Skip to main content

Implications and Future Perspectives

  • Chapter
  • First Online:
Microbes and Oral Squamous Cell Carcinoma

Abstract

The oral microbiome is considered to be the most diverse in the human body. Around 600–700 bacterial phylotypes have been detected in the oral cavity, most of which belong to the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Spirochaetes, Synergistetes, and Tenericutes, along with viruses, fungi, protozoa, mycoplasma, and archaea. The human oral cavity is divided into different subsites, including the gingiva, tongue, cheeks, hard and soft palates, hard tissues (teeth), exocrine gland tissue (major and minor salivary glands), supragingival plaque of tooth surfaces, subgingival plaque, maxillary anterior vestibule, and tonsils, all of which are colonized by distinct microbiota with unique features. The composition of the flora in all the subsites is different in healthy individuals and diseased. It is important to understand the composition of the microbiome and the factors that may influence its composition for the development of better diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kato I, Vasquez A, Moyerbrailean G, Land S, Djuric Z, Sun J et al (2017) Nutritional correlates of human oral microbiome. J Am Coll Nutr 36(2):88–98

    Article  CAS  PubMed  Google Scholar 

  2. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W et al (2013) Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 45(4):450–455, 5e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lif Holgerson P, Harnevik L, Hernell O, Tanner AC, Johansson I (2011) Mode of birth delivery affects oral microbiota in infants. J Dent Res 90(10):1183–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li J, Quinque D, Horz HP, Li M, Rzhetskaya M, Raff JA et al (2014) Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa. BMC Microbiol 14:316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomez A, Espinoza JL, Harkins DM, Leong P, Saffery R, Bockmann M et al (2017) Host genetic control of the oral microbiome in health and disease. Cell Host Microbe 22(3):269–278, e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corby PM, Bretz WA, Hart TC, Filho MM, Oliveira B, Vanyukov M (2005) Mutans streptococci in preschool twins. Arch Oral Biol 50(3):347–351

    Article  CAS  PubMed  Google Scholar 

  7. Corby PM, Bretz WA, Hart TC, Schork NJ, Wessel J, Lyons-Weiler J et al (2007) Heritability of oral microbial species in caries-active and caries-free twins. Twin Res Hum Genet 10(6):821–828. https://doi.org/10.1375/twin.10.6.821

    Article  PubMed  PubMed Central  Google Scholar 

  8. Golden SH, Brown A, Cauley JA, Chin MH, Gary-Webb TL, Kim C et al (2012) Health disparities in endocrine disorders: biological, clinical, and nonclinical factors—an Endocrine Society scientific statement. J Clin Endocrinol Metab 97(9):E1579–E1639

    Article  PubMed  PubMed Central  Google Scholar 

  9. Naorungroj S, Slade GD, Divaris K, Heiss G, Offenbacher S, Beck JD (2017) Racial differences in periodontal disease and 10-year self-reported tooth loss among late middle-aged and older adults: the dental ARIC study. J Public Health Dent 77(4):372–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schork NJ (2015) Personalized medicine: time for one-person trials. Nature 520(7549):609–611

    Article  CAS  PubMed  Google Scholar 

  11. Mason MR, Nagaraja HN, Camerlengo T, Joshi V, Kumar PS (2013) Deep sequencing identifies ethnicity-specific bacterial signatures in the oral microbiome. PLoS One 8(10):e77287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Acharya A, Chan Y, Kheur S, Kheur M, Gopalakrishnan D, Watt RM et al (2017) Salivary microbiome of an urban Indian cohort and patterns linked to subclinical inflammation. Oral Dis 23(7):926–940

    Article  CAS  PubMed  Google Scholar 

  13. Sarkar A, Stoneking M, Nandineni MR (2017) Unraveling the human salivary microbiome diversity in Indian populations. PLoS One 12(9):e0184515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Premaraj TS, Vella R, Chung J, Lin Q, Hunter P, Underwood K et al (2020) Ethnic variation of oral microbiota in children. Sci Rep 10(1):14788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta VK, Paul S, Dutta C (2017) Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 8:1162

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sun J, Chang EB (2014) Exploring gut microbes in human health and disease: pushing the envelope. Genes Dis 1(2):132–139

    Article  PubMed  PubMed Central  Google Scholar 

  17. Touger-Decker R, van Loveren C (2003) Sugars and dental caries. Am J Clin Nutr 78(4):881S–892S

    Article  CAS  PubMed  Google Scholar 

  18. Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69(1):137–143

    Article  CAS  PubMed  Google Scholar 

  19. Hojo K, Nagaoka S, Ohshima T, Maeda N (2009) Bacterial interactions in dental biofilm development. J Dent Res 88(11):982–990

    Article  CAS  PubMed  Google Scholar 

  20. Gross EL, Leys EJ, Gasparovich SR, Firestone ND, Schwartzbaum JA, Janies DA et al (2010) Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol 48(11):4121–4128

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang CB, George B, Ebersole JL (2010) Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch Oral Biol 55(8):555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang CB, Alimova Y, Myers TM, Ebersole JL (2011) Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 56(7):650–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murtaza N, Burke LM, Vlahovich N, Charlesson B, O’Neill HM, Ross ML et al (2019) Analysis of the effects of dietary pattern on the oral microbiome of elite endurance athletes. Nutrients 13:11(3)

    Google Scholar 

  24. Figueredo CM, Martinez GL, Koury JC, Fischer RG, Gustafsson A (2013) Serum levels of long-chain polyunsaturated fatty acids in patients with periodontal disease. J Periodontol 84(5):675–682

    Article  CAS  PubMed  Google Scholar 

  25. Cattaneo C, Riso P, Laureati M, Gargari G, Pagliarini E (2019) Exploring associations between Interindividual differences in taste perception, oral microbiota composition, and reported food intake. Nutrients 24:11(5)

    Google Scholar 

  26. Tomofuji T, Furuta M, Ekuni D, Irie K, Azuma T, Iwasaki Y et al (2011) Relationships between eating habits and periodontal condition in university students. J Periodontol 82(12):1642–1649

    Article  PubMed  Google Scholar 

  27. Kondo K, Ishikado A, Morino K, Nishio Y, Ugi S, Kajiwara S et al (2014) A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: a pilot study. Nutr Res 34(6):491–498

    Article  CAS  PubMed  Google Scholar 

  28. Garhammer P, Hiller KA, Reitinger T, Schmalz G (2004 Dec) Metal content of saliva of patients with and without metal restorations. Clin Oral Investig 8(4):238–242

    Article  CAS  PubMed  Google Scholar 

  29. Olmedo P, Pla A, Hernandez AF, Lopez-Guarnido O, Rodrigo L, Gil F (2010) Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Anal Chim Acta 659(1–2):60–67

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Godoy F, Hicks MJ (2008) Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc 139(Suppl):25S–34S

    Article  PubMed  Google Scholar 

  31. Hegde MN, Hegde ND, Ashok A, Shetty S (2014) Biochemical indicators of dental caries in saliva: an in vivo study. Caries Res 48(2):170–173

    Article  CAS  PubMed  Google Scholar 

  32. Combet E, Paterson S, Iijima K, Winter J, Mullen W, Crozier A et al (2007) Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation. Gut 56(12):1678–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banerjee S, Tian T, Wei Z, Peck KN, Shih N, Chalian AA et al (2017) Microbial signatures associated with oropharyngeal and oral squamous cell carcinomas. Sci Rep 7(1):4036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lee WH, Chen HM, Yang SF, Liang C, Peng CY, Lin FM et al (2017) Bacterial alterations in salivary microbiota and their association in oral cancer. Sci Rep 7(1):16540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Panebianco C, Andriulli A, Pazienza V (2018) Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 6(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hou J, Zheng H, Li P, Liu H, Zhou H, Yang X (2018) Distinct shifts in the oral microbiota are associated with the progression and aggravation of mucositis during radiotherapy. Radiother Oncol 129(1):44–51

    Article  PubMed  Google Scholar 

  37. Zhu XX, Yang XJ, Chao YL, Zheng HM, Sheng HF, Liu HY et al (2017) The potential effect of oral microbiota in the prediction of mucositis during radiotherapy for nasopharyngeal carcinoma. EBioMedicine 18:23–31

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gaetti-Jardim E Jr, Jardim ECG, Schweitzer CM, da Silva JCL, Oliveira MM, Masocatto DC et al (2018) Supragingival and subgingival microbiota from patients with poor oral hygiene submitted to radiotherapy for head and neck cancer treatment. Arch Oral Biol 90:45–52

    Article  PubMed  Google Scholar 

  39. Cremonesi E, Governa V, Garzon JFG, Mele V, Amicarella F, Muraro MG et al (2018) Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut 67(11):1984–1994

    Article  CAS  PubMed  Google Scholar 

  40. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coley WB II (1891) Contribution to the knowledge of sarcoma. Ann Surg 14(3):199–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mengesha A, Dubois L, Chiu RK, Paesmans K, Wouters BG, Lambin P et al (2007) Potential and limitations of bacterial-mediated cancer therapy. Front Biosci 1(12):3880–3891

    Article  Google Scholar 

  43. Nallar SC, Xu DQ, Kalvakolanu DV (2017) Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges. Cytokine 89:160–172

    Article  CAS  PubMed  Google Scholar 

  44. Parker RC, Plummer HC et al (1947) Effect of histolyticus infection and toxin on transplantable mouse tumors. Proc Soc Exp Biol Med 66(2):461–467

    Article  CAS  PubMed  Google Scholar 

  45. Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther 7(2):269–274

    Article  CAS  PubMed  Google Scholar 

  46. Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Sun X et al (2018) Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12(6):5995–6005

    Article  CAS  PubMed  Google Scholar 

  47. Dalmasso G, Nguyen HT, Yan Y, Laroui H, Charania MA, Ayyadurai S et al (2011) Microbiota modulate host gene expression via microRNAs. PLoS One 6(4):e19293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peck BC, Mah AT, Pitman WA, Ding S, Lund PK, Sethupathy P (2017) Functional transcriptomics in diverse intestinal epithelial cell types reveals robust microRNA sensitivity in intestinal stem cells to microbial status. J Biol Chem 292(7):2586–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuan C, Subramanian S (2019) microRNA-mediated tumor-microbiota metabolic interactions in colorectal cancer. DNA Cell Biol 38(4):281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Golan-Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D, Leshkowitz D, Reif S (2017) Characterization and biological function of milk-derived miRNAs. Mol Nutr Food Res 61(10)

    Google Scholar 

  51. Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L et al (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19(1):32–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Teodori L, Petrignani I, Giuliani A, Prattichizzo F, Gurau F, Matacchione G et al (2019) Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mech Ageing Dev 182:111127

    Article  CAS  PubMed  Google Scholar 

  53. Zhang L, Chen T, Yin Y, Zhang CY, Zhang YL (2019) Dietary microRNA—a novel functional component of food. Adv Nutr 10(4):711–721

    Article  PubMed  PubMed Central  Google Scholar 

  54. Masotti A (2012) Interplays between gut microbiota and gene expression regulation by miRNAs. Front Cell Infect Microbiol 2:137

    Article  PubMed  PubMed Central  Google Scholar 

  55. Miro-Blanch J, Yanes O (2019) Epigenetic regulation at the interplay between gut microbiota and host metabolism. Front Genet 10:638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patrignani P, Tacconelli S, Bruno A (2014) Gut microbiota, host gene expression, and aging. J Clin Gastroenterol 48(Suppl 1):S28–S31

    Article  PubMed  Google Scholar 

  57. Lu K, Dong S, Wu X, Jin R, Chen H (2021) Probiotics in cancer. Front Oncol 11:638148

    Article  PubMed  PubMed Central  Google Scholar 

  58. Legesse Bedada T, Feto TK, Awoke KS, Garedew AD, Yifat FT, Birri DJ (2020) Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother 129:110409

    Article  CAS  PubMed  Google Scholar 

  59. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514

    Article  PubMed  Google Scholar 

  60. Shu Z, Li P, Yu B, Huang S, Chen Y (2020) The effectiveness of probiotics in prevention and treatment of cancer therapy-induced oral mucositis: a systematic review and meta-analysis. Oral Oncol 102:104559

    Article  PubMed  Google Scholar 

  61. Wan Mohd Kamaluddin WNF, Rismayuddin NAR, Ismail AF, Mohamad Aidid E, Othman N, Mohamad NAH et al (2020) Probiotic inhibits oral carcinogenesis: a systematic review and meta-analysis. Arch Oral Biol 118:104855

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S., Sinha, R., Routray, S., Dixit, A. (2022). Implications and Future Perspectives. In: Routray, S. (eds) Microbes and Oral Squamous Cell Carcinoma. Springer, Singapore. https://doi.org/10.1007/978-981-19-0592-6_13

Download citation

Publish with us

Policies and ethics