
Chapter 3
Shannon Theory

3.1 Information Space

According to Shannon, a message x is a random event. Let p(x) be the probability
of occurrence of event x . If p(x) = 0, this event does not occur; If p(x) = 1, this
event must occur. When p(x) = 0 or p(x) = 1, information x can be called trivial
information or spam information. Therefore, the real mathematical significance of
information x lies in its uncertainty, that is 0 < p(x) < 1. Quantitative research on
the uncertainty of nontrivial information constitutes all the starting point of Shannon’s
theory; this starting point is now called information quantity or information entropy,
or entropy for short. Shannon and his colleagues at Bell laboratory considered “bit”
as the basic quantitative unit of information.What is “bit”?We can simply understand
it as the number of bits in the binary system. However, according to Shannon, the
binary system with n digits can express up to 2n numbers. From the point of view
of probability and statistics, the probability of occurrence of these 2n numbers is 1

2n .
Therefore, a bit is the amount of information contained in event x with probability 1

2 .
Taking this as the starting point, Shannon defined the self-information I (x) contained
in an information x as

I (x) = − log2 p(x). (3.1)

Therefore, one piece of information x contains I (x)-bit information,when p(x) = 1
2 ,

then I (x) = 1.Equation (3.1) is Shannon’s first extraordinary progress in information
quantification. On the other hand, with the emergence of Telegraph and telephone,
binary is widely used in the conversion and transmission of information. Therefore,
we can assert that without binary, there would be no Shannon’s theory, let alone the
current informatics and information age. The purpose of this section is to strictly
mathematically deduce and simplify the most basic and important conclusions in
Shannon’s theory. First, we start with the rationality of the definition of formula (3.1).

If I (x) is used to represent the self-information of a randomevent x , the greater the
probability of occurrence p(x), the smaller the uncertainty. Therefore, I (x) should
be a monotonic decreasing function of probability p(x). If xy is a joint event and
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92 3 Shannon Theory

is statistically independent, that is, p(xy) = p(x)p(y), then the self-information
amount is I (xy) = I (x) + I (y). Of course, the self-information amount I (x) is
nonnegative, that is I (x) ≥ 0. Shannon prove, the self-information I (x) satisfying
the above three assumptions must be

I (x) = −c log p(x),

where c is a constant. This conclusion can be derived directly from the following
mathematical theorems.

Lemma 3.1 If the real function f (x) satisfies the following conditions in interval
[1,+∞):

(i) f (x) ≥ 0,
(ii) If x < y ⇒ f (x) < f (y),
(iii) f (xy) = f (x) + f (y).

Then f (x) = c log x, where c is a constant.

Proof Repeated use condition (i i i), then there is

f (xk) = k f (x), k ≥ 1

for any positive integer k. Take x = 1, then the above formula holds if and only if
f (1) = 0. It can be seen from (i i) that f (x) > 0 when x > 1. Let x > 1, y > 1 and
k ≥ 1 given, you can always find a nonnegative integer n to satisfy

yn ≤ xk < yn+1,

Take logarithms on both sides to get

n

k
≤ log x

log y
<

n + 1

k
,

On the other hand, we have

n f (y) ≤ k f (x) < (n + 1) f (y),

thus

| f (x)
f (y)

− log x

log y
| ≤ 1

k
,

when k → ∞, we have

f (x)

f (y)
= log x

log y
, ∀ x, y ∈ (1,+∞).

Therefore,
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f (x)

log x
= f (y)

log y
= c, ∀ x, y ∈ (1,+∞).

That is f (x) = c log x . The Lemma holds.

In Lemma 3.1, let I (x) = f ( 1
p(x) ), then f (x) satisfies the condition (i), (i i) and

(i i i), thus I (x) = −c log p(x). That is (3.1) holds.
In order to introduce the definition of information space, we use X to represent a

finite set of original information, or a countable and additive information set, which
is called source state set. It can be an alphabet, a finite number of symbols or a
set of numbers. For example, 26 letters in English and 2-element finite field F2 are
commonly used source state sets. Elements in X can be called messages, events,
etc., or characters. We often use English capital letters such as X,Y, Z to represent a
source state set, and lowercase Greek letters ξ, η, . . . to represent a random variable
in a given probability space.

Definition 3.1 The value space of a random variable ξ is a source state set X ; the
probability distribution of characters on X as events is defined as

p(x) = P{ξ = x}, ∀ x ∈ X. (3.2)

We call (X, ξ) an information space in a given probability space, when the random
variable ξ is clear, we usually record the information space (X, ξ) as X . If η is another
random variable valued on X , and ξ and η obey the same probability distribution,
that is

P{ξ = x} = P{η = x}, ∀ x ∈ X.

Call two information spaces (X, ξ) = (X, η), usually recorded as X .

As can be seen from Definition 3.1, an information space X constitutes a finite
complete event group, that is, we have

∑

x∈X
p(x) = 1, 0 ≤ p(x) ≤ 1, x ∈ X. (3.3)

It should be noted that if there are two random variables ξ and η with values on X ,
when the probability distributions obeyed by ξ and η are not equal, then (X, ξ) and
(X, η) are two different information spaces; at this point, we must distinguish the
two different information spaces with X1 = (X, ξ) and X2 = (X, η).

Definition 3.2 X and Y are two source state sets, and the random variables ξ and η

are taken on X and Y , respectively; if ξ and η are compatible random variables, the
probability distribution of joint event xy(x ∈ X, y ∈ Y ) is defined as

p(xy) = P{ξ = x, η = y}, ∀ x ∈ X, y ∈ Y. (3.4)

Then, we call the joint event set
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XY = {xy|x ∈ X, y ∈ Y }

Together with the corresponding random variables ξ and η, it is called the product
space of information space (X, ξ) and (Y, η), denote as (XY, ξ, η), when ξ and η

are clear, they can be abbreviated as XY = (XY, ξ, η). If X = Y are two identical
source state sets, ξ and η have the same probability distribution, then the product
space XY is denoted as X2 and is called a power space.

Since the information space is a complete set of events, defined by the product
information space, we have the following full probability formula and probability
product formula: ⎧

⎪⎪⎨

⎪⎪⎩

∑

x∈X
p(yx) = p(y), ∀ y ∈ Y

∑

y∈Y
p(xy) = p(x), ∀ x ∈ X.

(3.5)

And
p(x)p(y|x) = p(xy), ∀ x ∈ X, y ∈ Y.

Where p(y|x) is the conditional probability of y under the condition of x .

Definition 3.3 Let X1, X2, . . . , Xn(n ≥ 2) be n source state sets, ξ1, ξ2, . . . , ξn be
n compatible random variables with values, respectively, in Xi , the probability dis-
tribution of joint event x1x2 · · · xn is

p(x1x2 · · · xn) = P{ξ1 = x1, ξ2 = x2, . . . , ξn = xn}. (3.6)

Then called
X1X2 · · · Xn = {x1x2 · · · xn|xi ∈ Xi , 1 ≤ i ≤ n}

are the product of n information spaces, especially when X1 = X2 = · · · = Xn = X ,
and each ξi has the same probability distribution on X , define Xn = X1X2 · · · Xn ,
called the n-th power space of information space X .

Let us give some classic examples of information space.

Example 3.1 (Two point information space with parameter λ) Let X = {0, 1} = F2

be a binary finite field, the random variable ξ taken on X is subject to the two-point
distribution with parameter λ, that is

{
p(0) = P{ξ = 0} = λ,

p(1) = P{ξ = 1} = 1 − λ.

where 0 < λ < 1, then (X, ξ) is called a two-point information space with parameter
λ, still denote as X .
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Example 3.2 (Equal probability information space) Let X = {x1, x2, . . . , xn} be a
source state sets, the random variable ξ on X obeys the equal probability distribution,
that is

p(x) = P{ξ = x} = 1

|X | , ∀ x ∈ X.

Then (X, ξ) is called equal probability information space, still denote as X .

Example 3.3 (Bernoulli information space) Let X0 = {0, 1} = F2. Let the random
variable ξi be the i-th Bernoulli test; therefore, {ξi }ni=1 is a set of independent and
identically distributed random variables. We let the product space

X = (X0, ξ1)(X0, ξ2) · · · (X0, ξn) = Xn
0 ⊂ F

n
2,

the power space X is called Bernoulli information space, also alled memoryless
binary information space. The probability function p(x) in X is

p(x) = p(x1x2 · · · xn) =
n∏

i=1

p(xi ), xi = 0 or 1. (3.7)

where p(0) = λ, p(1) = 1 − λ.

Example 3.4 (Degenerate information space) If X = {x}, it contains only one char-
acter. X is called a degenerate information space, or trivial information space. The
random variable ξ takes the value x of probability 1, that is P{ξ = x} = 1. At this
time, ξ is a random variable with degenerate distribution in probability.

Definition 3.4 Let X = {x1, x2, . . . , xn} be a source state sets, if X is an information
space, the information entropy H(X) of X is defined as

H(X) = −
∑

x∈X
p(x) log p(x) = −

n∑

i=1

p(xi ) log p(xi ), (3.8)

if p(xi ) = 0 in the above formula, we agreed that p(xi ) log p(xi ) = 0, the base
of logarithm can be selected arbitrarily; if the base of the logarithm is D(D ≥ 2),
then H(X) is called D-ary entropy, sometimes denote as HD(X).

Theorem 3.1 For any information space X, always have

0 ≤ H(X) ≤ log |X |. (3.9)

And H(X) = 0 if and only if X is a degenerate information space, H(X) = log |X |
if and only if X is a equal probability information space.

Proof H(X) ≥ 0 is trivial. We only prove the inequality on the right of Eq. (3.9).
Because f (x) = log x is a strictly convex real value, from the Lemma 1.7 in Chap. 1,
thake g(x) = 1

p(x) is a positive function, p(x) > 0, thus let X = {x1, x2, . . . , xm},
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H(X) =
m∑

i=1

p(xi ) log
1

p(xi )
≤ log

m∑

i=1

p(xi )

p(xi )
= logm.

The above equal sign holds if and only if p(x1) = p(x2) = · · · = p(xm) = 1
m , that

is, X is equal probability information space. If X = {x} is a degenerate infor-
mation space, because p(x) = 1, so H(X) = 0. Conversely, if H(X) = 0, let
X = {x1, x2, . . . , xm}, suppose ∃ xi ∈ X , such that 0 < p(xi ) < 1, then

0 < p(xi ) log
1

p(xi )
≤ H(X).

So there is p(xi ) = 1, but p(x j ) = 0( j �= i); at this time, X degenerates into X =
{xi }, which is a trivial information space, the Lemma holds.

An information space is a dynamic code (which changes with the change of the
randomvariable on it). For “dynamic code”, that is, the code rate of information space
X , Shannon replaces 1

n H(X)with information entropy, so information entropy H(X)

becomes the first mathematical quantity to describe dynamic code. From Theorem
3.1, when the code is degenerate, the minimum rate of a dynamic code is 0, when
the code is equal probability, the maximum rate is the rate of the usual static code.

Next, we discuss the information entropy of several typical information spaces.

Example 3.5 (i) Let X be the two-point information space of parameter λ, then

H(X) = −λ log λ − (1 − λ) log(1 − λ) = H(λ).

H(λ) we defined it in Chap. 1, it was called binary information entropy function at
that time. Now we know why it is called entropy function

(ii) X = {x} is degraded information space, then H(X) = 0.
(iii) When X is equal overview information space, then H(X) = log |X |.
Remark Most authors directly regard a random variable as an information space.
Mathematically, it is convenient to do so and call it the information measurement of
random variables. However, from the perspective of information, using the concept
of information space can better understand and simplify Shannon’s theory; the core
idea of this theory is the random measurement of information, not the information
measurement of random variables.

3.2 Joint Entropy, Conditional Entropy, Mutual
Information

Definition 3.5 Let X,Y be two information spaces, and ξ, η be random variables
with corresponding values, respectively. If ξ and η are independent randomvariables,
that is
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P{ξ = x, η = y} = P{ξ = x} · P{η = y}, ∀ x ∈ X, y ∈ Y.

X and Y are called independent information space, and the probability distribution
of joint events is

p(xy) = p(x)p(y), ∀x ∈ X, y ∈ Y.

Definition 3.6 Let X,Y be two information spaces, the information entropy H(XY )

of the product space XY is called the joint entropy of X and Y , that is

H(XY ) = −
∑

x∈X

∑

y∈Y
p(xy) log p(xy). (3.10)

The conditional entropy H(X |Y ) of X versus Y is defined as

H(X |Y ) = −
∑

x∈X

∑

y∈Y
p(xy) log p(x |y). (3.11)

Lemma 3.2 (Addition formula of entropy) For any two information spaces X and
Y , then we have

H(XY ) = H(X) + H(Y |X) = H(Y ) + H(X |Y ).

Generally, for n information spaces X1, X2, . . . , Xn, we have

H(X1X2 · · · Xn) =
n∑

i=1

H(Xi |Xi−1Xi−2 · · · X1). (3.12)

Proof By (3.10) and probability multiplication formula,

H(XY ) = −
∑

x∈X

∑

y∈Y
p(xy) log p(xy)

= −
∑

x∈X

∑

y∈Y
p(xy)(log p(x) + log p(y|x))

= −
∑

x∈X
p(x) log p(x) + H(Y |X)

= H(X) + H(Y |X).

The same can be proved

H(XY ) = H(Y ) + H(X |Y ).

We prove (3.12) by induction, when n = 2,
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H(X1X2) = H(X1) + H(X2|X1).

The proposition is true, and for general n, we have

H(X1X2 · · · Xn) = H(X1X2 · · · Xn−1) + H(Xn|X1X2 · · · Xn−1)

=
n−1∑

i=1

H(Xi |Xi−1Xi−2 · · · X1) + H(Xn|X1X2 · · · Xn−1)

=
n∑

i=1

H(Xi |Xi−1Xi−2 · · · X1).

The Lemma 3.2 holds.

Theorem 3.2 We have
H(XY ) ≤ H(X) + H(Y ). (3.13)

If and only if X and Y are statistically independent information spaces,

H(XY ) = H(X) + H(Y ). (3.14)

Generally, we have

H(X1X2 · · · Xn) ≤ H(X1) + H(X2) + · · · + H(Xn). (3.15)

If and only if X1, X2, . . . , Xn is an independent random process,

H(X1X2 · · · Xn) = H(X1) + H(X2) + · · · + H(Xn). (3.16)

Proof By definition and Jensen inequality, we have

H(XY ) − H(X) − H(Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(x)p(y)

p(xy)

≤ log
∑

x∈X

∑

y∈Y
p(x)p(y)

= 0.

The above equal sign holds, if and only if for all x ∈ X , y ∈ Y , p(x)p(y)
p(xy) = c( where

c is a constant), thus p(x)p(y) = cp(xy). Both sides sum at the same time, we have

1 =
∑

x∈X
p(x)

∑

y∈Y
p(y) = c

∑

x∈X

∑

y∈Y
p(xy),
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thus c = 1, p(xy) = p(x)p(y). So if andonly if X andY are independent information
spaces, (3.14) holds. By induction, we have (3.15) and (3.16). Theorem 3.2 holds.

By (3.15), we have the following direct corollary; for any information space X
and n ≥ 1, we have

H(Xn) ≤ nH(X). (3.17)

Definition 3.7 Let X and Y be two information spaces, and say that X is completely
determined byY , if there is always a subset Nx ⊂ Y ofY for any given x ∈ X , satisfies

{
p(x |y) = 1, if y ∈ Nx ;
p(x |y) = 0, if y /∈ Nx .

(3.18)

With regard to conditional information entropy H(X |Y ), we have the following
two important special cases.

Lemma 3.3 (i) 0 ≤ H(X |Y ) ≤ H(X).
(ii) If the information space X is completely determined by Y , then

H(X |Y ) = 0. (3.19)

(iii) If X and Y are two separate information spaces,

H(X |Y ) = H(X). (3.20)

Proof (i) is trivial. Let us prove (3.19) first. By Definition 3.7 and (3.18), for given
x ∈ X , we have

p(xy) = p(y)p(x |y) = 0, y /∈ Nx .

Thus
H(X |Y ) = −

∑

x∈X

∑

y∈Y
p(xy) log p(x |y)

= −
∑

x∈X

∑

y∈Nx

p(xy) log p(x |y) = 0.

The proof of the formula (3.20) is obvious. Because X and Y are independent, the
conditional probability

p(x |y) = p(x), ∀ x ∈ X, y ∈ Y.

Thus
H(X |Y ) = −

∑

x∈X

∑

y∈Y
p(x)p(y) log p(x)

= −
∑

x∈X
p(x) log p(x) = H(X).
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The Lemma 3.3 holds.

Next, we define the mutual information I (X,Y ) of two information spaces X and
Y .

Definition 3.8 Let X and Y be two information spaces, and then their mutual infor-
mation I (X,Y ) is defined as

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(x |y)
p(x)

. (3.21)

From the multiplication formula of probability, for all x ∈ X, y ∈ Y ,

p(x)p(y|x) = p(y)p(x |y) = p(xy).

We have
p(x |y)
p(x)

= p(y|x)
p(y)

.

Therefore, there is a direct conclusion from the definition of mutual information
I (X,Y )

I (X,Y ) = I (Y, X).

Lemma 3.4

I (X,Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X).

Proof By definition,

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(x |y)
p(x)

=
∑

x∈X

∑

y∈Y
p(xy) log p(x |y) −

∑

x∈X

∑

y∈Y
p(xy) log p(x)

= −H(X |Y ) −
∑

x∈X
p(x) log p(x)

= H(X) − H(X |Y ).

The same can be proved

I (X,Y ) = H(Y ) − H(Y |X).

Lemma 3.5 Assuming that X and Y are two information spaces, I (X,Y ) is the
amount of mutual information, then

H(XY ) = H(X) + H(Y ) − I (X,Y ). (3.22)
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Further, we have I (X,Y ) ≥ 0, if and only if X and Y are independent, I (X,Y ) = 0.

Proof By the addition formula of Lemma 3.2,

H(XY ) = H(X) + H(Y |X)

= H(X) + H(Y ) − (H(Y ) − H(Y |X))

= H(X) + H(Y ) − I (X,Y ).

The conclusion about I (X,Y ) ≥ 0 can be deduced directly from Theorem 3.2.

Let us prove an equation about entropy commonly used in the statistical analysis
of cryptography.

Theorem 3.3 If X,Y, Z are three information spaces, then

H(XY |Z) = H(X |Z) + H(Y |X Z)

= H(Y |Z) + H(X |Y Z).
(3.23)

Proof By the definition, we have

H(XY |Z) = −
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log p(xy|z).

By probability product formula,

p(xyz) = p(z)p(xy|z) = p(xz)p(y|xz).

Thus

p(xy|z) = p(xz)p(y|xz)
p(z)

= p(x |z)p(y|xz).

So we have

H(XY |Z) = −
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log p(x |z)p(y|xz)

= −
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz)(log p(x |z) + log p(y|xz))

= −
∑

x∈X

∑

z∈Z
p(xz) log p(x |z) −

∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log p(y|xz)

= H(X |Z) + H(Y |X Z).

Similarly, the second formula can be proved.

Finally, we extend the formula (3.15) to conditional entropy.
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Lemma 3.6 Let X1, X2, . . . , Xn,Y be information spaces, then we have

H(X1X2 · · · Xn|Y ) ≤ H(X1|Y ) + · · · + H(Xn|Y ). (3.24)

Specially, when X1 = X2 = · · · = Xn = X,

H(Xn|Y ) ≤ nH(X |Y ). (3.25)

Proof We make an induction of n. The proposition is trivial when n = 1. Let the
proposition be true when n, i.e.,

H(X1X2 · · · Xn|Y ) ≤ H(X1|Y ) + · · · + H(Xn|Y ).

Then when n + 1, we let X = X1X2 · · · Xn , then

H(X1X2 · · · Xn+1|Y ) = H(XXn+1|Y )

= −
∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(xzy) log p(xz|y).

From the full probability formula,

H(X |Y ) + H(Xn+1|Y ) = −
∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(xzy) log p(x |y)p(z|y).

So by Jensen inequality,

H(XXn+1|Y ) − H(X |Y ) − H(Xn+1|Y )

=
∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(xzy) log

p(x |y)p(z|y)
p(xz|y)

≤ log
∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(y)p(x |y)p(z|y).

By product formula ∑

x∈X

∑

z∈Xn+1

∑

y∈Y
p(y)p(x |y)p(z|y)

=
∑

x∈X

∑

y∈Y
p(x |y)p(y)

=
∑

x∈X
p(x) = 1.

So by the inductive hypothesis,
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H(XXn+1|Y ) ≤ H(Xn+1|Y ) + H(X |Y )

≤ H(X1|Y ) + H(X2|Y ) + · · · + H(Xn+1|Y ).

The proposition holds for n + 1. So the Lemma holds.

3.3 Redundancy

Select a alphabet Fq or a remaining class ring Zm of module m, each element in the
alphabet is called character, and in the field of communication, alphabet is also called
source state, and character is also called transmission signal. If the length of a q-ary
code is increased, redundant transmission signals or characters will appear in each
codeword. The digital measurement of “redundant characters” is called redundancy,
which is a technical means to improve the accuracy of codeword transmission, and
redundancy is an important mathematical quantity to describe this technical means.
Therefore, we start by proving the following lemma.

Lemma 3.7 Let X,Y, Z be three information spaces, then

H(X |Y Z) ≤ H(X |Z). (3.26)

Proof By total probability formula,

H(X |Z) = −
∑

x∈X

∑

z∈Z
p(xz) log p(x |z)

= −
∑

x∈X

∑

z∈Z

∑

y∈Y
p(xyz) log p(x |z).

So
H(X |Y Z) − H(X |Z)

=
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log

p(x |z)
p(x |zy)

≤ log
∑

x∈X

∑

y∈Y

∑

z∈Z

p(xyz)p(x |z)
p(x |zy)

= log
∑

x∈X

∑

y∈Y

∑

z∈Z
p(yz)p(x |z)

= log
∑

x∈X

∑

z∈Z
p(z)p(x |z)

= 0.

Thus H(X |Y Z) ≤ H(X |Z). The Lemma holds.
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Let X be a source state set and randomly select codewords to enter the channel of
information transmission is a discrete random process. This mathematical model can
be constructed and studied on X by taking the value of a group of random variables
{ξi }i≥1. Firstly, we assume that {ξi }i≥1 obeys the same probability distribution when
taking value on X , and we get a set of information spaces {Xi }i≥1, let H0 = log |X |
be the entropy of X as the equal probability information space, for n ≥ 1, we let

Hn = H(X |Xn−1), H1 = H(X).

By Lemma 3.7, then {Hn} constitutes a number sequence with monotonic descent
and lower bound, so that its limit exists, that is

lim
n→∞ Hn = a (a ≥ 0). (3.27)

We will extend the above observation to the general case: Let {ξi }i≥1 be any set of
random variables valued on X , for any n ≥ 1, we let

Xn = (X, ξn), n ≥ 1.

Definition 3.9 A source state set X has a set of random variables {ξi }i≥1 valued on
X , then X is called a source.

(i) If {ξi }i≥1 is a group of independent and identically distributed random variables,
X is called a memoryless source.

(ii) If for any integers k, t1, t2, . . . , tk and h, random vector

(ξt1 , ξt2 , . . . , ξtk )(ξt1+h, ξt2+h, . . . , ξtk+h)

obey the same joint probability distribution, then X is called a stationary source.
(iii) If {ξi }i≥1 is a k-order Markov process, that is, for ∀ m > k ≥ 1,

p(xm |xm−1xm−2 · · · x1)
= p(xm |xm−1xm−2 · · · xm−k), ∀ x1, x2, . . . , xm ∈ X,

Then X is called k-order Markov source, specially, k = 1, i.e.,

p(xm |xm−1xm−2 · · · x1) = p(xm |xm−1), ∀ x1, x2, . . . , xm ∈ X,

call X Markov source.

The concept from information space to source changes from a single random
variable taking value on X to an infinite dimensional random vector, so that the
transmission process of code X constitutes a discrete random process. By definition,
we have
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Lemma 3.8 Let X be a source state set, and {ξi }i≥1 be a set of random variables
valued on X, we write

Xi = (X, ξi ), i ≥ 1. (3.28)

(i) If X is a memoryless source, the joint probability distribution on X satisfies

p(x1x2 · · · xn) =
n∏

i=1

p(xi ), xi ∈ Xi , n ≥ 1. (3.29)

(ii) If X is a stationary source, then for all integers t1, t2, . . . , tk(k ≥ 1) and h, there
is the following joint probability distribution,

p(xt1xt2 · · · xtk ) = p(xt1+hxt2+h · · · xtk+h), (3.30)

where xi ∈ Xi , i ≥ 1.
(iii) If X is a stationary Markov source, then the conditional probability distribution

on X satisfies for any m ≥ 1 and x1x2 · · · xm ∈ X1X2 · · · Xm, we have

p(xm |x1 · · · xm−1) = p(xm |xm−1)

= P{ξi+1 = xm |ξi = xm−1}, ∀ 1 ≤ i ≤ m − 1.
(3.31)

Proof (i) and (ii) can be derived directly from the definition. We only prove (iii). By
(ii) of the definition 3.9, for ∀ i ≥ 1, we have

P{ξi = xm−1, ξi+1 = xm} = P{ξm−1 = xm−1, ξm = xm}

and
P{ξi = xm−1} = P{ξm−1 = xm−1}.

Thus
P{ξi = xm−1}P{ξi+1 = xm |ξi = xm−1}
= P{ξm−1 = xm−1}P{ξm = xm |ξm−1 = xm−1}.

We have
P{ξi+1 = xm |ξi = xm−1} = p(xm |xm−1).

The Lemma holds.

Corollary 3.1 A memoryless source X must be a stationary source.

Proof Derived directly from Definition 3.9.

Next, we extend the limit formula in memoryless sources revealed by formula
(3.27) to general stationary sources. For this purpose, we first prove two lemmas.
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Lemma 3.9 Let { f (n)}n�1 be a sequence of real numbers, which satisfies the fol-
lowing semi countable additivity,

f (n + m) � f (n) + f (m), ∀ n � 1, m � 1.

Then lim
n→∞

1

n
f (n) exists, and

lim
n→∞

1

n
f (n) = inf

{
1

n
f (n)|n � 1

}
. (3.32)

Proof Let

δ = inf

{
1

n
f (n)|n � 1

}
, δ �= −∞.

For any ε > 0, select a sufficiently large positive integer m so that

1

m
f (m) < δ + ε

2
.

Let n = am + b, where a is an integer, 0 � b < m, by semi countable additivity, we
have

f (n) � a f (m) + (n − am) f (1).

Divide n on both sides, we have

1

n
f (n) � a

am + b
f (m) + b

am + b
f (1).

For given b, when m is large enough, we have

b f (1)

am + b
<

1

2
ε.

So there is
1

n
f (n) <

1

m
f (m) + 1

2
ε < ε + δ. (3.33)

Thus we have

δ � lim
n→∞

1

n
f (n) � lim

n→∞
1

n
f (n) < δ + ε.

So

lim
n→∞

1

n
f (n) = δ.

If δ = −∞, by (3.33),
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lim
n→∞

1

n
f (n) = −∞,

so we still have

lim
n→∞

1

n
f (n) = δ = −∞.

The Lemma holds.

Lemma 3.10 Let {an}n�1 be a sequence of real numbers, and the limit lim
n→∞ an = a,

then

lim
n→∞

1

n

n∑

i=1

ai = a.

Proof

∣∣∣∣∣
1

n

n∑

i=1

ai − a

∣∣∣∣∣ =
∣∣∣∣∣
1

n

n∑

i=1

(ai − a)

∣∣∣∣∣ � 1

n

n∑

i=1

|(ai − a)|

= 1

n

N∑

i=1

|ai − a| + 1

n

n∑

i=N+1

|ai − a|

<
1

n

N∑

i=1

|ai − a| + n − N

n
ε

<
1

n

N∑

i=1

|ai − a| + ε.

When ε > 0 is given, N is also given accordingly, the first item of the above formula
tends to 0, when n → ∞. So for any ε > 0, when n > N0,

∣∣∣∣∣
1

n

n∑

i=1

ai − a

∣∣∣∣∣ < 2ε.

Thus there is

lim
n→∞

1

n

n∑

i=1

ai = a.

The Lemma holds.

With the above preparations, we now give the main results of this section.

Theorem 3.4 Let X be any source, {ξi }i�1 is a set of random variables valued on
X. For any positive integer n � 1, let

Xn = (X, ξn), n � 1.
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Then when X is a stationary source, we have the following two limits that exist and
are equal, that is

lim
n→∞

1

n
H(X1X2 . . . Xn) = lim

n→∞ H(Xn|X1X2 . . . Xn−1).

We denote the above common limit as H∞(X).

Proof Because X is a stationary source, for any n � 1, m � 1, then the joint event
probability distribution of random vector {ξn+1, ξn+2, . . . , ξn+m} on X is equal to the
joint probability distribution of random vector (ξ1, ξ2, . . . , ξm); therefore, we have

H(X1X2 · · · Xm) = H(Xn+1Xn+2 · · · Xn+m). (3.34)

By Theorem 3.2, then

H(X1X2 · · · XnXn+1 · · · Xn+m) � H(X1 · · · Xn) + H(Xn+1 · · · Xn+m)

= H(X1 · · · Xn) + H(X1 · · · Xm).

Let f (n) = H(X1 · · · Xn), then f (n + m) � f (n) + f (m), so { f (n)}n�1 is a non-
negative real number sequence with semi countable additive property, by Lemma
3.9, we have

lim
n→∞

1

n
H(X1X2 · · · Xn) = inf

{
1

n
H(X1X2 · · · Xn)|n � 1

}
� 0.

Next, we prove that there is a second limit, that is

lim
n→∞ H(Xn|X1X2 · · · Xn−1)exist.

Firstly, we prove that the sequence is monotonically decreasing, because X is a
stationary source, so

H(X1X2 · · · Xn−1) = H(X2X3 · · · Xn)

and
H(X2X3 · · · XnXn+1) = H(X1X2 · · · Xn).

So we have
H(Xn+1|X2X3 · · · Xn) = H(Xn|X1X2 · · · Xn−1). (3.35)

By Lemma 3.7,

H(Xn+1|X1X2 · · · Xn) � H(Xn+1|X2X3 · · · Xn)

= H(Xn|X1X2 · · · Xn−1).
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So {H(Xn|X1X2 · · · Xn−1)}n�1 is a monotonically decreasing sequence and has a
lower bound, so lim

n→∞ H(Xn|X1X2 · · · Xn−1) exist. Further, by the addition formula

of Lemma 3.2,

1

n
H(X1X2 · · · Xn) = 1

n

n∑

i=1

H(Xi |X1X2 · · · Xi−1).

By Lemma 3.10, finally we have

lim
n→∞

1

n
H(X1X2 · · · Xn) = lim

n→∞ H(Xn|X1X2 · · · Xn−1) = H∞(X).

We completed the proof of the Theorem.

We call H∞(X) the entropy rate of source X . obviously, there is the following
corollary.

Corollary 3.2 (i) For any stationary source X, we have

H∞(X) � H(X1) � log |X |.

(ii) If X is a memoryless source, then

H∞(X) = H(X1).

(iii) If X is a stationary Markov source, then

H∞(X) = H(X2|X1).

Proof Since {H(Xn|X1 · · · Xn−1)}n�1 is a monotonically decreasing sequence, then

H∞(X) � H(X1).

That is, (i) holds. If X is a memoryless source, then

H(X1 · · · Xn) = −
∑

x1∈X1

. . .
∑

xn∈Xn

p(x1x2 · · · xn) log p(x1x2 · · · xn)

= −
∑

x1∈X1

· · ·
∑

xn∈Xn

p(x1 . . . xn) {log p(x1) + · · · + log p(xn)}

= nH(X1).

So we have
H∞(X) = H(X1).

Similarly, we can prove (iii).
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Definition 3.10 Let X be a stationary source, we define

δ = log |X | − H∞(X), r = 1 − H∞X

log |X | , (3.36)

δ is the redundancy of information space X , and r is the relative redundancy of X .

We write

H0 = log |X |, Hn = H(Xn|X1X2 · · · Xn−1), ∀ n ≥ 1.

By Theorem 3.4, we have H∞(X) = H0 ≤ Hn , so

Hn ≥ (1 − r)H0, ∀ n ≥ 1. (3.37)

In information theory, redundancy is used to describe the effectiveness of the
information carried by the source output symbol. The smaller the redundancy, the
higher the effectiveness of the information carried by the source output symbol, and
vice versa.

3.4 Markov Chain

Let X,Y, Z be three information spaces, if there is the following conditional proba-
bility formula

p(xy|z) = p(x |z)p(y|z). (3.38)

Say that X and Y are statistically independent under the given condition of Z .

Definition 3.11 If the information space X and Y are statistically independent under
condition Z , X,Y, Z is called a Markov chain, denote as X → Z → Y .

Theorem 3.5 X → Z → Y is aMarkov chain if and only if the probability of occur-
rence of the joint event xzy is

p(xzy) = p(x)p(z|x)p(y|z), (3.39)

if and only if
p(xzy) = p(y)p(z|y)p(x |z). (3.40)

Proof If X → Z → Y is a Markov chain, then p(xy|z) = p(x |z)p(y|z), thus

p(xzy) = p(z)p(xy|z)
= p(z)p(x |z)p(y|z)
= p(x)p(z|x)p(y|z).
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Similarly,
p(xzy) = p(z)p(y|z)p(x |z)

= p(y)p(z|y)p(x |z).

That is (3.39) and (3.40) holds. Conversely, if (3.39) holds, then

p(xzy) = p(x)p(z|x)p(y|z)
= p(z)p(x |z)p(y|z).

On the other hand, the product formula

p(xzy) = p(z)p(xy|z).

So we have
p(xy|z) = p(x |z)p(y|z).

That is X → Z → Y is aMarkov chain. Similarly, if (3.40) holds, then X → Z → Y
also is a Markov chain. The Theorem holds.

According to the above Theorem, or by Definition 3.11, obviously, if X → Z →
Y is a Markov chain, then Y → Z → X is also a Markov chain.

Definition 3.12 Let U, X, Z ,Y be four information spaces, and the probability of
joint event uxzy is

p(uxzy) = p(u)p(x |u)p(z|x)p(y|z), (3.41)

Call U, X, Z ,Y a Markov chain, denote as U → X → Z → Y .

Theorem 3.6 If U → X → Z → Y is a Markov chain, then U → X → Z and
U → Z → Y are also Markov chains.

Proof Assuming that U → X → Z → Y is a Markov chain, then

p(uxzy) = p(u)p(x |u)p(z|x)p(y|z),

Both sides sum y ∈ Y at the same time, and notice that
∑

y∈Y p(y|z) = 1, then

p(uxz) = p(u)p(x |u)p(z|x).

By Theorem 3.5,U → X → Z is aMarkov chain. The left side of the above formula
can be expressed as

p(uxz) = p(ux)p(z|ux).

So we have
p(z|ux) = p(z|x).
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Because U → X → Z → Y is a Markov chain, then

p(uxzy) = p(u)p(x |u)p(z|x)p(y|z)
= p(ux)p(z|ux)p(y|z)
= p(uxz)p(y|z).

Both sides sum x ∈ X at the same time, then we have

p(uzy) = p(uz)p(y|z)
= p(u)p(z|u)p(y|z).

Thus U → Z → Y is also a Markov chain. The Theorem holds.

In the previous section, we defined the mutual information I (X,Y ) of two infor-
mation spaces X and Y as

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(xy)

p(x)p(y)
.

Now we define the mutual information I (X,Y |Z) of X and Y under condition Z as

I (X,Y |Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log

p(xy|z)
p(x |z)p(y|z) . (3.42)

By definition, we have
I (X,Y |Z) = I (Y, X |Z). (3.43)

I (X,Y |Z) is called the conditional mutual information of X and Y .
For conditional mutual information, we first prove the following formula.

Theorem 3.7 Let X,Y, Z be three information spaces, then

I (X,Y |Z) = H(X |Z) − H(X |Y Z) (3.44)

and
I (X,Y |Z) = H(Y |Z) − H(Y |X Z). (3.45)

Proof We only prove (3.44), the same is true for equation (3.45). Because

H(X |Z) − H(X |Y Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log

p(x |yz)
p(x |z)

=
∑

x∈X

∑

y∈Y

∑

z∈Z
p(xyz) log

p(xy|z)
p(x |z)p(y|z)

= I (X,Y |Z).

So (3.44) holds.
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Corollary 3.3 We have I (X,Y |Z) ≥ 0, if and only if X → Z → Y is a Markov
chain I (X,Y |Z) = 0.

Proof By Theorem 3.7,

I (X,Y |Z) = H(X |Z) − H(X |Y Z) ≥ 0.

If X → Z → Y is a Markov chain, by (3.42),

log
p(xy|z)

p(x |z)p(y|z) = log 1 = 0,

that is I (X,Y |Z) = 0. Vice versa.

Conditional mutual information can be used to establish the addition formula of
mutual information.

Corollary 3.4 (Addition formula of mutual information) If X1, X2, . . . , Xn,Y are
information spaces, then

I (X1X2 · · · Xn,Y ) =
n∑

i=1

I (Xi ,Y |Xi−1 · · · X1). (3.46)

Specially, when n = 2, we have

I (X1X2,Y ) = I (X1,Y ) + I (X2,Y |X1). (3.47)

Proof By Lemma 3.4, we have

I (X1X2 · · · Xn,Y ) = H(X1X2 · · · Xn) − H(X1X2 · · · Xn|Y )

=
n∑

i=1

H(Xi |Xi−1 · · · X1) −
n∑

i=1

H(Xi |Xi−1 · · · X1Y ).

Again by the chain rule of conditional entropy to get

I (X1X2 · · · Xn,Y ) =
n∑

i=1

I (Xi ,Y |X1X2 · · · Xi−1).

Therefore, the corollary holds.

Finally, we use Markov chain to prove the inequality of mutual information.

Theorem 3.8 Suppose X → Z → Y is a Markov chain, then we have

I (X,Y ) ≤ I (X, Z) (3.48)
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and
I (X,Y ) ≤ I (Y, Z). (3.49)

Proof We only prove (3.48), the same is true for equation (3.49). From equation
(3.47) and corollary 3.3:

I (Y Z , X) = I (Y, X) + I (X, Z |Y ).

Thus we have
I (X,Y ) = I (X,Y Z) − I (X, Z |Y )

≤ I (X,Y Z)

= I (X, Z) + I (X,Y |Z)

= I (X, Z).

In the last step, we use the Markov chain condition, thus I (X,Y |Z) = 0. The The-
orem holds.

Theorem 3.9 (Data processing inequality)SupposeU → X → Y → V is aMarkov
chain, then we have

I (U, V ) ≤ I (X,Y ).

Proof According to the conditions, U → X → Y and U → Y → V is a Markov
chain, respectively, by Theorem 3.8,

I (U,Y ) ≤ I (X,Y )

and
I (U, V ) ≤ I (U,Y ).

Thus
I (U, V ) ≤ I (X,Y ).

The Theorem holds.

3.5 Source Coding Theorem

The information coding theory is usually divided into two parts: channel coding
and source coding. The so-called channel coding is to ensure the success rate of
decoding by increasing the length of codewords. Channel coding, also known as
error correction code, is discussed in detail in Chap. 2. Source coding is to compress
the data with redundant information to improve the success rate of decoding and
recovery after information or data is stored. Another important result of Shannon’s
theory is that there are so-called good codes in source coding, which is characterized
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by fewer codewords as much as possible. To improve the storage space efficiency,
and the error of decoding and restoration can be arbitrarily small. Source coding is
also called typical code. Shannon first proved the asymptotic bisection property of
‘block code’for memoryless source, and drew the statistical characteristics of typical
code from now on. At Shannon’s suggestion, McMillan (1953) and Breiman (1957)
also proved a similar asymptotic bisection property for stationary ergodic sources.
This is the very famous Shannon–McMillan–Breiman theorem in source coding,
which constitutes the core content of modern typical code theory. The main purpose
of this section is to strictly prove the asymptotic bisection of memoryless sources, so
as to derive the source coding theorem for data compression (see Theorem 3.10). For
the more general Shannon–McMillan–Breiman theorem, Chap. 2 of Ye Zhongxing’s
fundamentals of information theory (see Zhongxing, 2003 in reference 3) gives a
proof under the condition of stationary ergodic Markov source, interested readers
can refer to it or refer to more original documents (see McMillan, 1953; Moy, 1961;
Shannon, 1959 in reference 3).

Firstly, let X = (X, ξ) be an information space, and the entropy H(X) of X
essentially depends only on the probability function p(x)(x ∈ X) of random variable
ξ . We can define the random variable taking value on X according to p(x).

η1 = p(X), η2 = log p(X). (3.50)

The probability function is

P{η1 value x} = P{η2 value x} = p(x). (3.51)

It is easy to see the expected value of η2

−E(η2) = −E(log p(X))

= −
∑

x∈X
p(x) log p(x) = H(X). (3.52)

Therefore, we can regard the entropy H(X) of X as the mathematical expectation of
random variable log 1

p(X)
.

Lemma 3.11 Let X be a memoryless source, p(Xn) and log p(Xn) be two random
variables whose values are on the power space Xn, then − 1

n log p(Xn) converges to
H(X) according to probability, that is

−1

n
log p(Xn)

P−→ H(X).

Proof Since X is a memoryless source, {ξi }i≥1 is a group of independent and identi-
cally distributed random variables, Xi = (X, ξi )(i ≥ 1), Xn = X1X2 · · · Xn(n ≥ 1)
is a power space, then there is
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{
p(Xn) = p(X1)p(X2) · · · p(Xn)

log p(Xn) = ∑n
i=1 log p(Xi ).

Because {ξi }i≥1 is independent and identically distributed, {p(Xn)} and {log p(Xn} is
also a group of independent and identically distributed random variables. According
to Chebyshev’s law of large numbers (see Theorem 1.3 of Chap. 1),

−1

n
log p(Xn) = 1

n

n∑

i=1

log
1

p(Xi )

converges to the common expected value H(X), that is

E

(
log

1

p(Xi )

)
= E

(
log

1

p(X)

)
= H(X).

For any ε > 0, for any codeword x = x1x2 · · · xn ∈ Xn , there is

P{| − 1

n
log p(Xn) − H(X)| < ε} > 1 − ε. (3.53)

The proof is completed.

Definition 3.13 Let X be a memoryless source, power space Xn , also known as
block code,

Xn = {x = x1 · · · xn|xi ∈ X, 1 ≤ i ≤ n}, n ≥ 1. (3.54)

For any given ε > 0, n ≥ 1, we define a typical code or a typical sequence W (n)
ε in

the power space Xn as

W (n)
ε = {x = x1 · · · xn | | − 1

n
log p(x) − H(X)| < ε}. (3.55)

Because the definition, and ε > 0, n ≥ 1, we have

W (n)
ε ⊂ Xn, |Xn| = |X |n. (3.56)

Lemma 3.12 (Progressive bisection) |W (n)
ε | represents the number of codewords in

typical code W (n)
ε , then for any ε > 0, in binary channels, we have

(1 − ε)2n(H(X)−ε) ≤ |W (n)
ε | ≤ 2n(H(X)+ε). (3.57)

Proof By Lemma 3.11 and (3.53), then for any x ∈ Xn , we have

P{| − 1

n
log p(x) − H(X)| < ε} > 1 − ε.
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In other words, for all codewords x = x1x2 · · · xn ∈ W (n)
ε , we have

H(X) − ε < −1

n
log p(x) < H(X) + ε.

Equivalent in binary channel,

2−n(H(X)+ε) ≤ p(x) ≤ 2−n(H(X)−ε), (3.58)

Denote the probability of occurrence of W (n)
ε as P{W (n)

ε }, then

P{W (n)
ε } = P{x ∈ Xn : x ∈ W (n)

ε } > 1 − ε.

On the other hand,
P{W (n)

ε } =
∑

x∈W (n)
ε

p(x),

by (3.58),
|W (n)

ε | · 2−n(H(X)+ε) ≤ P{W (n)
ε } ≤ 1.

So
|W (n)

ε | ≤ 2n(H(X)+ε).

Again by (3.58), there is

|W (n)
ε | · 2−n(H(X)−ε) ≥ P{W (n)

ε } > 1 − ε.

So we have
|W (n)

ε | > (1 − ε)2n(H(X)−ε).

Combined with the above inequalities on both sides, we have

(1 − ε)2n(H(X)−ε) ≤ |W (n)
ε | ≤ 2n(H(X)+ε).

We completed the proof.

By Lemma 3.12, for memoryless source X , the probability distribution p(x) of
its power space Xn is approximate to

p(x) ∼ 2−nH(X), ∀ x ∈ Xn.

The number of codewords |W (n)
ε | in typical code W (n)

ε is approximately

|W (n)
ε | ∼ 2nH(X).
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Further analysis shows that the proportion of typical code W (n)
ε in block code Xn is

very small, which can be summarized as the following Lemma.

Lemma 3.13 For a sufficiently small ε > 0 given,when X is not an equal probability
information space, we have

lim
n→∞

|W (n)
ε |

|X |n = 0.

Proof By Lemma 3.12, we have

|W (n)
ε |

|X |n ≤ 2n(H(X)+ε)

|X |n .

So
|W (n)

ε |
|X |n ≤ 2−n(log |X |−H(X)−ε).

By Theorem 3.1, since X is not an equal probability information space, when ε is
sufficient, we have

H(X) + ε < log |X |.

Therefore, when n is sufficiently large, the ratio of |W (n)
ε |

|X |n can be arbitrarily small. The
Lemma 3.13 holds.

Combining Lemmas 3.11, 3.12 and 3.13, we can describe that the typical codes
in block codes have the following statistical characteristics.

Corollary 3.5 Assuming that X is a memoryless source and the typical sequence
(or typical code) W (n)

ε in block code Xn is defined by formula (3.55), then for any
ε > 0, n ≥ 1, we have

(i) (Progressive bisection)

(1 − ε)2n(H(X)−ε) ≤ |W (n)
ε | ≤ 2n(H(X)+ε).

(ii) The occurrence probability P{W (n)
ε } of W (n)

ε is infinitely close to 1, that is

P{W (n)
ε } = P{x ∈ Xn : x ∈ W (n)

ε } > 1 − ε.

(iii) When X is not equal to almost information space, the proportion of W (n)
ε in block

code Xn is any smaller, that is,

lim
n→∞

|W (n)
ε |

|X |n = 0.

The above description of the statistical characteristics of typical codes is an impor-
tant theoretical basis for source coding or data compression. Therefore, we find an
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effective way to compress the packet code information, so that the rearranged code-
words are as few as possible, and the error probability of decoding and recovery is
as small as possible. An effective method is to divide the codeword in block code
Xn into two parts; the codeword of typical code W (n)

ε is uniformly numbered from
1 to M . That is, the codeword in W (n)

ε forms one-to-one correspondence with the
following positive integer set I ,

I = {1, 2, . . . , M}, M = |W (n)
ε |.

For codewords that do not belong to W (n)
ε , we uniformly number them as 1: Obvi-

ously, for i, i �= 1, 1 ≤ i ≤ n, there is a unique codeword x (i) ∈ W (n)
ε inW (n)

ε , so we

can accurately restore i to x (i), that is i
decode−→ x (i) is the correct decoding. For i = 1,

we will not be able to decode correctly, resulting in decoding recovery error. We
denote the code rate of the typical code W (n)

ε as 1
n logM , by Lemma 3.12,

(1 − ε)2n(H(X)−ε) ≤ M ≤ 2n(H(X)+ε).

Equivalently,

log(1 − ε) + n(H(X) − ε) ≤ logM ≤ n(H(X) + ε),

Therefore, the bit rate of typical code W (n)
ε is estimated as follows

1

n
log(1 − ε) + H(X) − ε ≤ 1

n
logM ≤ H(X) + ε, (3.59)

when 0 < ε < 1 given, we have

H(X) − ε ≤ lim
n→∞

1

n
logM ≤ H(X) + ε.

In other words, the code rate is typically close to H(X). Let us look at the decoding
error probability Pe after this number, where

Pe = P{x ∈ Xn : x /∈ W (n)
ε }.

Because

Pe + P{W (n)
ε } = 1,

According to the statistical characteristics (i i) of the typical code W (n)
ε ,

Pe = 1 − P{W (n)
ε } < ε. (3.60)
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From this, we derive the main result of this section, the so-called source coding
theorem.

Theorem 3.10 (Shannon, 1948) Assuming that X is a memoryless source, then

(i) When the code rate R = 1
n logM1 > H(X), there is an encoding with the code

rate of R, so that when n → ∞, the error probability of decoding recovery is
Pe → 0.

(ii) When the code rate R = 1
n logM1 < H(X) − δ, δ > 0 and does not change with

n → ∞, then any coding with R as the code rate has lim
n→∞ Pe = 1.

Proof The above analysis has given the proof of (i). In fact, if

R = 1

n
logM1 > H(X),

then when ε is sufficiently small, by (3.59). Typical codes in block code Xn are

R >
1

n
log |W (n)

ε |, M1 > |W (n)
ε |.

Therefore, we construct a code C ⊂ Xn , which satisfies

W (n)
ε ⊂ C, |C | = M1.

Thus, the code rate of C is just equal to R, and the decoding error probability Pe(C)

after compression coding satisfies Pe(C) < ε. Because the probability of occurrence
of C

P{C} + Pe(C) = 1.

But
P{C} ≥ P{W (n)

ε } > 1 − ε,

(i) holds. To prove (i i), we note that, ∀ x ∈ W (n)
ε , then

| − 1

n
log p(x) − H(X)| < ε.

The above formula contains ∀ x ∈ W (n)
ε ,

p(x) < 2−n(H(X)−ε).

Thus, the probability of occurrence of W (n)
ε satisfies

P{W (n)
ε } =

∑

x∈W (n)
ε

p(x) ≤ |W (n)
ε | · 2−n(H(X)−ε). (3.61)
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If we use R as the bit rate, because

R = 1

n
logM < H(X) − δ,

then we have

|W (n)
ε | < M = 2n(H(X)−δ).

By (3.61),
P{W (n)

ε } < 2−n(δ−ε), (3.62)

when 0 < ε < δ, we have

1 − Pe = P{W (n)
ε } < ε.

Thus
lim
n→∞ Pe = 1,

Thus the theorem holds.

3.6 Optimal Code Theory

Let X be a source state set, x = x1x2 · · · xn ∈ Xn be a message sequence, and x be
output as a codeword u = u1u2 · · · uk ∈ Z

k
D of length k after compression coding,

where D ≥ 1 is a positive integer, ZD is the remaining class ring of mod D, u =
u1u2 · · · uk ∈ Z

k
D is called a D- ary codeword of length k. u is decoded and translated

into message x , that is u → x . The purpose of source coding is to find a good
coding scheme to make the code rate as small as possible under the requirement of
sufficiently small decoding error. Below, we give the strict mathematical definitions
of equal length code and variable length code.

Definition 3.14 Let X be a source state set,ZD is the remaining class ring ofmod D,
n, k are positive integers. The mapping f : Xn → Z

k
D is called equal length code

coding function; Zk
D

ψ−→ Xn is called the corresponding decoding function. For
∀ x = x1 · · · xn ∈ Xn , f (x) = u = u1 · · · uk ∈ Z

k
D , u = u1 · · · uk is called a code-

word of length k.
C = { f (x) ∈ Z

k
D|x ∈ Xn}, (3.63)

call
Call C is the code coded by f , and R = k

n logD is the coding rate of f , also
known as the code rate of C . C is called equal length code; it is sometimes called a
block code with a packet length of k.
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By Definition 3.14, the error probability of an equal length code coding scheme
( f, ψ) is

Pe = P{ψ( f (x)) �= x, x ∈ Xn}. (3.64)

Let us first consider error free coding, that is Pe = 0. Obviously, Pe = 0 if and
only if f is a injection, ψ = f −1 is the left inverse mapping of f . select a coding
function f : Xn → Z

k
D as a injection if and only if |Zk

D| ≥ |Xn|, that is Dk ≥ Nn ,
where N = |X |, take logarithms on both sides,

R = k

n
logD ≥ logN = log |X |. (3.65)

Therefore, the code rate of error free compression coding f is at least log2 |X | bits
or ln |X | naits.

We consider progressive error free coding, that is, for any given ε > 0, required
decoding error probability Pe ≤ ε. ByTheorem3.10, only the code rate R ≥ H(X) is
needed. In fact, take X as an information space and encode the n-lengthen message
column x = x1x2 · · · xn ∈ Xn , if x ∈ W (n)

ε is a typical sequence (typical code), x
corresponds to a number in M = |W (n)

ε |, if x /∈ W (n)
ε , uniformly code x as 1. If the

M codewords in W (n)
ε are represented by D-ary digits, let Dk = M (the insufficient

part can be supplemented), and the code rate R is

R = 1

n
logM = k

n
log D.

Since M is approximately 2nH(X), R is approximately H(X), that is R = 1
n logM ∼

H(X). From the asymptotic bisection, the error probability of such coding is

Pe = P{x = x1 · · · xn /∈ W (n)
ε } < ε, When n is sufficiently large.

However, in practical application, n cannot increase infinitely, which requires us to
find the best coding scheme when given a finite n, so that the code rate is as close as
possible to the theoretical value H(X). However, in application, we find that equal
length code is not an efficient coding scheme, while variable length code is more
practical. For example,

Example 3.6 Let X = {1, 2, 3, 4} be an information space, and the probability dis-
tribution of random variable ξ taking value on X is

ξ ∼
(
1 2 3 4
1
2

1
4

1
8

1
8

)
.

The entropy H(X) of information space X is

H(X) = −1

2
log2

1

2
− 1

4
log2

1

4
− 1

8
log2

1

8
− 1

8
log2

1

8
= 1.75bits.
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If equal length code is used for coding, the code length is 2, and the code is

Source letter Codeword
1 00
2 01
3 10
4 11

Then the code rate R(k = 2, n = 1) is

R = 2 log2 2 = 2 > 1.75bits.

Obviously, the use efficiency of equal length codes is not high. If the above codes
are replaced with unequal length codes, such as
Source letter Codeword

1 0
2 10
3 110
4 111

We use l(x) to represent the code length after the source letter x is encoded, then the
average code length L required for X encoding is

L =
4∑

i=1

p(xi )l(xi ) = 1

2
× 1 + 1

4
× 2 + 1

8
× 3 + 1

8
× 3 = 1.75 bits = H(X).

It can be seen that using unequal length code to compile X has higher efficiency.
This example also explains the following compression coding principle: for char-
acters with high probability of occurrence, a shorter codeword is prepared, and for
characters with low probability of occurrence, a longer codeword is prepared to
ensure that the average coding length is as small as possible.

Next, we give the mathematical definition of variable length coding. For this
purpose, let X∗ and Z

∗
D be the set of finite length sequences, respectively. That is

X∗ = ⋃
1≤k<∞ Xk .

Definition 3.15 (i) Xn f−→ Z
∗
D is called a variable length code function, if any x ∈

Xn , f (x) ∈ Z
∗
D , When x is different, the code length of f (x) is not necessarily

the same. We use l(x) to table the length of f (x), which is called the coding
length of x . C = { f (x) ∈ Z

∗
D|x ∈ Xn} is called variable length codeword set.

(ii) Let f : X∗−→Z
∗
D be a amapping, call f is a coding mapping, f (X∗) is called

a code.
(iii) f : X∗−→Z

∗
D is called a block code mapping, if there is a mapping g :

X−→Z
∗
D , so that for any x ∈ Xn(n ≥ 1), write x = x1x2 · · · xn , there is f (x) =

g(x1)g(x2) · · · g(xn).
(iv) f : X∗−→Z

∗
D is called a uniquely decodable map, if f is a block code mapping

and f is a injection.
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(v) f : X∗−→Z
∗
D is called a real-time code mapping. If f is a block code mapping,

and for any x, y ∈ X∗, f (x) and f (y) cannot be prefixes to each other.

Remark 3.1 a = a1a2 · · · an ∈ Z
n
D, b = b1b2 · · · bm ∈ Z

m
D , call codeword a the pre-

fix of b, if m ≥ n, and for any 1 ≤ i ≤ n, there is ai = bi .

Lemma 3.14 Block code mapping f : X∗−→Z
∗
D is called a uniquely decodable

mapping if and only if for ∀ n ≥ 1, Xn−→Z
∗
D, f is restricted to a injection on Xn.

Proof The necessity is obvious and the adequacy is proved. That is to prove for
∀ x = x1x2 · · · xn ∈ Xn, y = y1y2 · · · ym ∈ Xm, x �= y, there is f (x) �= f (y). Sup-
pose there is f (x) = f (y), because f is a block code mapping, there is a mapping
g : X−→Z

∗
D , we have

f (x) = g(x1)g(x2) · · · g(xn) = g(y1)g(y2) · · · g(ym) = f (y).

Then
f (xy) = g(x1)g(x2) · · · g(xn)g(y1)g(y2) · · · g(ym)

= g(y1)g(y2) · · · g(ym)g(x1)g(x2) · · · g(xn)
= f (yx).

But xy �= yx , this contradicts the fact that f is restricted to a injection on Xn+m .

Lemma 3.15 A real-time code is uniquely decodable, and vice versa.

Proof Suppose f : X∗−→Z
∗
D as an instant codemapping, and for x, y ∈ X∗, x �= y,

there is f (x) = a1a2 · · · an ∈ Z
n
D, f (y) = b1b2 · · · bm ∈ Z

m
D(m ≥ n). Because f (x)

is not a prefix of f (y), it exists i(1 ≤ i ≤ n), there is ai �= bi , thus f (x) �= f (y),
that is f is an injection. In turn, let us take a counter example,

Source letter Codeword
1 0
2 01
3 011
4 111

where X = {1, 2, 3, 4} is the information space and f : X → Z
∗
2 is a variable

length code. f (1) is the prefix of f (2), that is, f is not a real-time code map, but
obviously f is the only decodeable map. The Lemma holds.

What are the conditions for the code length of a real-time code? The following
Kraft inequality gives a satisfactory answer.

Lemma 3.16 For the uniquely decodable code C value in Z
∗
D, |C | = m, the code

lengths are l1, l2, . . . , lm, then there is the following McMillan–Kraft inequality.

m∑

i=1

D−li ≤ 1. (3.66)
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On the contrary, if li satisfies the above conditions, there is a code length set of
real-time code C such that {l1, l2, . . . , lm} is C.

Proof Consider

(
m∑

i=1

D−li )n = (D−l1 + D−l2 + · · · + D−lm

)n

,

the form of each item is D−li1−li2−···−lin = D−k , where li1 + li2 + · · · + lin = k. Sup-
pose l = max{l1, l2, . . . , lm}, then the range of k is from n to nl. Define the number
of items where Nk is D−k , then

(
m∑

i=1

D−li

)n

=
nl∑

k=n

NkD
−k .

Note that Nk can be regarded as the number of codeword sequences with a total
length of k just assembled by n codewords in C , i.e.,

Nk = |{(c1, c2, . . . , cn) | |c1c2 · · · cn| = k, ci ∈ C}|.

The codeword is still in Z∗
D , and because f : X∗−→Z

∗
D is an injection, so Nk ≤ Dk .

then we have

(
m∑

i=1

D−li

)n

=
nl∑

k=n

NkD
−k ≤

nl∑

k=n

DkD−k = nl − n + 1 ≤ nl.

If x ≥ 1, and when n Is Sufficiently Large, xn > nl. But the above formula holds for
all arbitrary n. That is

∑m
i=1 D

−li ≤ 1.
On the contrary, assuming that Kraft inequality exists, that is, there is a given

length li (1 ≤ i ≤ m) satisfying formula (3.66), now we need to construct a real-
time code with these lengths, and li (1 ≤ i ≤ m) may not be completely different.
Definition n j is the number of codewords with length j, if l = max{l1, l2, . . . , lm},
then

l∑

j=1

n j = m.

(3.66) equivalent to
l∑

j=1

n j D
− j ≤ 1.

Multiply both sides by Dl , then
∑l

j=1 n j Dl− j ≤ Dl . There is



126 3 Shannon Theory

nl ≤ Dl − n1D
l−1 − n2D

l−2 − · · · − nl−1D,

nl−1 ≤ Dl−1 − n1D
l−2 − n2D

l−3 − · · · − nl−2D,

· · ·

n3 ≤ D3 − n1D
2 − n2D,

n2 ≤ D2 − n1D,

n1 ≤ D.

Because n1 ≤ D, we can choose these n1 codes arbitrarily, and the remaining D −
n1 codes with length 1 can be used as the prefix of other codewords. Therefore,
there are (D − n1)D options for codewords with length of 2. That is n2 ≤ D2 −
n1D. Similarly, (D − n1)D − n2 codewords can be used as prefixes of subsequent
codewords. Therefore, there are at most ((D − n1)D − n2)D options for codewords
with length of 3. That is n3 ≤ D3 − n1D2 − n2D. . . ., in this way, we can always
construct a real-time code with length {l1, l2, . . . , lm}. The Lemma holds!

Let us give an example that is not the only one that can be decoded.

Example 3.7 Let X = {1, 2, 3, 4}, ZD = F2, the coding scheme is

Source letter Codeword
1 0=f(1)
2 1=f(2)
3 00=f(3)
4 11=f(4)

Because the encoder inputs and the decoder receives continuous codeword sym-
bols, if the character received by the decoder is 001101, there may be two decoding
results, 112212 and 3412. This shows that f ∗ is not an injection, that is, the code
written by f is not uniquely decodable.

By Lemma 3.16, real-time codes or, more generally, uniquely decodable codes
must satisfy Kraft inequality. However, the variable length code compiled according
to kraft inequality is not the optimal code, because from the perspective of random
coding, an optimal code not only requires the accuracy of decoding, but also ensures
the efficiency, that is, the average random code length requires the shortest. We
summarize the strict mathematical definition of the optimal code as.

Definition 3.16 Let X = {x1, x2, . . . , xm} is an information space, a real-time code
C = { f (x1), f (x2), . . . , f (xm)} is called an optimal code if its average random code
length

L =
m∑

i=1

pi li (3.67)
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is the smallest, where pi = p(xi ) is the occurrence probability of xi and li is the code
length of xi .

For a source state set X , when its statistical characteristics are determined, that is,
after X becomes an information space, the probability distribution {p(x)|x ∈ X} is
given. Therefore, to find the optimal compression coding scheme for an information
space X is to find the optimal solution {l1, l2, . . . , lm} of (3.67) under the condition of
kraft inequality. Usually, we use the Lagrange multiplier method to find the optimal
solution. Let

J =
m∑

i=1

pi li + λ

(
m∑

i=1

D−li

)
,

Find the partial derivative of li

∂ J

∂li
= pi − λD−li log D.

Thus
D−li = pi

λ log D
.

By Kraft inequality, that is
m∑

i=1

D−li ≤ 1.

We get

1 ≥
m∑

i=1

D−li = 1

λ log D

m∑

i=1

pi ⇒ λ ≥ 1

log D
.

Thus, the optimal code length li is

li ≥ − logD pi , pi ≥ D−li . (3.68)

The corresponding optimal average code length L is

L =
m∑

i=1

pi li ≥ −
m∑

i=1

pi logD pi = HD(X). (3.69)

That is, L is the D-ary information entropy HD(X) of X . from this, we get the main
results of this section.

Theorem 3.11 The average length L of any D-ary real-time code in an information
space X shall satisfies

L ≥ HD(X).
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The equal sign holds if and only if pi = D−li .

Next, we will give another proof of Theorem 3.11. Therefore, we consider that there
are two random variables ξ and η on a source state set X , and their probability
distributions are

p(x) = P{ξ = x}, q(x) = P{η = x}, ∀ x ∈ X.

The relative entropy of random variables is defined as

D(p||q) =
∑

x∈X
p(x) log

p(x)

q(x)
. (3.70)

Lemma 3.17 The relative entropy D(p||q) of two random variables on X satisfies

D(p||q) ≥ 0, and D(p||q) = 0 ⇐⇒ p(x) = q(x),∀ x ∈ X.

Proof If the real number x > 0 is expanded by the power series of ex , it can be
obtained

ex−1 = 1 + (x − 1) + 1

2
(x − 1)2 + · · · .

Thus ex−1 ≥ x , there is log x ≤ x − 1, by (3.70), then

−D(p||q) =
∑

x∈X
p(x) log

q(x)

p(x)

≤
∑

x∈X
p(x)(

q(x)

p(x)
− 1) = 0.

Thus, there is D(p||q) ≥ 0, D(p||q) = 0’s conclusion is obvious.

Proof (Another proof of theorem 3.11) Investigate L − HD(X),

L − HD(X) =
m∑

i=1

pi li −
m∑

i=1

pi logD
1

pi

= −
m∑

i=1

pi logD D−li +
m∑

i=1

pi logD pi .

(3.71)

Define

ri = D−li

c
, c =

m∑

j=1

D−li .

By Kraft inequality, we have
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c ≤ 1, and
m∑

i=1

ri = 1.

Therefore, {ri , 1 ≤ i ≤ m} is a probability distribution on X , by (3.71),

L − HD(X) = −
m∑

i=1

pi logD cri +
m∑

i=1

pi logD pi =
m∑

i=1

pi

(
logD

pi
ri

+ logD
1

c

)
.

By Lemma 3.17 and c ≤ 1, we have

L − HD(X) ≥ 0, and L = HD(X) if and only if c = 1 and ri = pi ,

that is

pi = D−li , or li = logD
1

pi
.

We complete the proof of theorem 3.11.

By Theorem 3.11, coding according to probability, then the code length of D-ary
optimal code is

li = logD
1

pi
, 1 ≤ i ≤ m.

But in general, logD
1
pi
is not an integer, we use �a� to represent the smallest integer

not less than the real number a. Take

li =
⌈
logD

1

pi

⌉
, 1 ≤ i ≤ m. (3.72)

Then
m∑

i=1

D−li ≤
m∑

i=1

D− logD
1
pi =

m∑

i=1

pi = 1.

Then the code length defined by formula (3.72) is {l1, l2, . . . , lm} and satisfies Kraft
inequality. From Lemma 3.16, we can define the corresponding real-time code.

Definition 3.17 Let X = {x1, x2, . . . , xm} be an information space, pi = p(xi ),

l( f (xi )) = li =
⌈
logD

1

pi

⌉
, 1 ≤ i ≤ m.

Then the real-time code corresponding to {l1, l2, . . . , lm} is called Shannon code.

Corollary 3.6 The code length l( f (xi )) of a Shannon code C = { f (xi )|1 ≤ i ≤ m}
satisfies
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li =
⌈
logD

1

p(xi )

⌉
, logD

1

p(xi )
≤ li < logD

1

p(xi )
+ 1 (3.73)

and
HD(X) ≤ L < HD(X) + 1.

Where L is the average code length of C.

Proof According to the definition of �a�, a ≤ �a� < a + 1, thus

logD
1

p(xi )
≤ li < logD

1

p(xi )
+ 1.

So both sides multiply by p(xi ) and sum 1 ≤ i ≤ m, then there is

m∑

i=1

p(xi ) logD
1

p(xi )
≤

m∑

i=1

p(xi )li <

m∑

i=1

p(xi )

(
logD

1

p(xi )
+ 1

)
.

That is
HD(X) ≤ L < HD(X) + 1.

The Corollary holds.

3.7 Several Examples of Compression Coding

3.7.1 Morse Codes

In variable length codes, in order to make the average code length as close to the
source entropy as possible, the code length shouldmatch the occurrence probability of
the corresponding coded characters asmuchas possible. Theprinciple of probabilistic
coding is that the characters with high occurrence probability are configured with
short codewords, and the characters with low occurrence probability are configured
with long codewords, So as to make the average code length as close to the source
entropy as possible. This idea has existed long before Shannon theory. For example,
Morse code invented in 1838 uses three symbols of dot, dash and space to encode 26
letters in English. It is expressed in binary, one dot is 10, a total of 2 bits, one dash is
1110, a total of 4 bits and the space is 000. There are three bits in total. For example,
the commonly used English letter E is represented by a dot, while the infrequently
used letter Q is represented by two dashes, one dot and one dash, which can make
the average length of the codeword of the English text shorter. However, Morse code
does not completely match the occurrence probability, so it is not the optimal code,
and it is basically not used now. The following table is the coding table of Morse
code (Fig. 3.1)
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Fig. 3.1 The coding table of
Morse code

It is worth noting that Morse code appeared as a kind of password in the early
stage, which is widely used in the transmission and storage of sensitive politics (such
as military intelligence). The early cryptosystem compilers were also manufactured
based on the principle of Morse code, which quickly mechanized the compilation
and translation of passwords. In this sense, Morse code has played an important role
in promoting the development of cryptography.
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3.7.2 Huffman Codes

Shannon, Fano and Huffman have all studied the coding methods of variable length
codes, among which Huffman codes have the highest coding efficiency. We focus on
the coding methods of Huffman binary and ternary codes.

Let X = {x1, x2, . . . , xm} be the source letter set of m symbols, arrange the m
symbols in the order of occurrence probability, take the two letters with the lowest
probability to prepare the numbers “0” and “1,” respectively, then add their proba-
bilities as a new letter and rearrange them in the order of probability with the source
letters without binary numbers. Then take the two letters with the lowest probability
to prepare the numbers “0” and “1,” respectively, add the probabilities of the two
letters as the probability of a new letter, and re queue; continue the above process
until the probability of the remaining letters is added to 1. At this time, all source
letters correspond to a string of “0” and “1,” and we get a variable length code, which
is called Huffman code. Taking X = {1, 2, 3, 4, 5} as the information space as an
example, the corresponding probability distribution is

ξ ∼
(

1 2 3 4 5
0.25 0.25 0.2 0.15 0.15

)
.

Binary information entropy H2(X) and ternary information entropy H3(X) are

H2(X) = −0.25 log2 0.25 − 0.25 log2 0.25 − 0.2 log2 0.2

− 0.15 log2 0.15 − 0.15 log2 0.15

= 2.28 bits,

H3(X) = −0.25 log3 0.25 − 0.25 log3 0.25 − 0.2 log3 0.2

− 0.15 log3 0.15 − 0.15 log3 0.15

= 1.44 bits,

respectively. The binary Huffman coding diagram of X is (Fig. 3.2).
The ternary Huffman coding diagram of X is (Fig. 3.3).
In summary, Huffman code has the following characteristics. Assuming that the

occurrence probability of the i-th source letter is pi and the corresponding code
length is li , then

Fig. 3.2 The binary
Huffman coding
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Fig. 3.3 The ternary
Huffman coding

(1) If pi > p j , then li ≤ l j , that is, the source letter with low probability has a longer
codeword;

(2) The longest two codewords have the same code length;
(3) The codeword letters of the two longest codewords are only different from the

last letter, and the front ones are the same;
(4) In real-time codes, the average code length of Huffman code is the smallest. In

this sense, Huffman code is the optimal code.

Huffman code has been applied in practice, which is mainly used in the compression
standard of fax image. However, in the actual data compression, the statistical char-
acteristics of some sources change before and after. In order to make the statistical
characteristics based on the coding adapt to the changes of the actual statistical char-
acteristics of the source, an adaptive coding technology has been developed. In each
step of coding, the coding of a new message is based on the statistical characteristics
of previous messages. For example, R. G. Gallager first proposed the step-by-step
updating technology of Huffman code in 1978, and D.E. Knuth made this technol-
ogy a practical algorithm in 1985. Adaptive Huffman coding technology requires
complex data structure and continuous updating of codeword set according to the
statistical characteristics of source, We would not go into details here.

3.7.3 Shannon–Fano Codes

Shannon–Fano code is an arithmetic code. Let X be an information space. It can be
inferred from Corollary 3.6 in the previous section that the code length of Shannon
code on X is

l(x) =
⌈
log

1

p(x)

⌉
,∀ x ∈ X.
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Here, we introduce a constructive coding method using cumulative distribution func-
tion to allocate codewords, commonly known as Shannon–Fano coding method.
Without losing generality, let each letter x in X , there is p(x) > 0, and define the
cumulative distribution function F(x) and the modified distribution function F̄(x)
as

F(x) =
∑

a≤x

p(a), F̄(x) =
∑

a<x

p(a) + 1

2
p(x), (3.74)

where X = {1, 2, . . . ,m} is a given information space. Without losing generality, let
p(1) ≤ p(2) ≤ · · · ≤ p(m).

As can be seen from the definition, if x ∈ X , then p(x) = F(x) − F(x − 1),
specially, if x, y ∈ X , then we have

F̄(x) �= F̄(y).

Sowhenwe know F̄(x), we can find the corresponding x . The basic idea of Shannon–
Fano arithmetic code is to use F̄(x) to encode x . Because F̄(x) is a real number, its
binary decimal represents the first l(x) bits, denote as {F̄(x)}l(x), there is

F̄(x) − {F̄(x)}l(x) < 2−l(x). (3.75)

Take l(x) =
⌈
log 1

p(x)

⌉
+ 1, then we have

1

2l(x)
= 1

2 · 2
⌈
log 1

p(x)

⌉ <
p(x)

2
= F̄(x) − F(x − 1), (3.76)

Now let the binary decimal of F̄(x) be expressed as

F̄(x) = 0.a1a2 · · · al(x)al(x)+1 · · · , ∀ ai ∈ F2.

Then Shannon–Fano code is

f (x) = a1a2 · · · al(x), that is x
encode−→ a1a2 · · · al(x) ∈ F

l(x)
2 . (3.77)

Lemma 3.18 The binary Shannon Fano code is a real-time code, and its average
length L is at most two bits different from the theoretical optimal value H(X).

Proof By (3.76),

2−l(x) <
1

2
p(x) = F̄(x) − F(x − 1).

Let the binary decimal of F̄(x) be expressed as

F̄(x) = 0.a1a2 · · · al(x) · · · , ∀ ai ∈ F2.
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We use [A, B] to represent a closed interval on the real axis, so

F̄(x) ∈ [0.a1a2 · · · al(x), 0.a1a2 · · · al(x) + 1

2l(x)
].

If y ∈ X , x �= y, and f (x) is the prefix of f (y), then we have

F̄(y) ∈ [0.a1a2 · · · al(x), 0.a1a2 · · · al(x) + 1

2l(x)
].

But

F̄(y) − F̄(x) ≥ 1

2
p(y) ≥ 1

2
p(x) >

1

2l(x)
,

This is contrary to the fact that F̄(x) and F̄(y) are in the same interval. Therefore, we
have f as real-time code, that is, Shannon–Fano code is real-time code. Considering
its average code length L ,

L =
∑

x∈X
p(x)l(x) =

∑

x∈X
p(x)

(⌈
log

1

p(x)

⌉
+ 1

)
<

∑

x∈X
p(x)

(
log

1

p(x)
+ 2

)
= H(X) + 2.

We complete the proof of the Lemma.

Let n ≥ 1, Xn is the power space of the information space, x = x1 · · · xn ∈ Xn

is called a message column of length n. In order to improve the coding efficiency,
it is often necessary to compress the power space Xn , which is called arithmetic
coding. Shannon–Fano code can also be used as arithmetic coding. Its basic method
is to find a fast algorithm for calculating joint probability distribution p(x1x2 · · · xn)
and cumulative distribution function F(x), and then use Shannon–Fano method to
encode x = x1 · · · xn . We will not introduce the specific details here.

3.8 Channel Coding Theorem

Let X be the input alphabet and Y the output alphabet, and let ξ and η be two random
variables with values on X and Y . The probability functions p(x) and p(y) of X and
Y and the conditional probability function p(y|x) are

p(x) = P{ξ = x}, p(y) = P{η = y}, p(y|x) = P{η = y|ξ = x}respectively.

From the full probability formula,

⎧
⎨

⎩
p(y|x) ≥ 0, ∀ x ∈ X, y ∈ Y.∑
y∈Y

p(y|x) = 1, ∀ x ∈ X. (3.78)
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If X and Y are finite sets, the conditional probability matrix T = (p(y|x))|X |×|Y | is
called the transition probability matrix from X to Y , i.e.,

T =

⎛

⎜⎜⎝

p(y1|x1) p(y2|x1) . . . p(yN |x1)
p(y1|x2) p(y2|x2) . . . p(yN |x2)

. . .

p(y1|xM) p(y2|xM) . . . p(yN |xM)

⎞

⎟⎟⎠ , (3.79)

where |X | = M , |Y | = N . By (3.78), each row of the transition probability matrix
T is added to 1.

Definition 3.18 (i) A discrete channel is composed of a finite information space X
as the input alphabet, a finite information space Y as the output alphabet, and a
transition probability matrix T from X to Y , denote that this discrete channel is
{X, T,Y }. If X = Y = Fq is q -element finite field, then {X, T,Y } is a discrete
q-ary channel. In particular, if q = 2, then {X, T,Y } is called discrete binary
channel.

(ii) If {X, T,Y } is a discrete q-ary channel and T = Iq is the q-order identity matrix,
{X, Iq ,Y } is called a noise free channel.

(iii) If {X, T,Y } is a discrete q-ary channel and T = T ′ is a q-order symmetric
matrix, {X, T,Y } is called a symmetric channel.

In discrete channel {X, T,Y }, codeword spaces Xn and Y n with length n are
defined as

Xn = {x = x1 · · · xn|xi ∈ X},Y n = {y = y1 · · · yn|yi ∈ Y }, n ≥ 1.

The probabilities of joint events x = x1 · · · xn and y = y1 · · · yn are defined as

p(x) = p(x1 · · · xn) =
n∏

i=1

p(xi ), p(y) = p(y1 · · · yn) =
n∏

i=1

p(yi ), (3.80)

then X andY becomeamemoryless source, Xn andY n are power spaces, respectively.

Definition 3.19 Discrete channel {X, T,Y } is called a memoryless channel if for
any positive integer n ≥ 1, x = x1 · · · xn ∈ Xn , y = y1 · · · yn ∈ Y n , we have

⎧
⎨

⎩
p(y|x) =

n∏
i=1

p(yi |xi ),
p(xi yi ) = p(x1y1),∀ i ≥ 1.

. (3.81)

From the joint event probability p(xi yi ) = p(x1y1) in equation (3.81), then there
is

p(yi |xi ) = p(x1)

p(xi )
p(y1|x1). (3.82)
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The above formula shows that in a memoryless channel, the conditional probability
p(yi |xi ) does not depend on yi .

Definition 3.19 is the statistical characteristic of a memoryless channel. The fol-
lowing lemma gives a mathematical characterization of a memoryless channel.

Lemma 3.19 A discrete channel {X, T,Y } is a memoryless channel if and only
if the product information space XY is a memoryless source, and a power space
(XY )n = XnY n.

Proof If XY is a memoryless source (see Definition 3.9), thn for any n ≥ 1, and
x = x1 · · · xn ∈ Xn , y = y1 · · · yn ∈ Y n , xy ∈ XnY n , there is

p(xy) = p(x1 · · · xn y1 · · · yn) = p(x1y1 · · · xn yn) =
n∏

i=1

p(xi yi ).

Thus

p(x)p(y|x) = p(x)
n∏

i=1

p(yi |xi ),

so we have

p(y|x) =
n∏

i=1

p(yi |xi ).

p(xi yi ) = p(x1y1) is given by the definition of memoryless source, so {X, T,Y } is
a memoryless channel. Conversely, if {X, T,Y } is a memoryless channel, by (3.81),
there are

p(xy) =
n∏

i=1

p(xi yi )

and p(xi yi ) = p(x1y1), then for any a = a1a2 · · · an ∈ (XY )n , where ai = xi yi , we
have

p(a) = p(x1 · · · xn y1 · · · yn) = p(xy) =
n∏

i=1

p(xi yi ) =
n∏

i=1

p(ai )

and p(ai ) = p(a1), therefore, XY is amemoryless source, that is, a group of indepen-
dent and identically distributed random vectors ξ = (ξ1, ξ2, . . . , ξn, . . .) take value
on XY , and (XY )n = XnY n is called power space. The Lemma holds.

The following lemma further characterizes the statistical characteristics of amem-
oryless channel.

Lemma 3.20 If {X, T,Y } is a discrete memoryless channel, the conditional entropy
H(Y n|Xn) and information I (Xn,Y n) of information space Xn and Y n satisfy ∀ n ≥
1,
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{
H(Y n|Xn) = nH(Y |X).

I (Xn,Y n) = nI (X,Y ).
(3.83)

Proof Because XY is a memoryless source, we have

H(XnY n) = H((XY )n) = nH(XY ) = nH(X) + nH(Y |X).

On the other hand, by the addition formula of entropy, there is

H(XnY n) = H(Xn) + H(Y n|Xn) = nH(X) + H(Y n|Xn).

The combination of the above two formulas has

H(Y n|Xn) = nH(Y |X).

According to the definition of mutual information,

I (Xn,Y n) = H(Y n) − H(Y n|Xn)

= nH(Y ) − nH(Y |X)

= n(H(Y ) − H(Y |X)) = nI (X,Y ).

The Lemma holds.

Let us define the channel capacity of a discrete channel, this concept plays an
important role in channel coding. First, we note that the joint probability distribution
p(xy) in the product space XY is uniquely determined by the probability distribution
p(x) on X and the probability transformationmatrix T , that is p(xy) = p(x)p(y|x);
therefore, the mutual information I (X,Y ) of X and Y is also uniquely determined
by p(x) and T . In fact,

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(xy)

p(x)p(y)

=
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x)∑

x∈X
p(x)p(y|x) .

Definition 3.20 The channel capacity B of a discretememoryless channel {X, T,Y }
is defined as

B = max
p(x)

I (X,Y ), (3.84)

where formula (3.84) is the maximum of all probability distributions p(x) on X .

Lemma 3.21 The channel capacity B of a discrete memoryless channel {X, T,Y }
is estimated as follows:
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0 ≤ B ≤ min{log |X |, log |Y |}.

Proof The amount of mutual information between the two information spaces is
I (X,Y ) ≥ 0 (see Lemma 3.5), so there is B ≥ 0. By Lemma 3.4,

I (X,Y ) = H(X) − H(X |Y ) ≤ H(X) ≤ log |X |

and
I (X,Y ) = H(Y ) − H(Y |X) ≤ H(Y ) ≤ log |Y |,

so we have
0 ≤ B ≤ min{log |X |, log |Y |}.

The calculation of information capacity is a problem of solving the conditional
extremum of constrained convex function. We will not discuss it in detail here but
calculate its channel capacity for two simple channels.

Example 3.8 The channel capacity of noiseless channel {X, T,Y } is B = log |X |.
Proof Let {X, T,Y } be a noise free channel, then |X | = |Y |, and the probability
transfer matrix T is the identity matrix, so

I (X,Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(y|x)
p(y)

=
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x)

p(y)
.

Because p(y|x) = 0, if y �= x ; p(y|x) = 1, if x = y. So there is

I (X,Y ) =
∑

x∈X
p(x) log

1

p(x)
= H(X) ≤ log |X |.

Thus
B = max

p(x)
I (X,Y ) = log |X |.

Example 3.9 The channel capacity B of binary symmetric channel {X, T,Y } is

B = 1 − p log p − (1 − p) log(1 − p) = 1 − H(p),

where p < 1
2 , H(p) is the binary entropy function.

Proof In binary symmetric channel {X, T,Y }, X = Y = F2 = {0, 1}, T is a second-
order symmetric matrix
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T =
(
1 − p p
p 1 − p

)
, p < 1.

Let a be the random variable in the input space F2 and b be the random variable in the
output space F2, all of which obey the two-point distribution, and then the transfer
matrix T of the symmetric binary channel can be represented by the following clearer
schematic diagram:

{
P{b = 1|a = 0} = P{b = 0|a = 1} = p

P{b = 0|a = 0} = P{b = 1|a = 1} = 1 − p.

Calculate mutual information I (X,Y ), there is

I (X,Y ) = H(X) − H(X |Y ),

however,
H(X |Y ) =

∑

x∈F2

∑

y∈F2

p(xy) log p(x |y)

= −p log p − (1 − p) log(1 − p) = H(p).

Thus
B = max{I (X,Y )} = max{H(X) − H(p)} = 1 − H(p).

In order to state and prove the channel coding theorem, we introduce the concept
of joint typical sequence. By the Definition 3.13 of Sect. 5 this chapter, if X is a
memoryless source, for any small ε > 0 and positive integer n ≥ 1, in the power
space Xn , we define the typical sequence W (n)

ε as

W (n)
ε = {x = x1 · · · xn ∈ Xn|| − 1

n
log p(x) − H(X)| < ε}.

If {X, T,Y } is a memoryless channel, by Lemma 3.19, XY is a memoryless source,
in the power space (XY )n = XnY n , we define the joint canonical sequence W (n)

ε as
(Fig. 3.4)

W (n)
ε =

{
xy ∈ XnY n

∣∣∣| − 1

n
log p(x) − H(X)| < ε, | − 1

n
log p(y) − H(Y )| < ε,

| − 1

n
log p(xy) − H(XY )| < ε

}
. (3.85)

Lemma 3.22 (Progressive bisection) In memoryless channel {X, T,Y }, the joint
typical sequence W (n)

ε satisfies the following asymptotic bisection properties:

(i) lim
n→∞ P{xy ∈ W (n)

ε } = 1;
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Fig. 3.4 The transfer matrix

(ii) (1 − ε) 2n(H(XY )−ε) ≤ |W (n)
ε | ≤ 2n(H(XY )+ε);

(iii) If x ∈ Xn, y ∈ Y n,and p(xy) = p(x)p(y), then

(1 − ε) 2−n(I (X,Y )+3ε) ≤ P{xy ∈ W (n)
ε } ≤ 2−n(I (X,Y )−3ε).

Proof By Lemma 3.13, we have

−1

n
log p(Xn) → H(X), Convergence according to probability when n → ∞;

−1

n
log p(Y n) → H(Y ), Convergence according to probability when n → ∞;

−1

n
log p(XnY n) → H(XY ), Convergence according to probability when n → ∞.

So when ε is given, as long as n is sufficiently large, there is

P1 = P

{
| − 1

n
log p(x) − H(X)| > ε

}
<

1

3
ε,

P2 = P

{
| − 1

n
log p(y) − H(Y )| > ε

}
<

1

3
ε,

P3 = P

{
| − 1

n
log p(xy) − H(XY )| > ε

}
<

1

3
ε,

where x ∈ Xn , y ∈ Y n . Thus, it can be obtained

P
{
xy /∈ W (n)

ε

} ≤ P1 + P2 + P3 < ε.

Thus
P

{
xy ∈ W (n)

ε

}
> 1 − ε,

in other words,
lim
n→∞ P{xy ∈ W (n)

ε } = 1.

Property (i) holds. To prove (i i), let x ∈ Xn , y ∈ Y n , and xy ∈ W (n)
ε , then
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H(XY ) − ε < −1

n
log p(xy) < H(XY ) + ε.

Equivalently,
2−n(H(XY )+ε) < p(xy) < 2−n(H(XY )−ε).

By total probability formula,

1 =
∑

xy∈XnY n

p(xy) ≥
∑

xy∈W (n)
ε

p(xy) ≥ |W (n)
ε | 2−n(H(XY )+ε).

So there is
|W (n)

ε | ≤ 2n(H(XY )+ε).

On the other hand, when n is sufficiently large,

1 − ε < P{xy ∈ W (n)
ε } =

∑

xy∈W (n)
ε

p(xy)

≤ |W (n)
ε | 2−n(H(XY )−ε).

So there is
(1 − ε) 2n(H(XY )−ε) ≤ |W (n)

ε | ≤ 2n(H(XY )+ε),

property (i i) holds. Now let’s prove property (i i i). If p(xy) = p(x)p(y), then

P{xy ∈ W (n)
ε } =

∑

xy∈W (n)
ε

p(x)p(y)

≤ |W (n)
ε |2−n(H(X)−ε)2−n(H(Y )−ε)

≤ 2n(H(XY )+ε−H(X)−H(Y )+2ε)

= 2−n(I (X,Y )−3ε).

Similarity can prove its lower bound, so we have

(1 − ε) 2−n(I (X,Y )+3ε) ≤ P{xy ∈ W (n)
ε } ≤ 2−n(I (X,Y )−3ε).

We have completed the proof of Lemma.

The following lemma has important applications in proving the channel coding
theorem. In fact, the conclusion of lemma is valid in general probability space.

Lemma 3.23 In memoryless channel {X, T,Y }, if codeword y ∈ Y n is uniquely
determined by x ∈ Xn, x ′ ∈ Xn, x ′ and x are independent, y and x ′ are also inde-
pendent.
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Proof If y is uniquely determined by x , then p(x) = p(y) = p(xy), or p(y|x) = 1.
Therefore, the probability of joint event yxx ′ is

p(yxx ′) = p(xx ′) = p(x)p(x ′) = p(y)p(x ′).

on the other hand,
p(yxx ′) = p(yx ′).

Thus
p(yx ′) = p(y)p(x ′).

The Lemma holds.

In order to define the error probability of channel transmission, we first introduce
the workflow of channel coding. After source compression coding, a source message
input set is generated,

W = {1, 2, . . . , M}, M ≥ 1 is positive integers.

Injection f : W → Xn is called coding function, f encodes each input message
w ∈ W as f (w) ∈ Xn . Codeword x = f (w) ∈ Xn receives codeword y ∈ Y n after

transmission through channel {X, T,Y }, we write x T−→ y, or y = T (x). Mapping
g : Y n → W is called decoding function. Therefore, the so-called channel coding is
a pair of mapping ( f, g). Obviously,

C = f (W ) = { f (w)|w ∈ W } ⊂ Xn

is a code with length n in codeword space Xn , number of codewords is |C | = |W | =
M . C is the code of f . The code rate RC is

RC = 1

n
log |C | = 1

n
logM.

For each input message w ∈ W , if g(T ( f (w))) �= w, it is said that the channel
transmission is wrong, the transmission error probability λw is

λw = P{g(T ( f (w))) �= w}, w ∈ W. (3.86)

The transmission error probability of codeword x = f (w) ∈ C is recorded as Pe(x),
obviously, Pe(x) = λw, that is, Pe(x) is the conditional probability

Pe(x) = P{g(T (x)) �= w|x = f (w)}
= P{g(T ( f (w))) �= w} = λw.

(3.87)

We define the transmission error probability of code C = f (W ) ⊂ Xn as Pe(C),
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Pe(C) = 1

M

∑

x∈C
Pe(x) = 1

M

M∑

w=1

λw. (3.88)

As before, a code C with length n and number of codewords M is recorded as
C = (n, M).

Theorem 3.12 (Shannon’s channel coding theorem, 1948) Let {X, T,Y } be a mem-
oryless channel and B be the channel capacity, then

(i) When R < B, there is a column of codes Cn = (n, 2[nR]), its transmission error
probability Pe(Cn) satisfies

lim
n→∞ Pe(Cn) = 0; (3.89)

(ii) Conversely, if the transmission error probability of code Cn = (n, 2[nR]) satisfies
Eq. (3.89), there is an absolute normal number N0, and we have the code rate
RCn of Cn satisfies

RCn ≤ B, when n ≥ N0.

If Cn = (n, 2[nR]), by Lemma 2.27 of Chap. 2,

R − 1

n
< RCn ≤ R. (3.90)

so (i) of Theorem 3.12 indicates that the code rate is sufficiently close to the channel
capacity B, the “good code” with sufficiently small transmission error probability
exists. (i i) indicates that the bit rate of the so-called good code with sufficiently small
transmission error probability does not exceed the channel capacity. Shannon’s proof
Theorem 3.12 uses random code technology; this idea of using random method to
prove deterministic results is widely used in information theory. At present, it has
more and more applications in other fields.

Proof (Proof of theorem 3.12) Firstly, the probability function p(xi ) is arbitrarily
selected on the input alphabet X , and the joint probability in power space Xn is
defined as

p(x) =
n∏

i=1

p(xi ), x = x1 · · · xn ∈ Xn, (3.91)

In this way, we get a memoryless source X and power space Xn , which consti-
tute the codeword space of channel coding. Then M = 2[nR] codewords are ran-
domly selected in Xn to obtain a random code Cn = (n, 2[nR]). In order to illus-
trate the randomness of codeword selection, we borrow the source message set
W = {1, 2, . . . , M}, where M = 2[nR]. For every message w, 1 ≤ w ≤ M , the ran-
domly generated codeword is marked as X (n)(w). So we get a random code



3.8 Channel Coding Theorem 145

Cn = {X (n)(1), X (n)(2), . . . , X (n)(M)} ⊂ Xn .

The generation probability P{Cn} of Cn is

P{Cn} =
M∏

w=1

P{X (n)(w)} =
M∏

w=1

n∏

i=1

p(xi (w)),

where X (n)(w) = x1(w)x2(w) · · · xn(w) ∈ Xn .
We take An = {Cn} as the set of all random codes Cn , which is called the random

code set. The average transmission error probability on random code set An is defined
as

P̄e(An) =
∑

Cn∈An

P{Cn}Pe(Cn). (3.92)

If you want to prove that for any ε > 0, When n is sufficiently large, P̄e(An) < ε,
then there is at least one code Cn ∈ An such that Pe(Cn) < ε, which proves the (i).
Therefore, we prove it in two steps.

(1) Principles of constructing random codes and encoding and decoding
We select each message in the source message setW = {1, 2, . . . , M} with equal

probability, that is w ∈ W , the selection probability of w is

p(w) = 1

M
= 2−[nR], w = 1, 2, . . . , M.

In this way, W becomes an equal probability information space. For each input
message w, it is randomly coded as X (n)(w) ∈ Xn , where

X (n)(w) = x1(w)x2(w) · · · xn(w) ∈ Xn.

Codeword X (n)(w) is transmitted through memoryless channel {X, T,Y } with con-
ditional probability

p(y|X (n)(w)) =
n∏

i=1

p(yi |xi (w))

received codeword y = y1y2 · · · yn ∈ Y n . The decoding principle of y is: If X (n)(w)

is the only input codeword so that X (n)(w)y is joint typical, that is X (n)(w)y ∈ W (n)
ε ,

then decode g(y) = w; if there is no such codeword X (n)(w), or there are two or
more codewords X (n)(w) and y are joint typical, y cannot be decoded correctly.

(2) Estimating the average error probability of random code set An

By (3.92) and (3.88),
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P̄e(An) =
∑

Cn∈An

P{Cn}Pe(Cn)

=
∑

Cn∈An

P{Cn} 1

M

∑

x∈Cn

Pe(x)

= 1

M

M∑

w=1

λw

∑

Cn∈An

P{Cn}

= 1

M

M∑

w=1

λw,

(3.93)

where λw is given by Eq. (3.86). Because w is input with equal probability, in
other words, w is encoded with equal probability. Therefore, the transmission error
probability λw of w does not depend on w, that is

λ1 = λ2 = · · · = λM .

By (3.93), we have P̄e(An) = λ1. To estimate λ1, we define

Ei = {y ∈ Y n|Xn(i)y ∈ W (n)
ε }, i = 1, 2, . . . , M, (3.94)

If Ec
1 = Y n\E1 is the remainder of E1, because of the decoding principle,

λ1 = P{Ec
1 ∪ E2 ∪ · · · ∪ EM} ≤ P{Ec

1} +
M∑

i=2

P{Ei }. (3.95)

By property (i) of Lemma 3.22,

lim
n→∞ P{xy /∈ W (n)

ε } = 0.

So there is
lim
n→∞ P{X (n)(1)y /∈ W (n)

ε } = 0.

Therefore, when n is sufficiently large,

P{Ec
1} < ε.

Obviously, codeword X (n)(1) and other codewords X (n)(i), (i = 2, . . . , M) are inde-
pendent of each other (see 3.91). By Lemma 3.23, y = T (X (n)(1)) and X (n)(i) (i �=
1) also are independent of each other. Then by the property (i i i) of Lemma 3.22,

P{Ei } = P{X (n)(i)y ∈ W (n)
ε } ≤ 2−n(I (X,Y )−3ε) (i �= 1).
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To sum up,

P̄e(An) =λ1 ≤ ε +
M∑

i=2

2−n(I (X,Y )−3ε)

≤ ε + 2[nR]2−n(I (X,Y )−3ε)

≤ ε + 2−n(I (X,Y )−R−3ε).

If R < I (X,Y ), then I (X,Y ) − R − 3ε > 0(when ε is sufficiently small), sowhen n
is large enough,wehave P̄e(An)<2ε.Due to the channel capacity B = max{I (X,Y )},
we can choose p(x) to make B = I (X,Y ). So when R < B, we have P̄e(An) < 2ε,
this completes the proof of (i).

To prove (i i), let’s look at a special case first. If the error probability of C =
(n, 2[nR]) is Pe(C) = 0, then the bit rate ofC is RC < B + 1

n , sowhen n is sufficiently
large, there is RC ≤ B.

In fact, because Pe(C) = 0, decoding function g : Y n → W only determines W ,
there is H(W |Y n) = 0. Because W is equal probability information space, so

H(W ) = log |W | = [nR].

Using the decomposition of mutual information, there are

I (W,Y n) = H(W ) − H(W |Y n) = H(W ) = [nR]. (3.96)

on the other hand, W → Xn → Y n forms a Markov chain, by data inequality (see
Theorem 3.8)

I (W,Y n) ≤ I (Xn,Y n).

By Lemma 3.20,

I (W,Y n) ≤ I (Xn,Y n) = nI (X,Y ) ≤ nB.

By (3.96), there is [nR] ≤ nB. Because nR − 1 < [nR] ≤ nR, so nR < nB + 1,
that is R < B + 1

n , by (3.90), we have

RC ≤ R < B + 1

n
,

thus
RC ≤ B,when n is sufficiently large.

The above formula shows that when the transmission error probability is 0, as long as
n is sufficiently large, there is RC ≤ B. Secondly, if the transmission error is allowed,
that is, the error probability of Cn is Pe(Cn) < ε, where Cn = (n, 2[nR]). Then when
n is sufficiently large, we still have RCn ≤ B.



148 3 Shannon Theory

In order to prove the above conclusion, we note the error probability of random
code Cn is

Pe(Cn) = λw, (3.97)

where w ∈ W is any given message. When w is given, we define a random variable
ξw with a value on {0, 1} as

ξw =
{
1, if g(T ( f (w))) �= w;
0, if g(T ( f (w))) = w.

Let E = (F2, ξw) be a binary information space, by (3.97), then we have

Pe(Cn) = P{ξw = 1}.

By Theorem 3.3,
H(EW |Y n) = H(W |Y n) + H(E |WYn)

= H(E |Y n) + H(W |EYn).
(3.98)

Note that E is uniquely determined by Y n and W , so H(E |WYn) = 0, at the same
time, E is a binary information space, H(E) ≤ log 2 = 1, there is

H(E |Y n) ≤ H(E) ≤ 1.

On the other hand, the random variable ξw is only related to w ∈ W , so

H(W |EYn) = Pe(Cn) log(|W | − 1) ≤ nRPe(Cn).

By (3.98), we have
H(W |Y n) ≤ 1 + nRPe(Cn).

Because f (W ) = Xn(W ) is a function ofW , we have the following Fano inequality

H( f (W )|Y n) ≤ H(W |Y n) ≤ 1 + nRPe(Cn).

Finally,
= H(W ) = H(W |Y n) + I (W,Y n)

≤ H(W |Y n) + I ( f (W ),Y n)

≤ 1 + nRPe(Cn) + I (Xn,Y n)

≤ 1 + nRPe(Cn) + nB,

because of nR − 1 < [nR], then we have

nR < 2 + nRPe(Cn) + nB.



3.8 Channel Coding Theorem 149

Thus

RCn ≤ R < B + 2

n
+ ε,

When n is sufficiently large, we obtain RCn ≤ B, which completes the proof of the
theorem.

It can be seen from Example 3.9 that the channel capacity B = 1 − H(p) of a
binary symmetric channel. Therefore, Theorem 3.12 extends Theorem 2.10 in the
previous chapter to a more general memoryless channel; at the same time, it is also
proved that the code rate of a good code does not exceed the capacity of the channel.

Exercise 3

1. The joint probability functions of the two information spaces X and Y are as
follows:

Y X
0 1

0 1
4

1
4

1 1
12

5
12

Solve H(X), H(Y ), H(XY ), H(X |Y ), H(Y |X), and I (X,Y ).

2. Let X1, X2, X3 be three information spaces on F2, Known I (X1,

X2) = 0, I (X1, X2, X3) = 1, prove:

H(X3) = 1, and H(X1X2X3) = 2.

3. Give an example to illustrate I (X,Y |Z) ≥ I (X,Y ).
4. Can I (X,Y |Z) = 0 be derived from I (X,Y ) = 0? In turn, can I (X,Y |Z) = 0

deduce I (X,Y ) = 0? Please prove or give examples.
5. Let X,Y, Z be three information spaces, prove:

(i) H(XY |Z) ≥ H(X |Z);
(ii) I (XY, Z) ≥ I (X, Z);
(iii) H(XY Z) − H(XY ) ≤ H(X Z) − H(X);
(iv) I (X, Z |Y ) = I (Z ,Y |Z) − I (Z ,Y ) + I (X, Z).

It also explains under what conditions the equality sign holds.
6. Can I (X,Y ) = 0 deduce I (X, Z) = I (X, Z |Y )?
7. Let the information space be X = {0, 1, 2, . . .} and the value probability p(n)

of random variable ξ be

p(n) = P{ξ = n}, n = 0, 1, . . . .

Given themathematical expectation Eξ = A > 0 of ξ , find themaximumproba-
bility distribution {p(n)|n = 0, 1, . . .}of H(X) and the correspondingmaximum
information entropy.
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8. Let the information space be X = {0, 1, 2, . . .}, and take an example of the
random variable ξ taken from X , so that H(X) = ∞.

9. Let X1 = (X, ξ), X2 = (X, η) be two information spaces and ξ be a function of
η, prove H(X1) ≤ H(X2), and explain this result.

10. Let X1 = (X, ξ), X2 = (X, η) be two information spaces and η = f (ξ), prove

(i) H(X1) ≥ H(X2), give the conditions under which the equal sign holds.
(ii) H(X1|X2) ≥ H(X2|X1), give the conditions under which the equal sign

holds.
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