Skip to main content

Robot-Assisted Posterior Endoscopic Cervical Decompression

  • Chapter
  • First Online:
  • 772 Accesses

Abstract

Since the advantages of less trauma, less bleeding, less postoperative pain, and faster recovery, posterior endoscopic cervical decompression (PECD) is increasingly applied in clinical. Generally, its best indications are unilateral cervical foraminal stenosis and paracentral disc herniation. PECD can also be used for effective decompression when the pathological factors that compress the spinal cord or nerves come from the dorsal side of the spinal cord, such as ossified ligamentum flavum or atlantoaxial dysplasia. Due to percutaneous cervical spine, endoscopic surgery requires high precision, the deep integration of robots and digital orthopedics will provide great assistance to doctors in diagnosis and treatment. The early applications of spinal robots focused on improving the accuracy of pedicle screw placement, pathological biopsies, vertebroplasty, and local sealing operations. However, there are still few reports on the application of orthopedic robots in endoscopic spinal surgery. This chapter mainly introduces the application and exploration of robot-assisted PECD. In general, robot-assisted PECD shows the characteristics of precise and minimally invasive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PCF:

Posterior cervical foraminotomy

MED:

Micro-endoscope

PECD:

Posterior endoscopic cervical decompression

CT:

Computed Tomography

MRI:

Magnetic Resonance Imaging

References

  1. Spurling RG, Scoville WB. Lateral rupture of cervical intervertebral disc: a common cause of shoulder and arm pain. Surg Gynecol Obstet. 1944;78:350–8.

    Google Scholar 

  2. Adamson TE. Microendoscopic posterior cervical laminoforaminotomy for unilateral radiculopathy: results of a new technique in 100 cases. J Neurosurg. 2001;95:51–7.

    Article  CAS  Google Scholar 

  3. Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002;51(5 Suppl):S146–54.

    PubMed  Google Scholar 

  4. Ruetten S, Komp M, Merk H, et al. A new full-endoscopic technique for cervical posterior foraminotomy in the treatment of lateral disc herniations using 6.9-mm endoscopes: prospective 2-year results of 87 patients. Minim Invasive Neurosurg. 2007;50:219–26.

    Article  CAS  Google Scholar 

  5. Lin Y, Rao S, Li Y, Zhao S, et al. Posterior percutaneous full-endoscopic cervical laminectomy and decompression for cervical stenosis with myelopathy: a technical note. World Neurosurg. 2019;12:S1878–8750(19)30051–8.

    Google Scholar 

  6. Quillo-Olvera J, Lin GX, Kim JS. Percutaneous endoscopic cervical discectomy: a technical review. Ann Transl Med. 2018;6(6):100.

    Article  Google Scholar 

  7. Ahn Y. Percutaneous endoscopic cervical discectomy using working channel endoscopes. Expert Rev Med Devices. 2016;13(6):601–10.

    Article  CAS  Google Scholar 

  8. Visocchi M, Di Martino A, Maugeri R, et al. Videoassisted anterior surgical approaches to the craniocervical junction: rationale and clinical results. Eur Spine J. 2015;24(12):2713–23.

    Article  Google Scholar 

  9. Yang C, Guo S, Bao X, et al. A vascular interventional surgical robot based on surgeon’s operating skills. Med Biol Eng Comput. 2019;57(9):1999–2010.

    Article  Google Scholar 

  10. Overley SC, Cho SK, Mehta AI, et al. Navigation and robotics in spinal surgery: where are we now? Neurosurgery. 2017;80(3S):S86–99.

    Article  Google Scholar 

  11. Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery. World J Surg. 2016;40(10):2550–7.

    Article  Google Scholar 

  12. Umedachi T, Vikas V, Trimmer BA. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. ioinspirBiomim. 2016;11(2):025001.

    CAS  Google Scholar 

  13. Elswick CM, Strong MJ, Joseph JR, et al. Robotic-assisted spinal surgery: current generation instrumentation and new applications. Neurosurg Clin N Am. 2020;31(1):103–10.

    Article  Google Scholar 

  14. Smith JS, Shaffrey CI, Ames CP, et al. Treatment of adult thoracolumbar spinal deformity: past, present, and future. J Neurosurg Spine. 2019;30(5):551–67.

    Article  Google Scholar 

  15. Dreval' ON, Rynkov IP, Kasparova KA, et al. Results of using spine assist Mazor in surgical treatment of spine disorders. ZhVoprNeirokhirIm N NBurdenko. 2014;78(3):14–20.

    CAS  Google Scholar 

  16. Boškoski I, Costamagna G. Endoscopy robotics: current and future applications. Dig Endosc. 2019;31(2):119–24.

    Article  Google Scholar 

  17. Gifari MW, Naghibi H, Stramigioli S, et al. A review on recent advances in soft surgical robots for endoscopic applications. Int J Med Robot. 2019;15(5):e2010.

    Article  Google Scholar 

  18. McAfee PC, Phillips FM, Andersson G, et al. Minimally invasive spine surgery. Spine (Phila Pa 1976). 2010;35(26 Suppl):S271–3.

    Article  Google Scholar 

  19. Spetzger U, Schilling AV, Winkler G, et al. The past, present and future of minimally invasive spine surgery: a review and speculative outlook. Minim Invasive Ther Allied Technol. 2013;22(4):227–41.

    Article  Google Scholar 

  20. Lee S, Kim SK, Lee SH, et al. Percutaneous endoscopic lumbar discectomy for migrated disc herniation: classification of disc migration and surgical approaches. Eur Spine J. 2007;16(3):431–7.

    Article  Google Scholar 

  21. Choi G, Prada N, Modi HN, et al. Percutaneous endoscopic lumbar herniectomy for high-grade down-migrated L4–L5 disc through an L5-S1 interlaminar approach: a technical note. Minim Invasive Neurosurg. 2010;53(3):147–52.

    Article  CAS  Google Scholar 

  22. Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res. 2007;463:31–6.

    Article  Google Scholar 

  23. Picard F, Deakin AH, Riches PE, et al. Computer assisted orthopaedic surgery: past, present and future. Med Eng Phys. 2019;72:55–65.

    Article  Google Scholar 

  24. Mont MA, Khlopas A, Chughtai M, et al. Value proposition of robotic total knee arthroplasty: what can robotic technology deliver in 2018 and beyond? Expert Rev Med Devices. 2018;15(9):619–30.

    Article  CAS  Google Scholar 

  25. Berlemann U, Langlotz F, Langlotz U, et al. Computer-assisted orthopedic surgery. From pedicle screw insertion to further applications. Orthopade. 1997;26(5):463–9.

    PubMed  Google Scholar 

  26. Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976). 2004;34(4):392–8.

    Article  Google Scholar 

  27. Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot. 2006;2(2):114–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Lai Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, BL., Lin, YP. (2022). Robot-Assisted Posterior Endoscopic Cervical Decompression. In: Kim, JS., Härtl, R., Wang, M.Y., Elmi-Terander, A. (eds) Technical Advances in Minimally Invasive Spine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-0175-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0175-1_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0174-4

  • Online ISBN: 978-981-19-0175-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics