Skip to main content

Quantum Computing for Health Care: A Review on Implementation Trends and Recent Advances

  • Chapter
  • First Online:
Multimedia Technologies in the Internet of Things Environment, Volume 3

Part of the book series: Studies in Big Data ((SBD,volume 108))

Abstract

The Internet of Things (IoT) has become the essential part of human life with commencement smart technologies. The IoT-based applications are flourishing in every sector form personal use to official use. The increase on devices is also increasing the need of more efficient technology for executing the system in smoother manner. The health care consists of sensitive and more personal data and information, which make them more resultant to cyber-attacks. Also, the system is heterogeneous in nature comprising huge number of devices having their own operating system and protocols that make them vulnerable to attacks. Health care has embedded IoT for making the system more proactive for monitoring a tacking patients’ health. Moreover, the need for precise calculations has brought the need for more concrete technologies. This paper suggests the use of quantum computing in correlation with blockchain to make health care more secure system. The paper also discusses algorithms that are vital for using quantum computing in health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, H., Han, D., & Li, D. (2020). Fabric-iot: A blockchain-based access control system in IoT. IEEE Access, 8, 18207–18218. https://doi.org/10.1109/access.2020.2968492.

    Article  Google Scholar 

  2. Goyal, S., Sharma, N., Bhushan, B., Shankar, A., & Sagayam, M. (2020). Iot enabled technology in secured healthcare: Applications, challenges and future directions. Cognitive Internet of Medical Things for Smart Healthcare, 25–48. https://doi.org/10.1007/978-3-030-55833-8_2

  3. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142. https://doi.org/10.1109/jiot.2017.2683200

    Article  Google Scholar 

  4. Miori, V., & Russo, D. (2017). Improving life quality for the elderly through the social Internet of Things (SIoT). In: 2017 Global Internet of Things Summit (GIoTS). https://doi.org/10.1109/giots.2017.8016215

  5. Hwang, Y., Lin, H., & Shin, D. (2018). Knowledge system commitment and knowledge sharing intention: The role of personal information management motivation. International Journal of Information Management, 39, 220–227. https://doi.org/10.1016/j.ijinfomgt.2017.12.009

    Article  Google Scholar 

  6. Beltrán, M. (2018). Identifying, authenticating and authorizing smart objects and end users to cloud services in internet of things. Computers & Security, 77, 595–611. https://doi.org/10.1016/j.cose.2018.05.011

    Article  Google Scholar 

  7. Zhou, W., Jia, Y., Peng, A., Zhang, Y., & Liu, P. (2019). The effect of IoT new features on security and privacy: New threats, existing solutions, and challenges yet to be solved. IEEE Internet of Things Journal, 6(2), 1606–1616. https://doi.org/10.1109/jiot.2018.2847733

    Article  Google Scholar 

  8. Junaid, M., Shah, M. A., & Satti, I. A. (2017). A survey of internet of things, enabling technologies and protocols. In: 2017 23rd International Conference on Automation and Computing (ICAC). https://doi.org/10.23919/iconac.2017.8082058

  9. Haque, A. K., Bhushan, B., & Dhiman, G. (2021). Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends. Expert Systems. https://doi.org/10.1111/exsy.12753

    Article  Google Scholar 

  10. Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. https://doi.org/10.1016/j.psep.2018.05.009

    Article  Google Scholar 

  11. Ghobakhloo, M. (2018). The future of manufacturing industry: A strategic roadmap toward industry 4.0. Journal of Manufacturing Technology Management, 29(6), 910–936. https://doi.org/10.1108/jmtm-02-2018-0057

  12. Ulusoy, B. (2021). Understanding digital congruence in industry 4.0. Research Anthology on Cross-Industry Challenges of Industry 4.0, 260–274. https://doi.org/10.4018/978-1-7998-8548-1.ch014

  13. Li, Z., Wang, Y., & Wang, K.-S. (2017). Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Advances in Manufacturing, 5(4), 377–387. https://doi.org/10.1007/s40436-017-0203-8

  14. Piccarozzi, M., Aquilani, B., & Gatti, C. (2018). Industry 4.0 in management studies: A systematic literature review. Sustainability, 10(10), 3821. https://doi.org/10.3390/su10103821

  15. Preuveneers, D., & Ilie-Zudor, E. (2017). The intelligent industry of the future: A survey on emerging trends, research challenges and opportunities in industry 4.0. Journal of Ambient Intelligence and Smart Environments, 9(3), 287–298. https://doi.org/10.3233/ais-170432

  16. Bhushan, B., Sahoo, C., Sinha, P., & Khamparia, A. (2020). Unification of blockchain and internet of things (BIoT): Requirements, working model, challenges and future directions. Wireless Networks. https://doi.org/10.1007/s11276-020-02445-6

    Article  Google Scholar 

  17. Türkeș, M., Oncioiu, I., Aslam, H., Marin-Pantelescu, A., Topor, D., & Căpușneanu, S. (2019). Drivers and barriers in using industry 4.0: A perspective of SMEs in Romania. Processes, 7(3), 153. https://doi.org/10.3390/pr7030153

  18. Saxena, S., Bhushan, B., & Ahad, M. A. (2021). Blockchain based solutions to Secure Iot: Background, integration trends and a way forward. Journal of Network and Computer Applications, 103050. https://doi.org/10.1016/j.jnca.2021.103050

  19. Moktadir, M. A., Ali, S. M., Kusi-Sarpong, S., & Shaikh, M. A. (2018). Assessing challenges for implementing industry 4.0: Implications for process safety and environmental protection. Process Safety and Environmental Protection, 117, 730–741. https://doi.org/10.1016/j.psep.2018.04.020

    Article  Google Scholar 

  20. Bhushan, B., Sinha, P., Sagayam, K. M., & Onesimu, J. A. (2021). Untangling blockchain technology: A survey on state of the art, security threats, privacy services, applications and future research directions. Computers & Electrical Engineering, 90, 106897. https://doi.org/10.1016/j.compeleceng.2020.106897

  21. Goyal, S., Sharma, N., Kaushik, I., & Bhushan, B. (2021). Blockchain as a solution for security attacks in named data networking of things. Security and Privacy Issues in IoT Devices and Sensor Networks, 211–243. https://doi.org/10.1016/b978-0-12-821255-4.00010-9

  22. Ram Mohan Rao, P., Murali Krishna, S., & Siva Kumar, A. P. (2018). Privacy preservation techniques in big data analytics: A survey. Journal of Big Data, 5(1). https://doi.org/10.1186/s40537-018-0141-8

  23. Novo, O. (2018). Blockchain meets IOT: An architecture for scalable access management in IoT. IEEE Internet of Things Journal, 5(2), 1184–1195. https://doi.org/10.1109/jiot.2018.2812239

    Article  Google Scholar 

  24. Ciesla, R. (2020). Quantum cryptography. Encryption for Organizations and Individuals, 227–234. https://doi.org/10.1007/978-1-4842-6056-2_11

  25. Raymer, M. G. (2017). Application: Quantum computing. Quantum Physics. https://doi.org/10.1093/wentk/9780190250720.003.0010

    Article  MATH  Google Scholar 

  26. Levin, F. S. (2017). The quantum hypothesis. Oxford Scholarship Online. https://doi.org/10.1093/oso/9780198808275.003.0005

    Article  Google Scholar 

  27. Blinder, S. M. (2021). Quantum computers. Introduction to Quantum Mechanics, 355–380. https://doi.org/10.1016/b978-0-12-822310-9.00028-8

  28. Fraga-Lamas, P., & Fernandez-Carames, T. M. (2017). Reverse engineering the communications protocol of an RFID public transportation card. In: 2017 IEEE International Conference on RFID (RFID). https://doi.org/10.1109/rfid.2017.7945583

  29. Fernández-Caramés, T. M., Fraga-Lamas, P., Suárez-Albela, M., & Castedo, L. (2017). A methodology for evaluating security in commercial rfid systems. Radio Frequency Identification. https://doi.org/10.5772/64844

  30. Katz, J., & Lindell, Y. (2020). *Post-Quantum cryptography. Introduction to Modern Cryptography, 499–524. https://doi.org/10.1201/9781351133036-17

  31. Mihailescu, M. I., & Nita, S. L. (2021). Hash functions. Cryptography and Cryptanalysis in MATLAB, 83–102. https://doi.org/10.1007/978-1-4842-7334-0_8

  32. Mehendale, D. P. (2017). A simple quantum algorithm for exponentially fast target searching in the unstructured database. Quantum Physics Letters, 6(2), 95–98. https://doi.org/10.18576/qpl/060203

  33. Greaves, B., & Coetzee, M. (2017). Access control for secure information sharing in smart content spaces. Journal of Information Security and Applications, 34, 63–75. https://doi.org/10.1016/j.jisa.2016.12.002

    Article  Google Scholar 

  34. Castryck, W., & Decru, T. (2020). CSIDH on the surface. Post-Quantum Cryptography, 111–129. https://doi.org/10.1007/978-3-030-44223-1_7

  35. Howe, J., Khalid, A., Rafferty, C., Regazzoni, F., & O’Neill, M. (2018). On practical discrete gaussian samplers for lattice-based cryptography. IEEE Transactions on Computers, 67(3), 322–334. https://doi.org/10.1109/tc.2016.2642962

    Article  MathSciNet  MATH  Google Scholar 

  36. Yan, S. Y. (2018). Quantum safe cryptography. Cybercryptography: Applicable Cryptography for Cyberspace Security, 399–412. https://doi.org/10.1007/978-3-319-72536-9_8

  37. Suomalainen, J., Kotelba, A., Kreku, J., & Lehtonen, S. (2018). Evaluating the efficiency of physical and cryptographic security solutions for quantum immune IoT. Cryptography, 2(1), 5. https://doi.org/10.3390/cryptography2010005

    Article  Google Scholar 

  38. Badulescu, C., & Triay, J. (2019). ETSI NFV, the pillar for Cloud ReadyICT Deployments. Journal of ICT Standardization, 7(2), 141–156. https://doi.org/10.13052/jicts2245-800x.725

  39. Dolev, S. (2019). Overlay security: Quantum-safe communication over the internet infrastructure. Modern Cryptography—Theory, Technology, Adaptation and Integration [Working Title]. https://doi.org/10.5772/intechopen.86179

  40. Moussa, K. H., Abd-Elbaset, M., Abouelseoud, Y., & Elkamchochi, H. M. (2021). A symmetric key dynamic gates encryption algorithm based on quantum computing. In 2021 38th National Radio Science Conference (NRSC). https://doi.org/10.1109/nrsc52299.2021.9509818

  41. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu, Y.-K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., & Smith-Tone, D. (2019). Status report on the first round of the NIST post-quantum cryptography standardization process. https://doi.org/10.6028/nist.ir.8240

  42. Krämer, J., & Struck, P. (2020). Encryption schemes using Random Oracles: From classical to post-quantum security. Post-Quantum Cryptography, 539–558. https://doi.org/10.1007/978-3-030-44223-1_29

  43. Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., & Mohaisen, A. (2018). XMSS: Extended Merkle signature scheme. XMSS: EXtended Merkle Signature Scheme. https://doi.org/10.17487/rfc8391

  44. McGrew, D., Curcio, M., & Fluhrer, S. (2019). Leighton-Micali Hash-Based SIGNATURES. https://doi.org/10.17487/rfc8554

  45. Hayes, J. (2019). Quantum on the MONEY [quantum computing in financial services sector]. Engineering & Technology, 14(4), 34–37. https://doi.org/10.1049/et.2019.0401

    Article  Google Scholar 

  46. Laurin, L. (2017). Recent initiatives on standardization of LCA methodology. Encyclopedia of Sustainable Technologies, 223–224. https://doi.org/10.1016/b978-0-12-409548-9.10059-4

  47. Lee, W., No, J. S., & Kim, Y. S. (2017). Punctured reed-muller code-based Mceliece cryptosystems. IET Communications, 11(10), 1543–1548. https://doi.org/10.1049/iet-com.2016.1268

    Article  Google Scholar 

  48. Bounds in coding theory. (2017). Algebraic and Stochastic Coding Theory (pp. 142–167). https://doi.org/10.1201/b11707-10

  49. Bert, P., & Roux-Langlois, A. (2018). From identification using rejection sampling to signatures via The FIAT-SHAMIR transform: Application to the BLISS signature. In Advances in Information and Computer Security, 297–312. https://doi.org/10.1007/978-3-319-97916-8_19

  50. Roy, P., Morozov, K., Fukushima, K., Kiyomoto, S., & Takagi, T. (2019). Security analysis and efficient implementation of Code-based signature schemes. In: Proceedings of the 5th International Conference on Information Systems Security and Privacy. https://doi.org/10.5220/0007259102130220

  51. Ciesla, R. (2020). Post-quantum cryptography. Encryption for Organizations and Individuals, 257–275. https://doi.org/10.1007/978-1-4842-6056-2_14

  52. Moody, D., Perlner, R., & Smith-Tone, D. (2017). Improved attacks for characteristic-2 parameters of the cubic ABC simple matrix encryption scheme. Post-Quantum Cryptography, 255–271. https://doi.org/10.1007/978-3-319-59879-6_15

  53. Ding, J., Petzoldt, A., & Schmidt, D. S. (2020). The matsumoto-imai cryptosystem. Multivariate Public Key Cryptosystems, 25–60. https://doi.org/10.1007/978-1-0716-0987-3_3

  54. Ding, J., Perlner, R., Petzoldt, A., & Smith-Tone, D. (2018). Improved cryptanalysis OF HFEv-via Projection. Post-Quantum Cryptography, 375–395. https://doi.org/10.1007/978-3-319-79063-3_18

  55. Markel, H. (2017). Topsy-turvy. The Milbank Quarterly, 95(4), 687–691. https://doi.org/10.1111/1468-0009.12290

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Bhushan, B., Shriti, S., Nand, P. (2022). Quantum Computing for Health Care: A Review on Implementation Trends and Recent Advances. In: Kumar, R., Sharma, R., Pattnaik, P.K. (eds) Multimedia Technologies in the Internet of Things Environment, Volume 3. Studies in Big Data, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-19-0924-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0924-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0923-8

  • Online ISBN: 978-981-19-0924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics