google Scholar 

  • Tavares B, Santos Lopes S (2013) The importance of Zebrafish in biomedical research. Acta Med Port 26(5):583–592

    Google Scholar 

  • Teittinen KJ, Gronroos T, Parikka M, Ramet M, Lohi O (2012) The zebrafish as a tool in leukemia research. Leuk Res 36(9):1082–1088

    Article  CAS  PubMed  Google Scholar 

  • Wertman J, Veinotte CJ, Dellaire G, Berman JN (2016) The zebrafish xenograft platform: evolution of a novel cancer model and preclinical screening tool. Adv Exp Med Biol 916:289–314

    Article  CAS  PubMed  Google Scholar 

  • Wong CW, Han HW, Tien YW, Hsu SH (2019) Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Biomaterials 213:119–202

    Article  Google Scholar 

  • Wu J-Q, Zhai J, Li C-Y, Tan A-M, Wei P, Shen L-Z et al (2017) Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J Exp Clin Cancer Res 36:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Shimada Y, Hirota T, Ariyoshi M, Kuroyanagi J, Nishimura Y (2016) Novel immunologic tolerance of human cancer cell xenotransplants in zebrafish. Transl Res 170:89–98

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adefegha, S.A., Molehin, O.R., Adefegha, O.M., Fakayode, A.E. (2022). Zebrafish As an Animal Model for Cancer Research. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1282-5_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1282-5_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1282-5

  • Online ISBN: 978-981-19-1282-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics