
Chapter 5
Prime Test

In the RSA algorithm in the previous chapter, we see that the decomposition of large
prime factors constitutes the basis of RSA cryptosystem security. Theoretically, this
security should not be questioned, because there is only the definition of prime in
mathematics, and there is no general method to detect prime. The main purpose of
this chapter is to introduce some basic prime test methods, including Fermat test,
Euler test, Monte Carlo method, continued fraction method, etc., understanding the
content of this chapter requires some special number theory knowledge.

5.1 Fermat Test

According to Fermat’s congruence theorem (commonly known as Fermat’s small
theorem, which is a special case of Euler congruence theorem), if n is a prime
number, the following congruence formula holds for all integers b, (b, n) = 1,

bn−1 ≡ 1(mod n). (5.1)

The above formula is an important characteristic of prime numbers. Although n
satisfying the above formula is not necessarily prime, it can be used as an important
basis for detecting prime numbers, because we can conclude that n not satisfying the
above formula is definitely not a prime number. Using Formula (5.1) as the standard
to detect prime numbers is called Fermat test.

Definition 5.1 An odd number n, assuming that n is a compound number (not a
prime number) and there is a positive integer b, (b, n) = 1, satisfying

bn−1 ≡ 1(mod n),
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the compound number n is called a Fermat pseudo prime under base b.

The basic properties of pseudo prime numbers are discussed. Our working plat-
form is a finite Abel group Z

∗
n , define as

Z
∗
n = {ā|1 ≤ a ≤ n, (a, n) = 1}, n > 1, (5.2)

where ā is a congruence class of mod n represented by a. The multiplication of two
congruence classes is defined as ā · b̄ = āb; obviously, Z

∗
n forms an Abel group of

order ϕ(n) under multiplication, in a finite group G, the order of a group element
g ∈ G is defined as

o(g) = min{m : gm = 1, 1 ≤ m ≤ |G|}.

o(g) = 1 if and only if g is the unit element of group G. By the definition of o(g),
obviously,

gt = 1 ⇔ o(g)|t. (5.3)

The following two lemmas are the basic conclusions about the order of group element
g.

Lemma 5.1 G is a finite group, g ∈ G, k ∈ Z is an integer, then

o(gk) = o(g)

(k, o(g))
, (5.4)

where the denominator is the greatest common divisor of k and o(g).

Proof Let o(g) = m, o(gk) = t , obviously, (gk)m = 1, in particular,

g
k·m

(k,m) = 1,=⇒ t

∣
∣
∣
∣

m

(k,m)
.

On the other hand, by gkt = 1, there is m|kt , thus
m

(k,m)

∣
∣
∣
∣

k

(k,m)
t,=⇒ m

(k,m)

∣
∣
∣
∣
t.

So we have t = m
(k,m)

, the Lemma holds.

Lemma 5.2 Suppose G is a finite Abel group, a, b ∈ G, (o(a), o(b)) = 1, then

o(ab) = o(a)o(b).

Proof Let o(a) = m1, o(b) = m2, then (m1,m2) = 1. Let o(ab) = t , by (ab)m1m2 =
am1m2bm1m2 = 1, there is t |m1m2, on the other hand, (ab)t = 1, then (ab)tm1 = 1, thus
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btm1 = 1, m2|m1t , m2|t . By the same reason, there is m1|t , thus m1m2|t , t = m1m2.
The Lemma holds.

Back to the finite groupZ
∗
n , any integer a ∈ Z, (a, n) = 1, then ā ∈ Z

∗
n , we denote

o(ā)with o(a), a is called the order mod n, obviously, o(a) = o(b), if a ≡ b(mod n).
A basic problem in number theory is the existence of primitive roots of mod n.
equivalently, is Z

∗
n a cyclic group? If there is a positive integer a, (a, n) = 1, o(ā) =

|Z∗
n| = ϕ(n), then Z

∗
n is a cyclic group of order ϕ(n), so that the primitive root of

mod n exists and a is the primitive root of mod n.

Lemma 5.3 (Existence of primitive root) If and only if n = 2, 4, pα(α ≥ 1) and
a = 2pα(α ≥ 1) four cases, the primitive root of mod n exists, where p > 2 is an
odd prime.

Proof If n = 2, 4, then the lemma holds. If n = p, then Zn = Fp, Z
∗
n = F

∗
p, by

Lemma 4.7 of Chap.4, it can be seen that F
∗
p is a cyclic group of order (p − 1),

so mod p has primitive roots. Now, we need to prove for all positive integer α, the
primitive root of mod pα also exists. Therefore, let a be a primitive root of mod p,
that is, the order of a mod p is p − 1. If the order of amod pα is denoted by o(a),
then

ao(a) ≡ 1(mod pα),=⇒ ao(a) ≡ 1(mod p),

so there is p − 1|o(a). And the number of elements of Z
∗
pα is ϕ(pα) = pα−1(p − 1),

obviously, o(a)|pα−1(p − 1), thus, o(a) = pi (p − 1), 0 ≤ i ≤ α − 1.
We might as well let o(a) = p − 1, if o(a) = pi (p − 1),1 ≤ i , then replace a

with a pi . By Lemma 5.1,

o(a pi ) = pi (p − 1)

(pi , pi (p − 1))
.

Therefore, without losing generality, let o(a) = p − 1, then by Sylow theorem,when
α > 1, pα−a|ϕ(pα), there is an integer b, (b, n) = 1, b is o(n) = pα−1 in the order
of mod pα , because of (o(a), o(b)) = 1, then by Lemma 5.2, there is

o(ab) = o(a)o(b) = pα−1(p − 1) = ϕ(pα),

So the primitive root of mod pα exists.
When n = 2pα , p > 2 is odd prime, then ϕ(n) = ϕ(pα). Thus, the primitive root

a of mod pα is also an primitive root of mod 2pα . The Lemma holds.

Lemma 5.4 Let n be an odd compound number, then

(i) b ≥ 1 is a positive integer, (b, n) = 1, n is Fermat pseudo prime under base b if
and only if o(b)|n − 1.

(ii) n is Fermat pseudo prime under bases b1 and b2, then it is Fermat pseudo prime
under bases b1b2 and b1b

−1
2 , where b−1

2 is the multiplicative inverse of b2 mod n.
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(iii) If exist one b ∈ Z
∗
n does not satisfy Eq. (5.1), at least half of a, b ∈ Z

∗
n do not

satisfy Eq. (5.1).

Proof (i) and (ii) are trivial. (i) can be obtained by (5.3). And b1, b2 ∈ Z
∗
n ,

{

bn−1
1 ≡ 1(mod n), bn−1

2 ≡ 1(mod n). =⇒ (b1b2)
n−1 ≡ 1(mod n).

bn−1 ≡ 1(mod n),=⇒ (b−1)n−1 ≡ 1(mod n).

So there is (ii). To prove (iii). Let n not be Fermat pseudo prime to base b, if n is
Fermat pseudo prime to base a, then n is not Fermat pseudo prime to base ab. By
(ii), therefore, if there is a base to make n a Fermat pseudo prime number, there must
be a base to make n not a Fermat pseudo prime number, so more than half of the
base b must make n not a Fermat pseudo prime number. The Lemma holds.

By Lemma 5.3, if there is a base b so that n is not Fermat pseudo prime, detect a,
1 ≤ a ≤ n, (a, n) = 1 in sequence, whether an−1 ≡ 1(mod n); that is, there is more
than 50% chance that find the exact b such that bn−1 	≡ 1(mod n), this proves that
n is not a prime number. Is it possible that all a, 1 ≤ a ≤ n, (a, n) = 1, n is Fermat
pseudo prime to base a The answer is yes, such a number n is called Carmichael
number.

Definition 5.2 A Carmichael number n is an odd compound number, and for ∀ b ∈
Z

∗
n , there is

bn−1 ≡ 1(mod n).

For Carmichael number, we have the following engraving.

Theorem 5.1 Let n be a compound number, then

(i) If there is an integer a > 1, a2|n, then n is not a Carmichael number.
(ii) Assuming that n is a square free number, then n is a Carmichael number ⇔ for

all prime p, p|n, there is p − 1|n − 1.
(iii) A Carmichael number is the product of at least three different prime numbers.

Proof Let’s prove (i) first. Let p2|n, p be a prime number, by Lemma 5.3, mod p2

has primitive roots. Let g be an original root of mod p2, that is o(g) = p(p − 1), let

n′ =
∏

p′ |n,p′ 	=p

p′, p′ is a prime number.

According to the Chinese remainder theorem, there is a positive integer b such that

{

b ≡ g(mod p2),

b ≡ 1(mod n′).

Then b is an primitive root of mod p2, and (b, n) = 1. We assert that n to base b is
not a Fermat pseudo prime. If n to base b is a Fermat pseudo prime, then
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bn−1 ≡ 1(mod n),=⇒ bn−1 ≡ 1(mod p2),=⇒ o(b)|n − 1.

That is p(p − 1)|n − 1, but p|n is contradict with p|n − 1. So bn−1 	≡ 1(mod n), n
is not Carmichael number, (i) holds.

Now to prove (ii). If ∀ p, p|n, there is p − 1|n − 1, then ∀ b ∈ Z
∗
n ,

bn−1 = (b
n−1
p−1 )p−1 ≡ 1(mod p),∀ p|n.

Because n is a square free number, so

bn−1 ≡ 1(mod n), ∀ b ∈ Z
∗
n.

Therefore, n is the Carmichael number. Conversely, if there is a prime number p,
p|n, but p − 1 � n − 1, Let g be a primitive root of mod p, which is given by the
Chinese remainder theorem,

⎧

⎪⎨

⎪⎩

b ≡ g(mod p),

b ≡ 1

(

mod
n

p

)

.

Then (b, n) = 1, and
bp−1 ≡ gp−1 ≡ 1(mod p).

By p − 1 � n − 1, then gn−1 	≡ 1(mod p), so there is bn−1 	≡ 1(mod n), this contra-
dicts with the assumption that n is the Carmichael number. So (ii) holds.

To prove (iii), we just need to exclude that n is the product of two prime numbers.
By (ii), let n = pq, p < q, if n is a Carmichael number, then q − 1 | n − 1, but
n − 1 = p(q − 1 + 1) − 1 = p(q − 1) + p − 1, then

n − 1 ≡ p − 1(mod q − 1),

this contradicts with n − 1 ≡ 0(mod q − 1), so n = pq must not be a Carmichael
number, the Theorem holds.

Below we give some examples of Carmichael numbers, from property (ii) in
Theorem 5.1, we can easily verify whether a square free number is Carmichael
number.

Example 5.1 The following positive integers n are Carmichael numbers,

n = 1105 = 5 · 13 · 7, n = 1729 = 1 · 13 · 19, n = 2465 = 5 · 17 · 29,
n = 2821 = 7 · 13 · 31, n = 6601 = 7 · 23 · 41.

Example 5.2 The positive integer 561 = 3 · 11 · 17 is the smallest Carmichael num-
ber.
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Proof Defined by, the Carmichael number is odd and compound, so the minimum
Carmichael number is

n = 3 · p · q,where p − 1|n − 1, q − 1|n − 1, p < q is a prime.

Let p = 5, p = 7, the congruence equation

3 · p · q ≡ 1(mod q − 1), q > p

has no prime solution q, when p = 11, the above formula has a minimum solution
q = 17, so n = 3 · 11 · 17 is the smallest Carmichael number.

Example 5.3 For given prime number r ≥ 3, then the congruence equations

{

rpq ≡ 1(mod p − 1)

rpq ≡ 1(mod q − 1)

has only finite different prime solutions p,q. Let’s leave this conclusion for reflection.

5.2 Euler Test

Let p > 2 be an odd prime, Euler test uses the Euler criterion in the quadratic residue
of mod p to detect whether a positive integer n is prime. Like Fermat’s test, it is
obvious that the n that passes the test cannot be determined as prime, but the n that
fails the test is certainly not prime. We know that when the positive integers a and n
are given (n > 1), the solution of the quadratic congruence equation x2 ≡ a(mod n)

is a famous “NP complete” problem. We can’t find a general solution in an effective
time. However, in the special case where n = p > 2 is an odd prime number, we
have rich theoretical knowledge to discuss the quadratic residue of mod p, these
knowledge include the famous Gauss quadratic reciprocal law and Euler criterion,
which constitute the core knowledge system of elementary number theory. First, we
introduce Legendre sign and let p > 2 be a given odd prime number.

Z
∗
p is a (p − 1)-order cyclic group, a ∈ Z

∗
p (i.e., (a, p) = 1), we define the Leg-

endre symbolic function as

(
a

p

)

=
{

1, when x2 ≡ a(mod p) is solvable

− 1,when x2 ≡ a(mod p) is unsolvable

If (a, p) > 1, that is p | a, we let ( a
p ) = 0, for ∀ a ∈ Z, Legendre symbolic function

( a
p ) is all defined, and it is a completely integral function of Z → {1,−1, 0}.
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(
ab

p

)

=
(
a

p

) (
b

p

)

,∀ a, b ∈ Z

and (
a

p

)

=
(
b

p

)

, if a ≡ b (mod p) .

If ( a
p ) = 1, then x2 ≡ a(mod p) is solvable, a is called a quadratic residue of mod p,

if ( a
p ) = −1, then x2 ≡ a(mod p) is unsolvable, a is called a quadratic nonresidue

of mod p.

Lemma 5.5 a ∈ Z, p � a, then the necessary and sufficient condition for a to be the
quadratic residue of mod p is

a
p−1
2 ≡ 1(mod p).

Proof Z
∗
p is a p − 1-order cyclic group, let g be a primitive root of mod p, that is ḡ

is the generator of Z
∗
p, that is ∀a ∈ Z, (a, p) = 1, we have

a ≡ gt(mod p), where 1 ≤ t ≤ p − 1.

Obviously, a is the quadratic residue of mod p ⇔ t is even. Therefore, if t is even,
then

a
p−1
2 ≡ g

t (p−1)
2 ≡ (g

t
2 )p−1 ≡ 1(mod p).

Conversely, if a
p−1
2 ≡ 1(mod p), then o(a) | p−1

2 , and by Lemma 5.1, can calculate

o(a) = o(gt ) = p − 1

(t, p − 1)
.

So

o(a) | p − 1

2
⇔ 2|(t, p − 1) ⇔ 2|t,

that is t is even, thus, a is a quadratic residue of mod p, the Lemma holds.

Lemma 5.6 (Euler criterion). For ∀ a ∈ Z, we have

a
p−1
2 ≡

(
a

p

)

(mod p). (5.5)

Proof If (a, p) > 1, that is p|a, the above formula holds. Might as well let p � a.
By Fermat congruence theorem a p−1 ≡ 1(mod p), there is

(a
p−1
2 + 1)(a

p−1
2 − 1) ≡ 0(mod p).
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Thus
a

p−1
2 ≡ ±1(mod p).

If a
p−1
2 ≡ 1(mod p), by Lemma 5.5, then ( a

p ) = 1. If a
p−1
2 ≡ −1(mod p), then ( a

p ) =
−1. So (5.5) holds.

Definition 5.3 Suppose n is an odd compound number, if there is an integer
b, (b, n) = 1, it satisfies

b
n−1
2 ≡

(
b

n

)

(mod n), (5.6)

Call n an Euler pseudo prime under base b. Where ( bn ) is Jacobi symbol, define as

(
b

n

)

=
(

b

p1

)α1
(

b

p2

)α2

· · ·
(

b

ps

)αs

, if n = pα1
1 · · · pαs

s . (5.7)

From the definition, we obviously have a corollary: if n is Euler pseudo prime under
basis b, then n is Fermat pseudo prime under basis b. This conclusion can be proved
by squaring both sides of Eq. (5.6) at the same time.

The following example shows that the inverse of inference is not tenable; that is,
if n is Fermat pseudo prime under basis b, but not Euler pseudo prime.

Example 5.4 n = 91 is Fermat pseudoprimeunder basisb = 3, but notEuler pseudo
prime. In fact, it’s easy to calculate 36 ≡ 1(mod 91), thus 390 ≡ 1(mod 91). From
36 ≡ 1(mod 91), we have

342 ≡ 1(mod 91),=⇒ 345 ≡ 9(mod 91).

So 91 to base 3 is not an Euler pseudo prime.

Example 5.5 n = 91 to base b = 10 is an Euler pseudo prime. Because

1045 ≡ 103 ≡ −1(mod 91),

calculate Legendre symbols

(
10

91

)

=
(

2

91

)

·
(

5

91

)

= −1,

so n = 91 to base b = 10 is an Euler pseudo prime.

From the Euler criterion of Lemma 5.6, we can easily calculate the Legendre
symbols of −1 and 2.
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Lemma 5.7 Let p > 2 be an odd prime, then we have

(−1

p

)

= (−1)
p−1
2 ,

(
2

p

)

= (−1)
1
8 (p2−1). (5.8)

Proof By Lemma 5.6,

(−1)
p−1
2 ≡

(−1

p

)

(mod p),

Since both sides of the congruence are ±1, p > 2, there is (−1
p ) = (−1)

p−1
2 . To

calculate the Legendre sign for 2, we notice that

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p − 1 ≡ (−1)1(mod p)

2 ≡ 2 · (−1)2(mod p)

p − 3 ≡ 3 · (−1)3(mod p)

...

r ≡ p − 1

2
· (−1)

p−1
2 (mod p),

where r = p−1
2 , if p−1

2 is a even; r = p − p−1
2 , if p−1

2 is an odd. There is

2 · 4 · 6 · · · (p − 1) ≡
(
p − 1

2

)

!(−1)
1
8 (p2−1)(mod p),

that is
2

p−1
2 ≡ (−1)

1
8 (p2−1)(mod p),

by Lemma 5.6,
(
2

p

)

≡ (−1)
1
8 (p2−1)(mod p),

there is (
2

p

)

= (−1)
1
8 (p2−1),

Lemma 5.7 holds.

Let ( an ) be a Jacobi symbol, defined by Eq. (5.6), then Lemma 5.7 can be extended
to Jacobi symbol.

Lemma 5.8 Let n be an odd, then we have

(−1

n

)

= (−1)
n−1
2 ,

(
2

n

)

= (−1)
1
8 (n2−1). (5.9)
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Proof The square of any odd number is congruent 1 under mod 8, that is a2 ≡
1(mod 8). Write n = a2 · p1 p2 · · · pt , where pi are different prime numbers, then

n ≡ p1 p2 · · · pt (mod 8).

Similarly, for ∀ n ∈ Z, by (5.7),

(
b

n

)

=
(

b

p1

) (
b

p2

)

· · ·
(
b

pt

)

, (5.10)

thus
(−1

n

)

=
(−1

p1

) (−1

p2

)

· · ·
(−1

pt

)

= (−1)
p1−1
2 + p2−1

2 +···+ pt−1
2 = (−1)

n−1
2 . (5.11)

The same can be proved
(
2
n

)

, the Lemma holds.

Corollary 5.1 For all odd numbers n, they are Euler pseudo prime under the base
±1.

Proof It is trivial that n to 1 is an Euler pseudo prime number, and n to −1 is an
Euler pseudo prime number, which is directly derived from Lemma 5.8.

Lemma 5.9 (Gauss. ) Let p and q be two different odd primes, then

(
q

p

) (
p

q

)

= (−1)
1
4 (p−1)(q−1).

Proof According to incomplete statistics, there are currently more than 270methods
to prove Gauss quadratic reciprocal law. In order to save space, we leave the proof
to the readers, hoping that everyone can find their favorite proof method.

Next, we discuss the computational complexity of Fermat test and Euler test.

Lemma 5.10 Let n be an odd, 1 ≤ b < n, (b, n) = 1, then

{

Time(n to base b′s Fermat test) = O(log3 n),

Time(n to base b′s Euler test) = O(log4 n).

Proof By (5.1), the Fermat test of n to base b is actually an operation of bn−1 to
mod n, by the Lemma 1.5 of Chap.1, bit operations of bn−1 mod n,

Time(bn−1 mod n) = O(log n log2 n) = O(log3 n).

Euler test of n to base b, by (5.6), the number of bit operations on the left is O(log3 n).
Find Jacobi symbol ( bn ), from Eq. (5.7) and quadratic reciprocal law, the calculation
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can be transformed into the calculation of Legendre symbol. Each reciprocal law is
actually a division, so we only consider the calculation of Legendre symbols. By
Euler criterion,

Time

(

calculate

(
b

p

))

= Time
(

b
p−1
2 mod p

)

= O(log3 n).

The number of prime factors of each n has an estimated O(log log n), so

Time

(

calculate Jacobi symbol

(
b

n

))

= O(log log n · log3 n) = O(log4 n).

We have completed the calculation of Lemma 5.10.

Solovay and Strassen proposed a probabilistic method to detect prime numbers by
Euler test in 1977. When n > 1 is an odd number, k numbers are randomly selected,
b1, b2, . . . , bk , where 1 < bi < n, (bi , n) = 1. Use Eq. (5.6) to calculate both sides
of each b in turn, and the required bit operation is O(log4 n), if both sides of Eq. (5.6)
are not equal, then n is not a prime number and the test is terminated. If k b pass the
Euler test of Eq. (5.6), then n is the probability < 1

2k of compound number, that is

P{n is not prime} ≤ 2−k .

The above formula is directly derived from Lemma 5.3. Let’s introduce a better
Miller–Rabin method than Solovay–Strassen method in a sense.

Definition 5.4 Let n be an odd compound number, write n − 1 = 2t · m, where
t ≥ 1, m is an odd. Let b ∈ Z

∗
n , if n and b satisfy one of the following conditions,

bm ≡ 1(mod n), or exists one r, 0 ≤ r < t, such that b2
rm ≡ −1(mod n). (5.12)

Then n is called a strong pseudo prime under base b.

Lemma 5.11 Suppose n ≡ 3(mod 4), then n is a strong Pseudoprime under base b
if and only if n is an Euler Pseudoprime under base b.

Proof Because n ≡ 3(mod 4), then n − 1 = 2m, that is t = 1, m = 1
2 (n − 1). By

Definition 5.4, n is a strong pseudo prime under base b if and only if

bm = b
n−1
2 ≡ ±1(mod n).

Therefore, if n is an Euler pseudo prime number under base b, the above formula
holds, so it is also a strong pseudo prime number for base b. Conversely, if the
above formula holds, because of n ≡ 3(mod 4), then 1

2 (n − 1) is an odd number, so
(−1

n ) = −1, and
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(
b

n

)

=
(
b

n

) n−1
2

≡
(

b
n−1
2

n

)

≡ b
n−1
2 (mod n).

Therefore, n to base b is Euler pseudo prime. The Lemma holds.

Below we give the main results of this section.

Theorem 5.2 Let n be an odd number, b ∈ Z
∗
n, then

(i) If n to base b is a strong pseudo prime, then n to base b is an Euler pseudo
prime.

(ii) Base b, which makes n a strong pseudo prime number, accounts for 25% of
1 ≤ b < n, (b, n) = 1 at most.

Before proving Theorem 5.2, let’s introduce Miller–Rabin’s test method, in order
to test whether a large odd number n is a prime number, we write n − 1 = 2t · m,
m is an odd number, t ≥ 1, select one b at random, 1 ≤ b < n, (b, n) = 1. We first
calculate bm mod n, if we get the result is ±1, then n passes the strong pseudo prime
test (5.12). If bm mod n 	= ±1, then we square bm mod n and find the minimum
nonnegative residue of the squared number under mod n to see if we get the result
of −1 and perform r times. If we can’t get −1, then n to base b fails to test Formula
(5.12). Therefore, it is asserted that n to base b is not a strong pseudo prime number.
If −1 is obtained by r squared, then n passes the test under base b.

In Miller–Rabin’s test, if n to base b fails to pass the test Formula (5.12), then n
must not be a prime number, if n to randomly selected k b = {b1, b2, . . . , bk} pass
the test, by property (ii) of 5.2, each bi accounts for no more than 25

P{n not prime} ≤ 1

4k
. (5.13)

Compared with the Solovay–Strassen method using Euler test, the Miller–Rabin
method using strong pseudo prime test is more powerful.

To prove 5.2, we first prove the following two lemmas.

Lemma 5.12 Let G = 〈g〉 be a finite group of order m, that is o(g) = m, then
equation xk = 1 has exactly d solutions in G, d = (k,m).

Proof x ∈ G, write x = gt , then xk = gkt = 1 ⇔ m|kt , that is m
d | kd · t , thus m

d |t , let
t = m

d · s, then when s = 1, 2, . . . , d, x = gt has exactly d solutions. The Lemma
holds.

Lemma 5.13 Let p be an odd prime number, p − 1 = 2tm ′, t ≥ 1, m ′ is prime, then

x2
rm ≡ −1(mod p),m is odd (5.14)

The number of solutions N in Z
∗
p satisfies



5.2 Euler Test 209

N =
{

0, if r ≥ t;
2r (m,m ′), if r < t.

Proof Let g be a generator of Z
∗
p, write x = g j , 1 ≤ j ≤ p − 1, because o(g) =

p − 1, so
g

p−1
2 ≡ −1(mod p).

Thus

x2
rm ≡ −1(mod p) ⇔ 2rm j ≡ p − 1

2
(mod p − 1).

Namely,
2rm j ≡ 0(mod p − 1).

Because p − 1 = 2tm ′, the above formula is equivalent to

2rm j ≡ 2t−1m ′(mod 2tm ′). (5.15)

If r > t − 1, then the congruence has no solution to j , because m and m ′ are odd
numbers, so when r ≥ t , (5.14) is unsolvable. If r < t , let d = (m,m ′), then

(2rm, 2tm ′) = 2r d,

then Eq. (5.15) has exactly d solutions for j . Each j corresponds to one x = g j , then
the number of solutions of Eq. (5.14) to x is N = 2r d, the Lemma holds.

With the above preparation, we now give the proof of Theorem 5.2.

Proof (The proof of Theorem 5.2). Let’s first prove that (i), that is, n and b satisfy
Eq. (5.12), we want to prove that formula (5.6) is satisfied; that is, if n to base b is
a strong pseudo prime number, then n to base b is an Euler pseudo prime number,
write n − 1 = 2tm, m is prime, we prove the property (i) of Theorem 5.2 in three
cases.

(1) bm ≡ 1(mod n). In this case, it is obvious that b
n−1
2 ≡ 1(mod n). Let’s prove

( bn ) = 1, in fact,

1 =
(
1

p

)

=
(
bm

p

)

=
(
b

p

)m

= 1.

There is

b
n−1
2 ≡

(
b

n

)

≡ 1(mod n).

That is n to base b is an Euler pseudo prime number.
(2) b

n−1
2 ≡ −1(mod n). In this case, we have to prove ( bn ) = −1, let p|n be any

prime factor of n, write p − 1 = 2t1m1, where t1 ≥ 1, m1 is an odd number.
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Let’s calculate the Legendre symbol ( b
p ), in fact, t1 ≥ t , and

(
b

p

)

=
{

− 1, if t1 = t;
1, if t1 > t.

(5.16)

Because

b
n−1
2 = b2

t−1m ≡ −1(mod n),=⇒ b2
t−1mm1 ≡ −1(mod n),

by p|n, we have
b2

t−1mm1 ≡ −1(mod p). (5.17)

If t1 < t , from the above formula, there is

b2
t1m1 ≡ −1(mod p),=⇒ bp−1 ≡ −1(mod p).

This contradicts Fermat’s congruence theorem, so we always have t1 ≥ t . If
t1 = t , by (5.17), then

(
b

p

)

≡ b
p−1
2 = b2

t−1m ≡ −1(mod p).

Because if the above formula is 1, both sides will be m power at the same time,
which will contradict Formula (5.17). If t1 > t , put both sides of Eq. (5.17) to
the power of 2t1−t at the same time, then ( b

p ) = 1, so we have (5.16).
We now complete the proof of case (2) under the conclusion of Eq. (5.16), write
n = ∏

p|n p, p does not require different, define the positive integer k as

k = #{p | p|n, p − 1 = 2t1m1,m1 is odd, t1 = t}.

By (5.16), then
(
b

n

)

=
∏

(
b

p

)

= (−1)k . (5.18)

Let’s prove that k is anoddnumber, because t1 ≥ t , p − 1 = 2t1m1,n − 1 = 2tm,
under mod 2t+1, we have

p ≡
{

1(mod 2t+1), if t1 > t;
1 + 2t (mod 2t+1), if t1 = t.

Because n = 1 + 2t (mod 2t+1), so

n ≡ 1 + 2t ≡ 1 + k · 2t (mod 2t+1),
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So k must be odd, by (5.18), then ( bn ) = −1. Case (2) is proved.

(3) b2
r−1·m ≡ −1(mod n), where 1 ≤ r ≤ t , n − 1 = 2t · m.

In this case, we replace r of Eq. (5.12) with r − 1. Because r − 1 ≤ t − 1, so
b

n−1
2 ≡ 1(mod n). To prove property (i) of Theorem 5.2, we have to prove ( bn ) =

1, as in case (2), we let p|n, write p − 1 = 2t1 · m1, m1 is odd, then we have
t1 ≥ r , and

(
b

p

)

=
{

− 1, if t1 = r;
1, if t1 > r.

(5.19)

The proof of Formula (5.19) is the same as that of case (2), write n = ∏
p, p is

not required to be a different prime, define positive integer k1:

k1 = #{p | p|n, p − 1 = 2t1m1,m1 is odd, t1 = r}.

as in case (2), we have ( bn ) = (−1)k1 , similarly, under mod 2r+1, it can be proved
that k1 must be even. Thus ( bn ) = 1, we have completed all the proofs of property
(i) in Theorem 5.2.
Next, we prove property (ii) in Theorem 5.2. It is also discussed in three cases.

(1) n can be divided by a square number; that is, there is a prime number p, pα||n,
α ≥ 2.
In this case, we prove that there are at least 1

4 (n − 1) b, b ∈ Z
∗
n , n to base

b is not Fermat prime number, let alone a strong pseudo prime. First, suppose
bn−1 ≡ 1(mod n), then there is a prime p, p2|n, thus bn−1 ≡ 1(mod p2). Because
Z

∗
p2 is a p(p − 1)-order cyclic group (see Theorem 5.3), let g be a generator of

Z
∗
p2 , then

Z
∗
p2 = {g, g2, . . . , gp(p−1)}.

By Lemma 5.12, the number of b satisfying bn−1 ≡ 1(mod p2) is d,

d = (n − 1, p(p − 1)) = (n − 1, p − 1).

Because p|n, so p � n − 1, and p � d; therefore, the maximum possibility of d
is p − 1; therefore, the proportion of b in bn−1 ≡ 1(mod p2) in 1 ≤ b < n shall
not exceed

p − 1

p2 − 1
= 1

p + 1
≤ 1

4
.

Therefore, there is at most b in the proportion of 1
4 , so that n to base b is Fermat

prime, in case (1), we prove the property (ii) of Theorem 5.2.
(2) n = pq are two different prime numbers.

In this case, let p − 1 = 2t1m1, q − 1 = 2t2m2,m1,m2 to be odd.Without losing
generality, you can let t1 ≤ t2. Let b ∈ Z

∗
n , in order for n to base b to be a strong

pseudo prime number, it is necessary to satisfy
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bm ≡ 1(mod p), bm ≡ 1(mod q) (5.20)

or
b2

rm ≡ −1(mod p), b2
rm ≡ −1(mod q), 0 ≤ r < t. (5.21)

By Lemma 5.12, the number of b satisfied (5.20) is≤ (m,m1)(m,m2) ≤ m1m2.
By Lemma 5.13, for each r , 0 ≤ r < min(t1, t2) = t1, the number of b satisfy-
ing b2

rm ≡ −1(mod n) is 2r (m,m1) · 2r (m,m2) < 4rm1m2. Because n = pq,
then ϕ(n) = (p − 1)(q − 1),=⇒ n − 1 > ϕ(n) = 2t1+t2 , therefore, the propor-
tion of b of the strong pseudo prime of n to base b does not exceed

m1m2 + m1m2 + 4m1m2 + · · · + 4t1−1m1m2

2t1+t2m1m2
= 2−t1−t2

(

1 + 4t1 − 1

4 − 1

)

(5.22)
in 1 ≤ b < n, (b, n) = 1.
If t1 < t2, then the above formula shall not exceed

2−2t1−1

(
2

3
+ 4t1

3

)

≤ 2−3 · 2
3

+ 1

6
= 1

4
.

If t1 = t2, then m1 	= m2, so (m,m1) ≤ m1 and (m,m2) ≤ m2, one must be
strictly less than. The reason is that if they are equal, then m1|m, m2|m, n −
1 = 2tm,=⇒ n − 1 = 2tm = pq − 1 ≡ q − 1(modm1), thus m1|n − 1,=⇒
m1|q − 1 = 2t2m2,=⇒ m1|m2, this is a contradiction. So (m,m1) ≤ m1 and
(m,m2) ≤ m2 must have a strict less than 0. We have

(m,m1) · (m,m2) ≤ 1

3
m1m2.

If m1m2 is substituted for 1
3m1m2 in Eq. (5.22), the proportion of n to b whose

base b is a strong pseudo prime number does not exceed

1

3
2−2t1

(
2

3
+ 4t1

3

)

≤ 1

18
+ 1

9
= 1

6
<

1

4
.

We complete the proof of property (ii) of Theorem 5.2 in case (2).
(3) Finally, suppose n = p1 p2 · · · pk, k ≥ 3 is the product of different prime factors.

In this case, write pi − 1 = 2ti mi , mi as an odd number. As in case (2), with-
out losing generality, it can make t1 ≤ t j (1 ≤ j ≤ k). Similarly to the proof of
formula (5.22), the proportion of b satisfying that n is a strong pseudo prime
number for base b does not exceed
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2−t1−t2−···−tk

(

1 + 2k+1 − 1

2k − 1

)

≤ 2−kt1

(
2k − 2

2k − 1
+ 2kt1

2k − 1

)

= 2−kt1 · 2
k − 2

2k − 1
+ 1

2k − 1

≤ 2−k 2
k − 2

2k − 1
+ 1

2k − 1
= 21−k

≤ 1

4
,

because k ≥ 3, in this way, we have completed all the proofs of Theorem 5.2.

Euler test and strong pseudo prime test require some complex quadratic residual
techniques. We summarize the main conclusions of this section as follows:

(A) n to base b is a strong pseudo prime number ⇒ n to base b is an Euler pseudo
prime number ⇒ n to base b is a Fermat pseudo prime number; therefore, the
strong pseudo prime test is the best way to detect prime numbers.

(B) Although no test can successfully detect a prime number at present, the probabil-
ity detection method of strong pseudo prime number test, that is, Miller–Rabin
method, can obtain that the success probability (see (5.13)) of detecting whether
any odd number n is a prime number can be infinitely close to 1. That is

P{detect whether odd n is prime} > 1 − ε,∀ ε > 0 given.

Moreover, the computational complexity of the detection algorithm is polyno-
mial.

5.3 Monte Carlo Method

Using all the prime number test methods introduced in the previous two sections, for
a huge odd number n, even if we already know that n is not a prime number, we cannot
successfully decompose n, because the prime number test does not provide prime
factor decomposition information, A more direct method—like the sieve method—
verifies whether the prime factor of n is for prime numbers not greater than

√
n,

because a compound number n must have a prime factor p, p ≤ √
n. Selected p ≤√

n, the bit operation required to divide n by p is O(log n), there are O(
√
n

log n ) prime

numbers p ≤ √
n in total, therefore, the bit operation required for such a verification

is O(
√
n). A more effective method was proposed by J. M. Pollard in 1975. We call

it Monte Carlo method, or “rho” method.

First, find a convenient mapping f of Zn
f−→ Zn; for example, f (x) is an integer

coefficient polynomial, such as f (x) = x2 + 1; secondly, a prime number x0 is ran-
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domly generated, let x1 = f (x0), x2 = f (x1), . . ., x j+1 = f (x j )( j = 0, 1, 2, · · · ).
In these x j , we want to find two integers x j and xk , which are different elements in
Zn , but there are some factors d of n, d|n, and x j and xk are the same elements in
Zd , that is to say

x j 	≡ xk(mod n), (x j − xk, n) > 1. (5.23)

Once x j and xk are found, the algorithm is said to be completed.

Theorem 5.3 Let S be a set of r elements, let f : S → S is a mapping, x0 ∈ S,
define x j+1 = f (x j )( j = 0, 1, 2, . . .). Suppose λ is a positive real number, let l =
1 + [√2λr], then the condition x0, x1, . . . , xl is the ratio ≤ e−λ of the mapping f
of elements in different s to the initial value x0, ( f, x0), f in all mappings S and all
x0 ∈ S.

Proof The total number of mappings f from f : S → S is rr , because each x ∈ S,
we can arrange r images for it, that is, f (x) has r choices. The initial value x0 has r
choices, so the total number of ( f, x0) is rr+1. The question is which of these ( f, x0)
choices can satisfy the condition that x0, x1, . . . , xl is a different element in S. we
want to prove that the proportion of ( f, x0) satisfying the condition in rr+1 ( f, x0)
is not greater than ≤ e−λ.

When x0 ∈ S given, there are r x0 choices, then x1 = f (x0) has only r − 1 choices
and x2 = f (x1) has only r − 2 choices, this goes on until xl = f (xl−1), there are
only r − l options. The remaining x ∈ S and f can be selected arbitrarily; that is,
there are rr−l choices. Therefore, when x0 is given, there are N f to make ( f, x0)
meet the required conditions, where

N = rr−l
l

∏

j=0

(r − j).

Divide N by rr+1, and the proportion of ( f, x0) satisfying the condition is

N

rr+1
= r−l

l
∏

j=1

(r − j) =
l

∏

j=1

(

1 − j

r

)

, (5.24)

We notice that the real number x ∈ (0, 1), then log(1 − x) < −x . Take the logarithm
to the right of the above formula, then

l
∑

j=1

log

(

1 − j

r

)

< −
l

∑

j=1

j

r
= −l(l + 1)

2r
< − l2

2r
.

Because of l = 1 + [√2λr ] >
√
2λr , from the above formula,
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l
∑

j=1

log

(

1 − j

r

)

< −λ.

By (5.24), we have
N

rr+1
≤ e−λ.

We complete the proof of Theorem 5.3.

MonteCarlomethod uses a polynomial f (x) ∈ Z[x], so that n is a positive integer,
and the congruence equation of mod n is invariant to polynomial f (x), that is

a ≡ b(mod n),=⇒ f (a) ≡ f (b)(mod n). (5.25)

x0 ∈ Zn given, x j+1 = f (x j )( j = 0, 1, . . .), if you find an xk0 ∈ Zn that satisfies
xk0 ≡ x j0(mod r), where r |n, r > 1, k0 > j0. By (5.25),

f (xk0) ≡ f (x j0)(mod r),=⇒ xk0+1 ≡ x j0+1(mod r).

Thus for any k > j , if k − j = k0 − j0, there is xk ≡ x j (mod r), this proves that

a polynomial mapping Zn
f−→ Zn produces k0 different residue classes under

mod r(r |n),
{x0, x1, . . . , xk0−1}.

Therefore, there is the following Lemma 5.14.

Lemma 5.14 f (x) ∈ Z[x] is a polynomial, n > 1 is an positive integer, let x0 ∈ Zn,
x j = f (x j−1)( j = 1, 2, . . .), if k is the first subscript, there is a j , 0 ≤ j < k, such
that

(xk − x j , n) = r > 1.

Then {x0, x1, . . . , xk−1} is k different residual classes under mod r , so it is also k
different residual classes under mod n. Moreover, Monte Carlo calculation defined
by f can only produce k different residual classes.

We call the polynomial f and the initial value x0 described in Lemma 5.14 an
average mapping. When the first subscript k is very large, the amount of calculation
is very large. Here we give an improved Monte Carlo algorithm.

f (x) ∈ Z[x] given, Monte Carlo algorithm needs to continuously calculate
xk(k = 1, 2, . . .). Let 2h ≤ k < 2k+1(h ≥ 0), j = 2h − 1; that is, k is an (h + 1)-
bit number, j is the maximum h-bit number, compare xk with x j and calculate
(xk − x j , n), if (xk − x j , n) > 1, then the calculation is terminated, otherwise con-
sider k + 1.The improvedMonteCarlo algorithmonlyneeds to calculate (xk − x j , n)

once for each k , j = 2h − 1. There is no need to verify every j , 0 ≤ j < k, when k
is very large, it reduces a lot of computation, but there is a disadvantage. It may miss
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the smallest subscript k satisfying the condition, but the error is controllable. In fact,
we have the following error estimation.

Lemma 5.15 f (x) ∈ Z[x], n ≥ 1 given, x0 ∈ Zn, x j = f (x j−1)( j = 1, 2, . . .), let
k0 be the smallest subscript and satisfy (xk0 − x j0 , n) > 1, where0 ≤ j0 < k0, assum-
ing that k is the smallest positive integer satisfying (xk − x j , n) > 1 in the improved
Monte Carlo algorithm, we have k ≤ 4k0.

