Skip to main content

Orthotopic PDX and CDX Mice Model for Cancer Stem Cell Research

  • Living reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research

Abstract

The advancement of cancer research definitely enlightened the survival of cancer patients in the United States; however, more translation and preclinical research are needed to prevent the death of cancer patients in the USA and worldwide. Both preclinical and translational research required patient-derived xenograft (PDX) and cell line-derived xenograft (CDX) models to design and screen rapidly anticancer drugs against drug-registrant cancer stem cells of different cancers. There are increased applications of different cancerous cells or tissues from the tumor of cancer patients that are implanted in immunodeficient mice to simulate human aggressive tumor growth in vivo, which are aimed to intervene by designing specific anticancer drugs. The PDX and CDX models are extensively used in cancer research in current years. These models are able to reproduce stably the patients’ tumors in relation to gene mutation, gene expression, reprogramming of drug resistant heterogenic cancer stem cells, inflammation, histopathology, genetic mutations, and therapeutic efficacy of different types of cancers, namely, pancreatic cancer, serous carcinoma, glioblastoma, lymphocytic leukemia, brain cancer, gastric cancer, lymphoma, colorectal cancer, and hepatic carcinoma. Therefore, both PDX and CDX models permit precious evaluation in tumor biology, preclinical study, finding therapeutic signaling pathways, and evaluation of anticancer drugs against different cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CTCs:

Circulating tumor cells

FGS:

Precise fluorescence-guided surgery

HCC:

Hepatocellular carcinoma

NSCLC:

Non-small-cell lung cancer

PDX:

Patient-derived xenograft

References

  • Akkina R (2013) Human immune responses and potential for vaccine assessment in humanized mice. Curr Opin Immunol 25:403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audige A, Rochat MA, Li D, Ivic S, Fahrny A, Muller CKS, Gers-Huber G, Myburgh R, Bredl S, Schlaepfer E, Scherrer AU, Kuster SP, Speck RF (2017) Long-term leukocyte reconstitution in NSG mice transplanted with human cord blood hematopoietic stem and progenitor cells. BMC Immunol 18:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bago JR, Alfonso-Pecchio A, Okolie O, Dumitru R, Rinkenbaugh A, Baldwin AS, Miller CR, Magness ST, Hingtgen SD (2016) Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat Commun 7:10593. https://doi.org/10.1038/ncomms10593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Kan S, Zhou S, Wang Y, Xu J, Cooke JP, Wen J, Deng H (2015) Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA. Cell Discov 1:15040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger AH, Brooks AN, Wu X, Shrestha Y, Chouinard C, Piccioni F, Bagul M, Kamburov A, Imielinski M, Hogstrom L et al (2016) High-throughput phenotyping of lung cancer somatic mutations. Cancer Cell 30:214–228. https://doi.org/10.1016/j.ccell.2016.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosma MJ, Carroll AM (1991) The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 9:323–350

    Article  CAS  PubMed  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  CAS  PubMed  Google Scholar 

  • Bradford JR, Wappett M, Beran G, Logie A, Delpuech O, Brown H, Boros J, Camp NJ, McEwen R, Mazzola AM et al (2016) Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers. Oncotarget 7:20773–20787

    Article  PubMed  PubMed Central  Google Scholar 

  • Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, Shin HS, Brooks SF, Knight HL, Eichbaum Q, Yang YG, Sykes M, Walker BD, Freeman GJ, Pillai S, Westmoreland SV, Brander C, Luster AD, Tager AM (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 83:7305–7321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm MA, Kenney LL, Wiles MV, Low BE, Tisch RM, Burzenski L, Mueller C, Greiner DL, Shultz LD (2019) Lack of acute xenogeneic graft- versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB J 33:3137–3151

    Article  CAS  PubMed  Google Scholar 

  • Buque A, Galluzzi L (2018) Modeling tumor immunology and immunotherapy in mice. Trends Cancer 4:599–601

    Article  CAS  PubMed  Google Scholar 

  • Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinska E, Caldas C, Chang DK et al (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17:254–268

    Article  CAS  PubMed  Google Scholar 

  • Capasso A, Lang J, Pitts TM, Jordan KR, Lieu CH, Davis SL, Diamond JR, Kopetz S, Barbee J, Peterson J, Freed BM, Yacob BW, Bagby SM, Messersmith WA, Slansky JE, Pelanda R, Eckhardt SG (2019) Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts. J Immunother Cancer 7:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126:3130–3144

    Article  PubMed  PubMed Central  Google Scholar 

  • Danisch S, Slabik C, Cornelius A, Albanese M, Tagawa T, Chen YA, Kronke N, Eiz-Vesper B, Lienenklaus S, Bleich A, Theobald SJ, Schneider A, Ganser A, von Kaisenberg C, Zeidler R, Hammerschmidt W, Feuerhake F, Stripecke R (2019) Spatiotemporally skewed activation of programmed cell death receptor 1-positive T cells after epstein-barr virus infection and tumor development in long-term fully humanized mice. Am J Pathol 189:521–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das JK, Voelkel NF, Felty Q (2015) ID3 contributes to the acquisition of molecular stem cell-like signature in microvascular endothelial cells: its implication for understanding microvascular diseases. Microvasc Res 98:126–138. https://doi.org/10.1016/j.mvr.2015.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das JK, Felty Q, Poppiti R, Jackson RM, Roy D (2018) Nuclear respiratory factor 1 acting as an oncoprotein drives estrogen-induced breast carcinogenesis. Cell 7(12):234. https://doi.org/10.3390/cells7120234

    Article  CAS  Google Scholar 

  • Das M, Santana MC, Barraque S, Cardenas J, Galindo JA, Cortes M, Ramos J, Prado AS, Castillo MT, Villar V, Vincent C, Justo E, Mendez M, Mera I, Pachon J, Perez K, Marin A, Murmu N, Biswas M, Ruiz M, Das JK. (2021a) 3D spheroid: a rapid drug screening model for epigenetic clinical targets against heterogenic cancer stem cells. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021. AACR, Philadelphia. Cancer Res 81(13_Suppl): Abstract nr 2104. https://doi.org/10.1158/1538-7445.AM2021-2104

  • Das JK, Das M, Camejo AD, Emile S, Espinosa C, Ferraz A, Guzman K (2021b) The 3D spheroid model serves for rapid genomic and epigenomic risk assessment of different chemicals on adult stem cells. In: Virtual 2021 SOT Annual Meeting and ToxExpo; The Toxicologist Supplement to Toxicological Sciences; 180(S1): PS2526; p 198. https://www.toxicology.org/pubs/docs/Tox/2021Tox.pdf

  • Das J, Das M, Doke M, Wnuk S, Stiffin R, Ruiz M, Celli J (2021c) A small molecule inhibits pancreatic cancer stem cells. Int J Exp Res Rev 26:1–15. https://doi.org/10.52756/ijerr.2021.v26.001

    Article  Google Scholar 

  • Das JK, Deoraj A, Roy D, Felty Q. (2022) Brain infiltration of breast cancer stem cells is facilitated by paracrine signaling by inhibitor of differentiation 3 to nuclear respiratory factor 1. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-022-04026-w

  • de la Rochere P, Guil-Luna S, Decaudin D, Azar G, Sidhu SS, Piaggio E (2018) Humanized mice for the study of immuno-oncology. Trends Immunol 39:748–763

    Article  CAS  Google Scholar 

  • de Plater L, Lauge A, Guyader C, Poupon MF, Assayag F, de Cremoux P, Vincent-Salomon A, Stoppa-Lyonnet D, Sigal-Zafrani B, Fontaine JJ et al (2010) Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br J Cancer 103:1192–1200. https://doi.org/10.1038/sj.bjc.6605900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbin ZC, Katre AA, Steg AD, Erickson BK, Shah MM, Alvarez RD, Conner MG, Schneider D, Chen D, Landen CN (2014) Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer. Oncotarget 5:8750–8764. https://doi.org/10.18632/oncotarget.2373

    Article  PubMed  PubMed Central  Google Scholar 

  • Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, Bonal DM, Charytonowicz E, Gladoun N, de la Iglesia-Vicente J et al (2012) Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 22:373–388. https://doi.org/10.1016/j.ccr.2012.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escudero-Perez B, Ruibal P, Rottstegge M, Ludtke A, Port JR, Hartmann K, Gomez-Medina S, Muller-Guhl J, Nelson EV, Krasemann S, Rodriguez E, Munoz-Fontela C (2019) Comparative pathogenesis of Ebola virus and Reston virus infection in humanized mice. JCI Insight 4:e126070

    Article  PubMed Central  Google Scholar 

  • Fiebig HH, Schuler J, Bausch N, Hofmann M, Metz T, Korrat A (2007) Gene signatures developed from patient tumor explants grown in nude mice to predict tumor response to 11 cytotoxic drugs. Cancer Genomics Proteomics 4:197–209

    CAS  PubMed  Google Scholar 

  • Flanagan SP (1966) ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res 8:295–309

    Article  CAS  PubMed  Google Scholar 

  • Flerin NC, Bardhi A, Zheng JH, Korom M, Folkvord J, Kovacs C, Benko E, Truong R, Mota T, Connick E, Jones RB, Lynch RM, Goldstein H (2019) Establishment of a novel humanized mouse model to investigate in vivo activation and depletion of patient-derived HIV latent reservoirs. J Virol 93:e02051–e02018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara S (2018) Humanized mice: a brief overview on their diverse applications in biomedical research. J Cell Physiol 233:2889–2901

    Article  CAS  PubMed  Google Scholar 

  • Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, Ni A, Khodos I, de Stanchina E, Nguyen T et al (2017) Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell 31:286–299. https://doi.org/10.1016/j.ccell.2017.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gitto SB, Kim H, Rafail S, Omran DK, Medvedev S, Kinose Y, Rodriguez-Garcia A, Flowers AJ, Xu H, Schwartz LE, Powell DJ Jr, Simpkins F (2020) An autologous humanized patient-derived-xenograft platform to evaluate immunotherapy in ovarian cancer. Gynecol Oncol 156:222–232

    Article  CAS  PubMed  Google Scholar 

  • Greiner DL, Shultz LD, Yates J, Appel MC, Perdrizet G, Hesselton RM, Schweitzer I, Beamer WG, Shultz KL, Pelsue SC et al (1995) Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C. B-17-scid/scid mice. Am J Pathol 146:888–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Li Y, Shan Y, Shu C, Wang F, Wang X, Zheng G, He J, Hu Z, Yang YG (2018) Humanized mice reveal an essential role for human hepatocytes in the development of the liver immune system. Cell Death Dis 9:667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hai J, Sakashita S, Allo G, Ludkovski O, Ng C, Shepherd FA, Tsao MS (2015) Inhibiting MDM2-p53 interaction suppresses tumor growth in patient-derived non-small cell lung cancer xenograft models. J Thorac Oncol 10:1172–1180. https://doi.org/10.1097/JTO.0000000000000584

    Article  CAS  PubMed  Google Scholar 

  • Harui A, Kiertscher SM, Roth MD (2011) Reconstitution of huPBL-NSG mice with donor-matched dendritic cells enables antigen-specific T-cell activation. J Neuroimmune Pharmacol 6:148–157

    Article  PubMed  Google Scholar 

  • Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, Wakui M, Ito M, Suematsu M, Peltz G, Nakamura M, Suemizu H. (2011) The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun. 405(3):405–10. https://doi.org/10.1016/j.bbrc.2011.01.042

  • Hanazawa A, Ito R, Katano I, Kawai K, Goto M, Suemizu H, Kawakami Y, Ito M, Takahashi T. (2018) Generation of human immunosuppressive myeloid cell populations in human interleukin-6 transgenic nog mice. Front Immunol. 9:152. https://doi.org/10.3389/fimmu.2018.00152

  • Hiroshima Y, Maawy A, Metildi CA, Zhang Y, Uehara F, Miwa S, Yano S, Sato S, Murakami T, Momiyama M et al (2014) Successful fluorescence-guided surgery on human colon cancer patient-derived orthotopic xenograft mouse models using a fluorophore-conjugated anti-CEA antibody and a portable imaging system. J Laparoendosc Adv Surg Tech A 24:241–247. https://doi.org/10.1089/lap.2013.0418

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito R, Negishi N, Irie N, Matsuo K, Suzuki D, Katano I, Hayakawa E, Kawai K, Kamisako T, Eto T, Ogura T, Hozumi K, Ando K, Aiso S, Tamaoki N, Habu S, Ito M. (2012) Osteosclerosis and inhibition of human hematopoiesis in NOG mice expressing human Delta-like 1 in osteoblasts. Exp Hematol. 40(11):953–963. https://doi.org/10.1016/j.exphem.2012.07.002

  • Ito R, Maruoka S, Soda K, Katano I, Kawai K, Yagoto M, Hanazawa A, Takahashi T, Ogura T, Goto M, Takahashi R, Toyoshima S, Okayama Y, Izuhara K, Gon Y, Hashimoto S, Ito M, Nunomura S. (2018) A humanized mouse model to study asthmatic airway inflammation via the human IL-33/IL-13 axis. JCI Insight. 3(21):e121580. https://doi.org/10.1172/jci.insight.121580

  • Ito R, Katano I, Otsuka I, Hanazawa A, Takahashi T, Kawai K, Yagoto M, Goto M, Ogura T, Takahashi R, Ito M. (2019) Exacerbation of pathogenic Th17-cell-mediated cutaneous graft-versus-host-disease in human IL-1β and IL-23 transgenic humanized mice. Biochem Biophys Res Commun. 516(2):480–485. https://doi.org/10.1016/j.bbrc.2019.06.094

  • Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182. https://doi.org/10.1182/blood-2001-12-0207

  • Jin K, Li G, Cui B, Zhang J, Lan H, Han N, Xie B, Cao F, He K, Wang H et al (2011) Assessment of a novel VEGF targeted agent using patient-derived tumor tissue xenograft models of colon carcinoma with lymphatic and hepatic metastases. PLoS One 6:e28384. https://doi.org/10.1371/journal.pone.0028384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin K, Lan H, Cao F, Xu Z, Han N, Li G, He K, Teng L (2012) Antitumor effect of FP3 in a patient-derived tumor tissue xenograft model of gastric carcinoma through an antiangiogenic mechanism. Oncol Lett 3:1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CH, Xia J, Rafiq S, Huang X, Hu Z, Zhou X, Brentjens RJ, Yang YG. (2019) Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine. 39:173–181. https://doi.org/10.1016/j.ebiom.2018.12.013

  • Kametani Y, Ohno Y, Ohshima S, Tsuda B, Yasuda A, Seki T, Ito R, Tokuda Y (2019) Humanized mice as an effective evaluation system for peptide vaccines and immune checkpoint inhibitors. Int J Mol Sci 20:6337

    Article  CAS  PubMed Central  Google Scholar 

  • Karpel ME, Boutwell CL, Allen TM (2015) BLT humanized mice as a small animal model of HIV infection. Curr Opin Virol 13:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katano I, Ito R, Kamisako T, Eto T, Ogura T, Kawai K, Suemizu H, Takahashi T, Kawakami Y, Ito M (2014) NOD-Rag2null IL-2Rgammanull mice: an alternative to NOG mice for generation of humanized mice. Exp Anim 63:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur K, Topchyan P, Kozlowska AK, Ohanian N, Chiang J, Maung PO, Park SH, Ko MW, Fang C, Nishimura I, Jewett A (2018) Super-charged NK cells inhibit growth and progression of stem-like/poorly differentiated oral tumors in vivo in humanized BLT mice; effect on tumor differentiation and response to chemotherapeutic drugs. Onco Targets Ther 7:e1426518

    Google Scholar 

  • Katano I, Ito R, Kawai K, Takahashi T. (2020) Improved detection of in vivo human nk cell-mediated antibody-dependent cellular cytotoxicity using a novel NOG-FcγR-Deficient Human IL-15 Transgenic Mouse. Front Immunol. 11:532684. https://doi.org/10.3389/fimmu.2020.532684

  • Ka Y, Katano I, Nishinaka E, Welcker J, Mochizuki M, Kawai K, Goto M, Tomiyama K, Ogura T, Yamamoto T, Ito M, Ito R, Takahashi R. (2021) Improved engraftment of human peripheral blood mononuclear cells in NOG MHC double knockout mice generated using CRISPR/Cas9. Immunol Lett. 229:55–61. https://doi.org/10.1016/j.imlet.2020.11.011

  • Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209–213. https://doi.org/10.1038/nature14034

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Wei X, Lin S, Qin L, Cheng L, Li P (2017) Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol 10(1):106. https://doi.org/10.1186/s13045-017-0470-7. Published 2017 May 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan P, Tonomura N, Shimizu A, Wang S, Yang YG (2006) Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108:487–492

    Article  CAS  PubMed  Google Scholar 

  • Lavender KJ, Pang WW, Messer RJ, Duley AK, Race B, Phillips K, Scott D, Peterson KE, Chan CK, Dittmer U, Dudek T, Allen TM, Weissman IL, Hasenkrug KJ (2013) BLT-humanized C57BL/6 Rag2-/-gammac-/-CD47-/- mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood 122:4013–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, Baertsch R, Sokolov A, Meyerowitz JG, Mathis C et al (2016) N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29:536–547. https://doi.org/10.1016/j.ccell.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, Ablamunits V, Kirkiles-Smith N, Herold KC, Donis RO, Bothwell AL, Pober JS, Harding MJ (2009) Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C. B-17-scid/bg immunodeficient mice. Hum Immunol 70:790–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Davies BR, Han S, Zhou M, Bai Y, Zhang J, Xu Y, Tang L, Wang H, Liu YJ et al (2013) The AKT inhibitor AZD5363 is selectively active in PI3KCA mutant gastric cancer, and sensitizes a patient-derived gastric cancer xenograft model with PTEN loss to Taxotere. J Transl Med 11:241. https://doi.org/10.1186/1479-5876-11-241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li X, Liang C, Ling L, Chen Z, Wong CK, Waldmann H, Lui KO (2020) Coreceptor blockade targeting CD4 and CD8 allows acceptance of allogeneic human pluripotent stem cell grafts in humanized mice. Biomaterials 248:120013

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Huang G, Cheng L, Li Z, Xiao Y, Deng Q, Jiang Y, Li B, Lin S, Wang S, Wu Q, Yao H, Cao S, Li Y, Liu P, Wei W, Pei D, Yao Y, Wen Z, Zhang X, Wu Y, Zhang Z, Cui S, Sun X, Qian X, Li P (2018) Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs 10:1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Fang R, Li H, Yang W, Miao Z, Wen J, Deng H (2015) Efficient derivation of embryonic stem cells from NOD-scid Il2rg (-/-) mice. Protein Cell 6:916–918

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohse I, Borgida A, Cao P, Cheung M, Pintilie M, Bianco T, Holter S, Ibrahimov E, Kumareswaran R, Bristow RG et al (2015) BRCA1 and BRCA2 mutations sensitize to chemotherapy in patient-derived pancreatic cancer xenografts. Br J Cancer 113:425–432. https://doi.org/10.1038/bjc.2015.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma SD, Xu X, Jones R, Delecluse HJ, Zumwalde NA, Sharma A, Gumperz JE, Kenney SC (2016) PD-1/CTLA-4 blockade inhibits epstein-barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog 12:e1005642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L, Guyader C, De Pinieux G, Judde JG et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13:3989–3998. https://doi.org/10.1158/1078-0432.CCR-07-0078

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Stewart E, Pham NA, Mascaux C, Panchal D, Li M, Kim L, Sakashita S, Wang D, Sykes J et al (2016) Cetuximab inhibits T790M-mediated resistance to epidermal growth factor receptor tyrosine kinase inhibitor in a lung adenocarcinoma patient-derived xenograft mouse model. Clin Lung Cancer 17:375–383. https://doi.org/10.1016/j.cllc.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  • Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, Neri S, Fang B, Lin SH, Tinkey PT, Shpall EJ, Morris J, Roth JA (2019) An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol Res 7:1267–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merk J, Rolff J, Becker M, Leschber G, Fichtner I (2009) Patient-derived xenografts of non-small-cell lung cancer: a pre-clinical model to evaluate adjuvant chemotherapy? Eur J Cardiothorac Surg 36:454–459. https://doi.org/10.1016/j.ejcts.2009.03.054

    Article  PubMed  Google Scholar 

  • Metildi CA, Kaushal S, Luiken GA, Talamini MA, Hoffman RM, Bouvet M (2014) Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model. J Surg Oncol 109:451–458. https://doi.org/10.1002/jso.23507

    Article  CAS  PubMed  Google Scholar 

  • Mizrachi A, Shamay Y, Shah J, Brook S, Soong J, Rajasekhar VK, Humm JL, Healey JH, Powell SN, Baselga J et al (2017) Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nat Commun 8:14292. https://doi.org/10.1038/ncomms14292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou (1992) VE. RAG-1-deficient mice have no mature B and T lymphocytes. 68(5):869–77. https://doi.org/10.1016/0092-8674(92)90030-g

  • Nalbandian M, Zhao M, Sasaki-Honda M, Jonouchi T, Lucena-Cacace A, Mizusawa T, Yasuda M, Yoshida Y, Hotta A, Sakurai H (2021). Characterization of hiPSC-Derived Muscle Progenitors Reveals Distinctive Markers for Myogenic Cell Purification Toward Cell Therapy, Stem Cell Reports, 16(4):883–898. https://doi.org/10.1016/j.stemcr.2021.03.004

  • Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C, Cristofori P, Traversari C, Bordignon C, Ciceri F, Ostuni R, Bonini C, Casucci M, Bondanza A (2018) Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24:739–748

    Article  CAS  PubMed  Google Scholar 

  • Nucera S, Giustacchini A, Boccalatte F, Calabria A, Fanciullo C, Plati T, Ranghetti A, Garcia-Manteiga J, Cittaro D, Benedicenti F et al (2016) miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia. Cancer Cell 29:905–921. https://doi.org/10.1016/j.ccell.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  • Ny L, Rizzo LY, Belgrano V, Karlsson J, Jespersen H, Carstam L, Bagge RO, Nilsson LM, Nilsson JA (2020) Supporting clinical decision making in advanced melanoma by preclinical testing in personalized immune-humanized xenograft mouse models. Ann Oncol 31:266–273

    Article  CAS  PubMed  Google Scholar 

  • Okuma K, Tanaka R, Ogura T, Ito M, Kumakura S, Yanaka M, Nishizawa M, Sugiura W, Yamamoto N, Tanaka Y. (2008) Interleukin-4-transgenic hu-PBL-SCID mice: a model for the screening of antiviral drugs and immunotherapeutic agents against X4 HIV-1 viruses. J Infect Dis. 197(1):134–41. https://doi.org/10.1086/524303

  • Passaro D, Irigoyen M, Catherinet C, Gachet S, da Costa d JC, Lasgi C, Tran Quang C, Ghysdael J (2015) CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell 27:769–779. https://doi.org/10.1016/j.ccell.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  • Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, Coulombel L (1996) Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 88:3731–3740

    Article  CAS  PubMed  Google Scholar 

  • Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, Sanchez-Martin M, Tsirigos A, Littman DR, Ferrando AA et al (2015) CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27:755–768. https://doi.org/10.1016/j.ccell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350. https://doi.org/10.1038/nature10350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyo KH, Kim JH, Lee JM, Kim SE, Cho JS, Lim SM, Cho BC (2019) Promising preclinical platform for evaluation of immuno-oncology drugs using Hu-PBL-NSG lung cancer models. Lung Cancer 127:112–121