Proof Suppose k0 has (h + 1) bits. Let j = 2h+1 − 1, k = j + (k0 − j0). ByLemma
5.14, then

(xk0 − x j0 , n) > 1,=⇒ (xk − x j , n) > 1.

Obviously, j is the maximum number of (h + 1) bits and k is the number of (h + 2)
bits, so k is the required subscript calculated by the improvedMonte Carlo algorithm.
Obviously,

k = j + (k0 − j0) ≤ 2h+1 − 1 + 2h+1 < 4 · 2h ≤ 4k0.

Lemma 5.15 holds.

Example 5.6 Let n = 91, f (x) = x2 + 1, x0 = 1. By Monte Carlo algorithm,
then x1 = 2, x2 = 5, x3 = 26 and x4 = 40 (because262 + 1 ≡ 40(mod 91)). By the
improved Monte Carlo algorithm, only (x4 − x3, 91) needs to be detected to obtain

(x4 − x3, 91) = (14, 91) = 7.

Lemma 5.16 Let n be an odd number and a compound number, and r be a factor
of n, r |n, 1 < r <

√
n. Let f (x) ∈ Z[x], x0 ∈ Zn given, then the computational

complexity of finding r by Monte Carlo algorithm ( f, x0) is

Time(( f, x0)) = O(
√
n log3 n) bits. (5.26)

Further, there is a normal number C, so that for any positive real number λ, the
success probability of Monte Carlo algorithm ( f, x0) to find a nontrivial factor r of
n is greater than 1 − e−λ, that is

P{( f, x0)find out r |n, r > 1} ≥ 1 − e−λ. (5.27)

The number of bit calculation operations required by the algorithm that depends on
parameter λ (to ensure the success rate of the algorithm) is O(

√
λ 4
√
n log3 n).

Proof From the discussion of computational complexity in Chap. 1, finding themax-
imum common divisor of two integers and the addition, subtraction, multiplication
and division in mod n are polynomial. Let C1 satisfies

Time((y − z, n)) ≤ C1 log
3 n,where y, z ≤ n.
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C2 satisfies
Time( f (x)mod n) ≤ C2 log

3 n, x ∈ Zn.

If k0 is ( f, x0), the first subscript in the calculation satisfies (xk0 − x j0 , n) > 1, by
the improved Monte Carlo algorithm, we have (xk − x j , n) > 1, where j = 2h − 1,
2h ≤ k < 2h+1. By Lemma 5.15, k ≤ 4k. Thus

Time(found by ( f, x0) k) ≤ 4k0(C1 log
3 n + C2 log

3 n). (5.28)

Let (xk0 − x j0 , n) = r > 1, r <
√
n, by Lemma 5.14, k0 ≤ r , so

Time(find r, r |n, r <
√
n) ≤ 4

√
n(C1 log

3 n,C2 log
3 n).

Equation (5.26) proved. In the sense of probability, that is, on the premise of allowing
certain errors, Eq. (5.26) can be further improved.

Let λ > 0 be any given real number, by Lemma 5.3, ratio of k0 ≥ 1 + √
2λr

< e−λ, in other words, the probability of successfully finding r , r |n, r ≤ √
n is

P{find out r, r |n, r <
√
n} ≥ 1 − e−λ.

In order to ensure the success rate, then k0 ≤ 1 + √
2λr . By (5.28), the number of

bit operations required shall not be greater than

4(1 + √
2λr)(C1 log

3 n + C2 log
3 n) = O(

√
λ 4
√
n log3 n).

We have completed the proof of Lemma.

Remark 5.1 Abasic assumptionofMonteCarlomethod is that the integer coefficient
polynomial f can be used as an average mapping (see Lemma 5.14); this has not
yet been proved.

5.4 Fermat Decomposition and Factor Basis Method

Lemma 5.17 Suppose n is an odd number, there is a 1-1 correspondence between
factorization n = a · b(a ≥ b > 0) of n and expression n = t2 − s2 (t and s are
nonnegative integers) of n. The corresponding σ : (a, b) → (t, s) can be written as
σ((a, b)) = (t, s), where

σ((a, b)) =
(
a + b

2
,
a − b

2

)

.

Inverse mapping is
σ−1((t, s)) = (t + s, t − s).
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Proof If n = ab, because both a and b are odd, then n = ( a+b
2 )2 − ( a−b

2 )2, so define

σ((a, b)) =
(
a + b

2
,
a − b

2

)

.

Conversely, if n = t2 − s2, then n = (t + s)(t − s). So define σ−1((t, s)) = (t +
s, t − s), we prove σ−1σ = 1, σσ−1 = 1. By the definition,

⎧

⎪⎨

⎪⎩

σ−1σ((a, b)) = σ−1

(
a + b

2
,
a − b

2

)

= (a, b),

σ (σ−1((t, s))) = σ(t + s, t − s) = (t, s).

So σ is a 1-1 correspondence between the two decomposition n = ab = t2 − s2, the
Lemma holds.

The above simple lemma provides us with a method of factor decomposition,
calledFermat factor decomposition: ifn = ab,a is very close tob, thenn = ( a+b

2 )2 +
( a−b

2 )2 = t2 − s2,where s is very small and t is only a little larger than
√
n. Therefore,

starting from t = [√n] + 1, we successively detect whether t2 − n is a complete
square number. If not, we change it to t = [√n] + 2 for detection. In this way, until
t2 − n = s2, we get n = (t + s)(t − s) through Fermat factorization. This method
is effective when n = ab, a and b are very close.

Fermat factor decomposition can be further expanded into a factor-based method
to become a more effective factor decomposition method. Its basic idea is: in Fermat
factorization, t2 − n2 is required to be a complete square, which is difficult to appear
in practice, but t2 ≡ s2(mod n), t 	≡ ±s(mod n) is easy to appear. Calculate the
maximum common divisor (t + s, n) and (t − s, n), then we have factorization

n = (t + s, n)(t − s, n).

Definition 5.5 Let B be h different primes (maybe p1 = −1), B is called a factor
base. An integer b is called a B-number, if the minimum nonnegative residue of b2

under mod n can be expressed as the product of prime numbers in B, where n is the
given positive integer.

Example 5.7 Let n = 4633, B = {−1, 2, 3}, then 67, 68, 69 are all B-number,
because 672 ≡ −144(mod 4633), 682 ≡ −9(mod 4633), 692 ≡ 128(mod 4633).

If b is a B-number, b2 mod n represents the minimum nonnegative residue of b2

under mod n, by the definition,

b2 mod n =
h

∏

i=1

pαi
i , αi ≥ 0.

Let e = {e1, e2, . . . , eh} ∈ F
h
2 be an h-dimensional binary vector, define
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e j =
{

0, if α j is even;
1, if α j is odd.

1 ≤ j ≤ h.

e is called the binary vector corresponding to b if {bi } = A is a set of B-numbers. The
binary vector corresponding to each bi is denoted as ei = {ei1 , ei2 , . . . , eih }, denote
b2i mod n with ai . We have

∏

i∈A

ai =
h

∏

j=1

p
∑

i∈A αi j

j , where ai =
h

∏

j=1

p
αi j

j ,

Suppose
∑

i∈A ei = (0, 0, . . . , 0) is the zero vector in F
h
2 , then

∑

i∈A

αi j ≡ 0(mod 2),∀ 1 ≤ j ≤ h.

That is,
∏

ai is a square number. Let r j = 1
2

∑

i∈A αi j , then

∏

i∈A

ai =
⎛

⎝

h
∏

j=1

p
r j
j

⎞

⎠

2

, define c =
h

∏

j=1

p
r j
j , (5.29)

On the other hand, bi mod n represents the minimum nonnegative residue of bi under
mod n, let

b =
∏

i∈A

(bi mod n) =
∏

i∈A

δi , (5.30)

where δi = bi mod n, that is 0 ≤ δi < n, and bi ≡ δi (mod n), thus

∏

i∈A

bi ≡ b(mod n).

Because of ai = b2i mod n, that is 0 ≤ ai < n, and b2i ≡ ai (mod n). There is

∏

i∈A

b2i = b2 ≡
∏

i∈A

ai = c2(mod n).

Two different integers b and c defined by Eqs. (5.29) and (5.30) satisfy b2 ≡
c2(mod n), We write the above analysis as the following lemma.

Lemma 5.18 Let A = {b1, b2, . . . , bi , . . .} be a finite set of some B-numbers, let
ei = (ei1 , ei2 , . . . , eih ) ∈ F

h
2 be the binary vector corresponding to bi , ai = b2i mod n,

δi = bi mod n. If
∑

i∈A ei = 0 is the zero vector in F
h
2 , then

∏

i∈A ai is a square
number. Write
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ai =
h

∏

j=1

p
αi j

j ,
∏

i∈A

ai =
h

∏

j=1

p
∑

i∈A αi j

j = c2.

where

c =
h

∏

j=1

p
1
2

∑

i∈A αi j

j ,

Further let b = δ1δ2 · · · , we have b2 ≡ c2(mod n).

From the above lemma, if b2 ≡ c2(mod n), b 	≡ ±c(mod n). Then we will find
a nontrivial factor d = (b + c, n) of n. Now the question is, if b2 ≡ c2(mod n),
how likely is b 	≡ ±c(mod n)? Might as well make (b, n) = (c, n) = 1, otherwise
both sides are divided by (b, n)2: by b2 ≡ c2(mod n),=⇒ (bc−1)2 ≡ 1(mod n). The
problem is transformed into howmany solutions x are in x2 ≡ 1(mod n), 1 ≤ x < n.

Lemma 5.19 Let n beanoddnumber, then the number of solutions of x2 ≡ 1(mod n)

is 2r , where r is the number of different prime factors of n.

Proof If r = 1, then n = pα(α ≥ 1), p is an odd prime, now x2 ≡ 1(mod pα) has
two solutions x = ±1, because let g be the original root of mod pα , then x = gt (1 ≤
t ≤ pα−1(p − 1)), x2 = 1 ⇔ pα−1(p − 1)|2t . So there are only two solutions t =
1
2 p

α−1(p − 1) and t = pα−1(p − 1). So x ≡ ±1(mod pα). If n = pα1
1 · · · pαr

r , then
the number of solutions of x2 ≡ 1(mod n) deduced from the Chinese remainder
theorem is 2r . The Lemma holds!

Lemma 5.20 n is an odd number and is the product of the power of more than
two different primes, B = {p1, p2, . . . , ph} is a factor base. Randomly select two
B-numbers b and c, then b2 ≡ c2(mod n),=⇒ b ≡ ±c(mod n)’s rate is ≤ 1

2 .

Proof x2 ≡ 1(mod n) has 2r different solutions (mod n), r ≥ 2. The two solutions
corresponding to x ≡ ±1(mod n) correspond to b ≡ ±c(mod n). Thus

b2 ≡ c2(mod n),=⇒ b ≡ ±c(mod n)’s rate ≤ 2

2r
≤ 1

2
,

Lemma 5.20 holds.

According to Lemma 5.20, b and c are selected by using factor basis, if b ≡
±c(mod n), then select failure, and the probability of failure is ≤ 1

2 . If the selection
fails, select another b1 and c1, in this way, we randomly select k b and c equally
almost independently, and the probability of success of b 	≡ ±c(mod n) is

P{b2 ≡ c2(mod n), b 	≡ ±c(mod n)} ≥ 1 − 1

2k
. (5.31)

In other words, the probability of finding a nontrivial factor d = (b + c, n) of n by
using the factor base can be infinitely close to 1. Below, we systematically summarize
the factor base decomposition method as follows:
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Factor-based method
Let n be a large odd number and y be an appropriately selected integer (e.g.,

y ≤ n
1
10 ), let the factor base be

B = {−1, p | p is prime, p ≤ y}.

Select a certain number of B-number at random, A1 = {b1, b2, . . . , bN }, usually
N ≤ π(y) + 2 will meet the needs. Each bi is expressed as the product of prime
numbers in B. Calculate the corresponding binary vector ei , select a subset A ⊂ A1

in A1, such that
∑

i∈A ei = 0, bi corresponding to binary vector ei , denote as A =
{b1, b2, . . . , bi , . . .}. Let

b =
∏

i∈A

(bi mod n) =
∏

i∈A

δi , where δi = bi mod n

and

c =
∏

j∈B
p
r j
j mod n, r j = 1

2

∑

i∈A

αi j .

We have b2 ≡ c2(mod n), if b ≡ ±c(mod n), then reselect the subset A, Until finally
b 	≡ ±c(mod n), in this way, we find a nontrivial factor d|n of n, d = (b + c, n).
Therefore, there is factorization n = d · n

d .
Factor decomposition using factor-based method cannot guarantee the success

rate of 100% because b 	≡ ±c(mod n) cannot be deduced from b2 ≡ c2(mod n),
however, the success probability of factorization for large odd n can be infinitely
close to 1. Under the condition of success probability ≥ 1 − 1

2k (k is a given normal
number), the computational complexity of factorization n of by factor-based method
can be estimated as

Time(factor-based method to n factorization) = O(ec
√
log n log log n). (5.32)

The proof of Formula (5.32) is relatively complex. No detailed proof is given here.
Interested readers can refer to pages 136–141 of (Pomerance, 1982a) in reference 5.
The exact value of C in (5.32) is unknown. It is generally guessed that C = 1 + ε,
where ε > 0 is any small positive real number.

Let k be the number of bits of n, and the estimate on the right of (5.32) can be
written as O(ec

√
k log k). Therefore, the computational complexity of the factor-based

method is sub-exponential. Comparedwith theMonteCarlomethod introduced in the
previous section (see (5.31)), its computational complexity is exponential, because

O(
√
n) = O(ec1k), where c1 = 1

2
log 2.

As we all know, the security of RSA public key cryptography is based on the
prime factorization n = pq of n. Although there is no general method to factor-
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ize any large odd n, although Monte Carlo method and factor-based method are
probability calculation methods, the probability of successful factorization is very
large, The disadvantage is that their computational complexity is exponential and
sub exponential, which is the reason for choosing huge prime numbers p and q in
RSA.

5.5 Continued Fraction Method

In the factor-based method introduced in the previous section, b2 mod n can be the
residual of the minimum absolute value of b2 under mod n, that is

b2 ≡ b2 mod n(mod n), |b2 mod n| ≤ n

2
.

In this way, b2 mod n can be decomposed into the product of some smaller prime
numbers. The continued fraction method is the best method at present. How to find
the integer b, so that |b2 mod n| < 2

√
n, b2 mod n is more likely to be decomposed

into the product of some small prime numbers. First, we introduce what is continued
fraction and some basic properties.

Suppose x ∈ R is a real number, [x] is the integer part of x , and {x} is the decimal
part of x . Let a0 = [x], if {x} 	= 0, and let a1 = [ 1

{x} ], because of x = [x] + {x}, there
is

x = a0 + 1

{x} = a0 + 1

a1 + {{x}−1} .

If {{x}−1} 	= 0, write
a2 = [{{x}−1}−1],

consider
{{{x}−1}−1}−1,

So we got

x = a0 + 1

a1 + 1
a2+ 1

a3+···

.

The above formula is called the continued fraction expansion of real number x . To
save space, write x = [a0, a1, . . . , an, . . .], if and only if x is a rational number, the
continued fraction of x is expanded to be finite, denote as

x = [a0, a1, . . . , an], where an > 1.

It is called the standard expansion of rational number x .
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Definition 5.6 x = [a0, a1, . . . , an, . . .] is the continued fraction expansion of x , for
i ≥ 0, call bi

ci
= [a0, a1, . . . , ai ] the i th asymptotic fraction of x , specially,

b0
c0

= a0
1

,
b1
c1

= a1a0 + 1

a1
.

The progressive fraction bi
ci

of the real number x is a reduced fraction, that is
(bi , ci ) = 1, and has the following properties.

Lemma 5.21 x = [a0, a1, . . . , an, · · · ] is the continued fraction expansion of x, bi
ci

is the asymptotic fraction, then

(i) when i ≥ 2,
bi
ci

= aibi−1 + bi−2

aici−1 + ci−2
. (5.33)

(ii) If i ≥ 1, then
bi ci−1 − bi−1ci = (−1)i−1. (5.34)

Proof We prove that (i) by induction. Obviously, the proposition of i = 2 holds, that
is

b2
c2

= a2b1 + b0
a2c1 + c0

= a2(a1a0 + 1) + a0
a2a1 + 1

.

If the proposition holds for i , that is

bi
ci

= aibi−1 + bi−2

aici−1 + ci−2
.

Then write [a0, a1, . . . , ai , ai+1] = [a0, a1, . . . , ai + 1
ai+1

],

bi+1

ci+1
=

(

ai + 1
ai+1

)

bi−1 + bi−2
(

ai + 1
ai+1

)

ci−1 + ci−2

= ai+1bi + bi−1

ai+1ci + ci−1
.

So (i) holds.
We prove Formula (5.34) by induction, when i = 1,

b1c0 − b0c1 = a1a0 + 1 − a1a0 = 1 = (−1)0.

So when i = 1, the proposition holds, and when i , the proposition holds, that is

bici−1 − bi−1ci = (−1)i−1.
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Then
bi+1ci − bici+1 = (ai+1bi + bi−1)ci − bi (ai+1ci + ci−1)

= bi−1ci − bici−1

= (−1)i .

Lemma 5.21 holds.

Continued fractions havemany important applications in numbers, such as rational
approximation of real numbers and rational approximation of algebraic numbers.
Periodic continued fractions are an important special case in rational approximation
of algebraic numbers. x = [a0, a1, . . . , an, . . .]. If these ai occur in cycles of a certain
length, they are called periodic continued fractions. The famous Lagrange theorem
shows that the necessary and sufficient condition for the expansion of the continued
fraction of x into a periodic continued fraction is that x is a quadratic real algebraic
number. Here we do not discuss some profound properties of continued fractions,
but only prove some properties we need.

Lemma 5.22 Let x > 1 be a real number, bi
ci

(i ≥ 0) is the asymptotic fraction of x,
then

|bi 2 − x2c2i | < 2x,∀ i ≥ 0.

Proof Because x is between progressive scores bi
ci
and bi+1

ci+1
, by property (ii) of Lemma

5.21, there is ∣
∣
∣
∣

bi+1

ci+1
− bi

ci

∣
∣
∣
∣
= 1

ci ci+1
, i ≥ 0.

Thus

|bi 2 − x2c2i | = c2i

∣
∣
∣
∣
x − bi

ci

∣
∣
∣
∣

∣
∣
∣
∣
x + bi

ci

∣
∣
∣
∣

< c2i · 1

ci ci+1

(

x +
(

x + 1

ci ci+1

))

.

So

|bi 2 − x2c2i | − 2x < 2x

(

−1 + ci
ci+1

+ 1

2xc2i+1

)

< 2x

(

−1 + ci
ci+1

+ 1

ci+1

)

< 2x

(

−1 + ci+1

ci+1

)

= 0.

The Lemma holds.

Lemma 5.23 Let n be a positive integer and n not a complete square. Let { bici }i≥0

be the asymptotic fraction of the continued fraction expansion of
√
n, and b2i mod n

be the residue of the minimum absolute value of b2i under mod n, then we have



5.5 Continued Fraction Method 225

b2i mod n < 2
√
n, ∀ i ≥ 0.

Proof By Lemma 5.22, let x = √
n, then

b2i ≡ b2i − nc2i (mod n).

Because
|b2i − nc2i | < 2

√
n,=⇒ b2i mod n < 2

√
n, ∀ i ≥ 0.

The Lemma holds.

Combining the above Lemma 5.23 with the factorization method, we obtain the
continued fraction decomposition method.

Continued fraction decomposition method:
The operations of mod n involved in this algorithm, except that it is specially

pointed out, are the minimum nonnegative residue of mod n. If n is a large odd
number, it is also a compound number, first let b−1 = b, b0 = a0 = [√n], and x0 =√
n − a0 = {√n}, calculate b20 mod n, in fact, b20 mod n = b20 − n. Second, consider

i = 1, 2, . . .. To determine bi , we proceed in several steps:

1. Let ai = [ 1
xi−1

], and xi = 1
xi−1

− ai (i ≥ 1).
2. Let bi = aibi−1 + bi−2, the minimum nonnegative residual bi mod n of bi under

mod n is still recorded as bi .
3. calculate b2i mod n.

By Lemma 5.23, b2i mod n < 2
√
n, it can be decomposed into the product of some

small prime numbers. If a prime number p appears in the decomposition of two or
more b2i mod n, or in the decomposition of an b2i mod n, p appears to an even power,
p is called a standard prime number, in other words, a standard prime p is

p|b2i mod n, p|b2j mod n, i 	= j.

Or
pα‖b2i mod n, α is even.

We choose factor base B as

B = {−1, standard prime}.

In this way, all b2i mod n are B-numbers, and the corresponding binary vector is ei .
Select a subset A = {bi },=⇒ ∑

i∈A ei = 0. Let

b =
∏

i∈A

(bi mod n) =
∏

i∈A

δi

and c = ∏

j∈B p
r j
j , where
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r j = 1

2

∑

i∈A

αi j ,∀ j ∈ B.

If b 	≡ ±c(mod n), then (b + c, n) is a nontrivial factor of n, and we obtain the
factorization of n. If b ≡ ±c(mod n), then another subset A is selected and repeated
to complete the continued fraction factorization method.

Example 5.8 The continued fraction method is used to factorize n = 9073.

Solution:We calculateai , bi and b2i mod n in turn,wherebi = (aibi−1 + bi−2)mod n,
the table is as follows:

i 0 1 2 3 4
ai 95 3 1 26 2
bi 95 286 381 1119 2619

b2i mod n −48 139 −7 87 −27

From the value of b2i mod n, we can choose the factor base B as B = {−1, 2, 3, 7}.
Then b2i mod n is the number of B-number, when i = 0, 2, 4, . . .. The corresponding
binary vector is

e0 = (1, 4, 1, 0), e2 = (1, 0, 0, 1), and e4 = (1, 0, 3, 0).

Easy to calculate e0 + e4 = (0, 0, 0, 0). Therefore, we choose

{

b = 95 · 2619 ≡ 3834mod 9073;
c = 22 · 32 = 36.

Because b2 ≡ c2(mod 9073), that is 38342 = 362(mod 9073), but 3834 	≡ ±36
(mod 9073), sowe get a nontrivial factor of n = 9073, d = (3834 + 36, 9073) = 43.
Thus 9073 = 43 · 211, the factorization of 9073 is obtained.
Exercise 5

1. p is a prime, if and only if bp−1 ≡ 1(mod p2), p2 to base b is a Fermat pseudo
prime.

2. What is the minimum pseudo prime number with Fermat pseudo prime for base
5? What is the minimum Fermat pseudo prime number for base 2?

3. n = pq, p 	= q are two primes, let d = (p − 1, q − 1), it is proved that n to base
b is Fermat pseudo prime number, if and only if bd ≡ 1(mod n), and calculate
the number of bases b.

4. If b ∈ Z
∗
n , n to base b is Fermat pseudo prime, then n to base−b and b are Fermat

pseudo prime numbers.
5. If n to base 2 is Fermat pseudo prime, then N = 2n − 1 is also Fermat pseudo

prime.
6. If n to base b is Fermat pseudo prime, and (b − 1, n) = 1, then N = bn−1

b−1 to
base b is also Fermat pseudo prime.
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7. Prove that the following integers are Carmichael numbers:

1105 = 5 · 13 · 17, 1729 = 7 · 13 · 19, 2465 = 5 · 17 · 29, 2821 = 7 · 13 · 31,
6601 = 7 · 23 · 41, 29,341 = 13 · 37 · 61, 172,081 = 7 · 13 · 31 · 61, 278,545 = 5 · 17 · 29 · 113.

8. Find all Carmichael numbers of form 3pq and all Carmichael numbers of form
5pq.

9. Prove that 561 is the minimum Carmichael number.
10. If n to base 2 is a Fermat pseudo prime, prove N = 2n − 1 is a strong pseudo

prime.
11. There are infinite Euler pseudo primes and strong pseudo primes for base 2.
12. If n to base b is a strong pseudo prime, then n to base bk is also a strong pseudo

prime for any integer k.
13. The Fermat factorization method is used to decompose the positive integer as

follows:

n = 8633, n = 809,009, n = 92,296,873, n = 88,169,891.

14. The Fermat factorization method is used to decompose the positive integer as
follows:

n = 68,987, n = 29,895,581, n = 19,578,079, n = 17,018,759.

15. Expand the rational number x = 45
89 , x = 55

89 , x = 1.13 into continued fractions.
16. Let a be a positive integer, x = [a, a, a, · · · ], calculate x =?
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