    Article  PubMed  Google Scholar 

  • Rosato RR, Davila-Gonzalez D, Choi DS, Qian W, Chen W, Kozielski AJ, Wong H, Dave B, Chang JC (2018) Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models. Breast Cancer Res 20:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, Shi C, Danenberg K, Danenberg PV, Kuramochi H et al (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12:4652–4661. https://doi.org/10.1158/1078-0432.CCR-06-0113

    Article  CAS  PubMed  Google Scholar 

  • Senpuku H, Asano T, Matin K, Salam MA, Tsuha Y, Horibata S, Shimazu Y, Soeno Y, Aoba T, Sata T, Hanada N, Honda M (2002) Effects of human interleukin-18 and interleukin-12 treatment on human lymphocyte engraftment in NOD-scid mouse. Immunology 107:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    CAS  PubMed  Google Scholar 

  • Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD, Pearson T, King M, Giassi L, Carney L, Gott B, Lyons B, Rossini AA, Greiner DL (2007) Humanized NOD/LtSz-scid IL2 receptor common gamma chain knockout mice in diabetes research. Ann N Y Acad Sci 1103:77–89

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  • Siu IM, Ruzevick J, Zhao Q, Connis N, Jiao Y, Bettegowda C, Xia X, Burger PC, Hann CL, Gallia GL (2013) Erlotinib inhibits growth of a patient-derived chordoma xenograft. PLoS One 8:e78895. https://doi.org/10.1371/journal.pone.0078895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skowron KB, Pitroda SP, Namm JP, Balogun O, Beckett MA, Zenner ML, Fayanju O, Huang X, Fernandez C, Zheng W et al (2016) Basal tumor cell isolation and patient-derived xenograft engraftment identify high-risk clinical bladder cancers. Sci Rep 6:35854. https://doi.org/10.1038/srep35854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun R, Zhang J, Zhang C, Zhang J, Liang S, Sun A, Wang J, Tian Z (2004) Human prolactin improves engraftment and reconstitution of human peripheral blood lymphocytes in SCID mice. Cell Mol Immunol 1:129–136

    CAS  PubMed  Google Scholar 

  • Suemizu H, Kawai K, Higuchi Y, Hashimoto H, Ogura T, Itoh T, Sasaki E, Nakamura M. (2013) A versatile technique for the in vivo imaging of human tumor xenografts using near-infrared fluorochrome-conjugated macromolecule probes. PLoS One. 8(12):e82708. https://doi.org/10.1371/journal.pone.0082708

  • Suzuki M, Takahashi T, Katano I, Ito R, Ito M, Harigae H, Ishii N, Sugamura K. (2012) Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/γcnull mouse. Int Immunol. 24(4):243–52. https://doi.org/10.1093/intimm/dxs045

  • Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350. https://doi.org/10.1038/nrclinonc.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. (2004) An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 10(8):871–5. https://doi.org/10.1038/nm1080

  • van Rijn RS, Simonetti ER, Hagenbeek A, Hogenes MC, de Weger RA, Canninga-van Dijk MR, Weijer K, Spits H, Storm G, van Bloois L, Rijkers G, Martens AC, Ebeling SB (2003) A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2-/- gammac-/- double-mutant mice. Blood 102:2522–2531

    Article  PubMed  CAS  Google Scholar 

  • Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, Shultz LD (2017) Humanized mouse models of clinical disease. Annu Rev Pathol 12:187–215

    Article  CAS  PubMed  Google Scholar 

  • Wang J, An H, Mayo MW, Baldwin AS, Yarbrough WG (2007) LZAP, a putative tumor suppressor, selectively inhibits NF-kappaB. Cancer Cell 12:239–251. https://doi.org/10.1016/j.ccr.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ding X, Wang S, Moser CD, Shaleh HM, Mohamed EA, Chaiteerakij R, Allotey LK, Chen G, Miyabe K et al (2016a) Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein. Cancer Lett 380:163–173. https://doi.org/10.1016/j.canlet.2016.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CJ, Tong PJ, Zhu MY (2016b) The combinational therapy of trastuzumab and cetuximab inhibits tumor growth in a patient-derived tumor xenograft model of gastric cancer. Clin Transl Oncol 18:507–514. https://doi.org/10.1007/s12094-015-1397-5

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere White RW, Airhart S, Liu ET, Banchereau J, Brehm MA, Greiner DL, Shultz LD, Palucka K, Keck JG (2018) Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J 32:1537–1549

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, Ito R, Ito M, Minegishi M, Minegishi N, Tsuchiya S, Sugamura K (2009) The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac (null) (NOG) mice (hu-HSC NOG mice). Int Immunol 21:843–858

    Article  CAS  PubMed  Google Scholar 

  • Wege AK (2018) Humanized mouse models for the preclinical assessment of cancer immunotherapy. BioDrugs 32:245–266

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhang J, Zhen R, Lv J, Zheng L, Su X, Zhu G, Gavine PR, Xu S, Lu S et al (2012) Trastuzumab anti-tumor efficacy in patient-derived esophageal squamous cell carcinoma xenograft (PDECX) mouse models. J Transl Med 10:180. https://doi.org/10.1186/1479-5876-10-180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Semple KM, Gonzalez CM, Howard KE (2019) Bone marrow-liver-thymus (BLT) immune humanized mice as a model to predict cytokine release syndrome. Transl Res 210:43–56

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J et al (2013) lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500:598–602. https://doi.org/10.1038/nature12451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano S, Hiroshima Y, Maawy A, Kishimoto H, Suetsugu A, Miwa S, Toneri M, Yamamoto M, Katz MH, Fleming JB et al (2015) Color-coding cancer and stromal cells with genetic reporters in a patient-derived orthotopic xenograft (PDOX) model of pancreatic cancer enhances fluorescence-guided surgery. Cancer Gene Ther 22:344–350. https://doi.org/10.1038/cgt.2015.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Wang XJ, Chen DX, Liu XN, Wang XJ (2020) Humanized mouse model: a review on preclinical applications for cancer immunotherapy. Am J Cancer Res 10(12):4568–4584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Kinoshita H, Segawa T, Nakamura E, Inoue T, Shimizu Y, Kamoto T, Ogawa O (2005) Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res 65:9611–9616. https://doi.org/10.1158/0008-5472.CAN-05-0817

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Li J, Zhu X, Tang X, Bao Y, Sun X, Huang Y, Tian F, Liu X, Yang L (2017) Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential. Int J Nanomedicine 12:1969–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XC, Zhang J, Li M, Huang XS, Yang XN, Zhong WZ, Xie L, Zhang L, Zhou M, Gavine P et al (2013) Establishment of patient-derived non-small cell lung cancer xenograft models with genetic aberrations within EGFR, KRAS and FGFR1: useful tools for preclinical studies of targeted therapies. J Transl Med 11:168. https://doi.org/10.1186/1479-5876-11-168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Zhou H, Liu Q, Cao Y, Wang G, Hu A, Ruan L, Wang S, Bo Q, Chen W et al (2016) Prognostic value of the expression of cancer stem cell-related markers CD133 and CD44 in hepatocellular carcinoma: from patients to patient-derived tumor xenograft models. Oncotarget 7:47431–47443

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M, Tan SY, Fan Y, Yang H, Lyer SG, Bonney GK, Loh E, Chang KTE, Tan TC, Zhai W, Chan JKY, Chow EK, Chee CE, Lee GH, Dan YY, Chow PK, Toh HC, Lim SG, Chen Q (2018) Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut 67:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Ren T, Huang Y, Sun K, Wang S, Bao X, Liu K, Guo W (2018) PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J Hematol Oncol 11:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, J.K., Das, M. (2022). Orthotopic PDX and CDX Mice Model for Cancer Stem Cell Research. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1282-5_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1282-5_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1282-5

  • Online ISBN: 978-981-19-1282-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics