Skip to main content

Epigenetic Bearing on Fertility in Farm Animals

  • Chapter
  • First Online:
Current Concepts in Bovine Reproduction

Abstract

Epigenetics studies alterations in gene expression occurring without changing the nucleotide sequence. Epigenetic modifications are mediated by DNA methylation, histone modifications, and RNA-based gene expression regulation, although influenced by environmental and nutritional factors. It has been well-established in both humans and farm animals that DNA methylation plays a crucial role in epigenetic reprogramming of germ cells, and any aberrance in this process could generate incompetent germ cells unable to fertilize. Additionally, aberrant histone modifications and protamine expression are directly related to infertility. The present chapter provides a comprehensive understanding of mechanisms of epigenetic modifications in germ cells and attempts to correlate the implications of DNA methylation during epigenetic reprogramming, epigenetic potential of the nuclear proteome, and abnormal protamine expression with the fertility in farm animals. It also highlights the epigenetic alterations associated with ART failure, ageing oocytes, and poor fertilizing ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aapola U, Liiv I et al (2002) Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res 30(16):3602–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama T, Nagata M et al (2006) Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice. Proc Natl Acad Sci 103(19):7339–7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allis CD, Jenuwein T et al (2007) Overview and concepts. Epigenetics 2007:1

    Google Scholar 

  • An W (2007) Histone acetylation and methylation. In: Chromatin and Disease. Springer, Cham, pp 355–374

    Chapter  Google Scholar 

  • Ankolkar M, Patil A et al (2012) Methylation analysis of idiopathic recurrent spontaneous miscarriage cases reveals aberrant imprinting at H19 ICR in normozoospermic individuals. Fertil Steril 98(5):1186–1192

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW, Emery BR et al (2005) Global sperm DNA methylation is unaffected in protamine-deficient infertile males. Nav bf 2005:120

    Google Scholar 

  • Aoki VW, Christensen GL et al (2006a) Identification of novel polymorphisms in the nuclear protein genes and their relationship with human sperm protamine deficiency and severe male infertility. Fertil Steril 86(5):1416–1422

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW, Emery BR et al (2006b) Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl 27(6):890–898

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW, Liu L et al (2006c) A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol Hum Reprod 12(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Ariel M, Cedar H et al (1994) Developmental changes in methylation of spermatogenesis–specific genes include reprogramming in the epididymis. Nat Genet 7(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Ariel M, McCarrey J et al (1991) Methylation patterns of testis-specific genes. Proc Natl Acad Sci 88(6):2317–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aston KI, Carrell DT (2009) Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl 30(6):711–725

    Article  CAS  PubMed  Google Scholar 

  • Aston KI, Punj V et al (2012) Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil Steril 97(2):e284

    Article  CAS  Google Scholar 

  • Ausió J, Eirín-López JM et al (2007) Evolution of vertebrate chromosomal sperm proteins: implications for fertility and sperm competition. Soc Reprod Fertil Suppl 65:63

    PubMed  Google Scholar 

  • Azpiazu R, Amaral A et al (2014) High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod 29(6):1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Bakhtari A, Ross PJ (2014) DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos. Epigenetics 9(9):1271–1279

    Article  PubMed  PubMed Central  Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8(9):227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balhorn R, Brewer L et al (2000) DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. Molec Reprod Develop Incorp Gamete Res 56(S2):230–234

    Article  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benchaib M, Braun V et al (2005) Influence of global sperm DNA methylation on IVF results. Hum Reprod 20(3):768–773

    Article  CAS  PubMed  Google Scholar 

  • Boe-Hansen GB, Fortes MRS, Satake N (2018) Morphological defects sperm DNA integrity and protamination of bovine spermatozoa. Andrology 6(4):627–633. https://doi.org/10.1111/andr.12486

    Article  CAS  PubMed  Google Scholar 

  • Boissonnas CC, El Abdalaoui H et al (2010) Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet 18(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Bourc'his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431(7004):96–99

    Article  CAS  PubMed  Google Scholar 

  • Buiting K, Groß S et al (2003) Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 72(3):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canovas S, Cibelli JB et al (2012) Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc Natl Acad Sci 109(7):2400–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capra E, Lazzari B, Turri F, Cremonesi P, Portela AMR, Ajmone-Marsan P, Stella A, Pizzi F (2019) Epigenetic analysis of high and low motile sperm populations reveals methylation variation in satellite regions within the pericentromeric position and in genes functionally related to sperm DNA organization and maintenance in Bos taurus. BMC Genomics 20(1):940. https://doi.org/10.1186/s12864-019-6317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreira JT, Trevizan JT, Carvalho IR, Kipper B, Rodrigues LH, Silva C, Perri SHV, Drevet JR, Koivisto MB (2017) Does sperm quality and DNA integrity differ in cryopreserved semen samples from young adult and aged Nellore bulls? Basic Clin Androl 27(1):12. https://doi.org/10.1186/s12610-017-0056-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22(4):604–610

    CAS  PubMed  Google Scholar 

  • Carvalheira L de R, Tríbulo P, Borges ÁM, Hansen PJ, Nogueira MFG (2019) Sex affects immunolabeling for histone 3 K27me3 in the trophectoderm of the bovine blastocyst but not labeling for histone 3 K18ac. PLoS ONE 14(10):e0223570. https://doi.org/10.1371/journal.pone.0223570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Hagen DE, Wang J, Elsik CG, Ji T, Siqueira LG, Hansen PJ, Rivera RM (2016) Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing. Epigenetics 11(7):501–516. https://doi.org/10.1080/15592294.2016.1184805

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho C, Jung-Ha H et al (2003) Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod 69(1):211–217

    Article  CAS  PubMed  Google Scholar 

  • Cho C, Willis WD et al (2001) Haploinsufficiency of protamine-1 or-2 causes infertility in mice. Nat Genet 28(1):82–86

    Article  CAS  PubMed  Google Scholar 

  • Chung N, Bogliotti YS et al (2017) Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos. Epigenetics 12(12):1048–1056

    Article  PubMed  Google Scholar 

  • Colosimo A, Di Rocco G et al (2009) Characterization of the methylation status of five imprinted genes in sheep gametes. Anim Genet 40(6):900–908

    Article  CAS  PubMed  Google Scholar 

  • Dada R, Kumar M et al (2012) Epigenetics and its role in male infertility. J Assist Reprod Genet 29(3):213–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel M, Tollefsbol TO (2015) Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 218(Pt 1):59–70

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira RV, Dogan S et al (2013) Molecular morphology and function of bull spermatozoa linked to histones and associated with fertility. Reproduction 146(3):263–272

    Article  PubMed  CAS  Google Scholar 

  • DeBaun MR, Niemitz EL et al (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72(1):156–160

    Article  CAS  PubMed  Google Scholar 

  • Deininger PL, Moran JV et al (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13(6):651–658

    Article  CAS  PubMed  Google Scholar 

  • Delaval K, Feil R (2004) Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 14(2):188–195

    Article  CAS  PubMed  Google Scholar 

  • Delaval K, Govin J et al (2007) Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 26(3):720–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbs KB, Rodriguez M et al (2013) Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS One 8:6

    Article  CAS  Google Scholar 

  • Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E (2015) Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod 92(4):92. https://doi.org/10.1095/biolreprod.114.124255

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Zhu L et al (2019a) Analysis of mRNA abundance for histone variants, histone-and DNA-modifiers in bovine in vivo and in vitro oocytes and embryos. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  • Duan JE, Jiang ZC et al (2019b) Methylome dynamics of bovine gametes and in vivo early embryos. Front Genet 10:512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger G, Liang G et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463

    Article  CAS  PubMed  Google Scholar 

  • Eguizábal C, Herrera L et al (2016) Characterization of the epigenetic changes during human gonadal primordial germ cells reprogramming. Stem Cells 34(9):2418–2428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan H-Y, He X et al (2003) Distinct strategies to make nucleosomal DNA accessible. Mol Cell 11(5):1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Fortes MR, Satake N et al (2014) Sperm protamine deficiency correlates with sperm DNA damage in B os indicus bulls. Andrology 2(3):370–378

    Article  CAS  PubMed  Google Scholar 

  • Friemel C, Ammerpohl O et al (2014) Array-based DNA methylation profiling in male infertility reveals allele-specific DNA methylation in PIWIL1 and PIWIL2. Fertil Steril 101(4):1097-1103. e1091

    Article  CAS  Google Scholar 

  • Glanzner WG, Rissi VB et al (2018) Histone 3 lysine 4, 9, and 27 demethylases expression profile in fertilized and cloned bovine and porcine embryos. Biol Reprod 98(6):742–751

    Article  PubMed  Google Scholar 

  • Godmann M, Auger V et al (2007) Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol Reprod 77(5):754–764

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD et al (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638

    Article  CAS  PubMed  Google Scholar 

  • Golding MC, Snyder M et al (2015) Histone-lysine N-methyltransferase SETDB1 is required for development of the bovine blastocyst. Theriogenology 84(8):1411–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding MC, Williamson GL et al (2011) Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development. Mol Reprod Dev 78(5):306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Gosden R, Trasler J et al (2003) Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 361(9373):1975–1977

    Article  PubMed  Google Scholar 

  • Grondahl ML, Yding Andersen C et al (2010) Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod 25(4):957–968

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Yan L et al (2015) The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161(6):1437–1452

    Article  CAS  PubMed  Google Scholar 

  • Hammoud S, Emery BR et al (2007) Identification of genetic variation in the 5′ and 3′ non-coding regions of the protamine genes in patients with protamine deregulation. Arch Androl 53(5):267–274

    Article  CAS  PubMed  Google Scholar 

  • Hammoud S, Emery BR et al (2009a) Sequence alterations in the YBX2 gene are associated with male factor infertility. Fertil Steril 91(4):1090–1095

    Article  CAS  PubMed  Google Scholar 

  • Hammoud SS, Nix DA et al (2009b) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460(7254):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammoud SS, Nix DA et al (2011) Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 26(9):2558–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammoud SS, Purwar J et al (2010) Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril 94(5):1728–1733

    Article  CAS  PubMed  Google Scholar 

  • Hata K, Kusumi M et al (2006) Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells. Molec Reprod Develop Incorp Gamete Res 73(1):116–122

    Article  CAS  Google Scholar 

  • Holliday R (1989) DNA methylation and epigenetic mechanisms. Cell Biophys 15(1–2):15–20

    Article  CAS  PubMed  Google Scholar 

  • Houshdaran S, Cortessis VK et al (2007) Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2:12

    Article  CAS  Google Scholar 

  • Howell CY, Bestor TH et al (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104(6):829–838

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhang H et al (2015) Impairment of preimplantation porcine embryo development by histone demethylase KDM5B knockdown through disturbance of bivalent H3K4me3-H3K27me3 modifications. Biol Reprod 92:3

    Article  CAS  Google Scholar 

  • Ito S, D’Alessio AC et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Shen L et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(3):245–254

    Article  CAS  PubMed  Google Scholar 

  • Jena SC, Kumar S et al (2014) Differential methylation status of IGF2-H19 locus does not affect the fertility of crossbred bulls but some of the CTCF binding sites could be potentially important. Mol Reprod Dev 81(4):350–362

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Lin J et al (2018) DNA methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol Reprod 99(5):949–959

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Sun J et al (2014) Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 15(1):756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kagami M, Nagai T et al (2007) Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST. J Assist Reprod Genet 24(4):131–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Kaneda M et al (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16(19):2272–2280

    Article  CAS  PubMed  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434(7033):583–589

    Article  CAS  PubMed  Google Scholar 

  • Kipper BH, Trevizan JT, Carreira JT, Carvalho IR, Mingoti GZ, Beletti ME, Perri SHV, Franciscato DA, Pierucci JC, Koivisto MB (2017) Sperm morphometry and chromatin condensation in Nelore bulls of different ages and their effects on IVF. Theriogenology 87:154–160. https://doi.org/10.1016/j.theriogenology.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  • Kläver R, Tüttelmann F et al (2013) DNA methylation in spermatozoa as a prospective marker in andrology. Andrology 1(5):731–740

    Article  PubMed  CAS  Google Scholar 

  • Klenova EM, Morse HC III et al (2002) The novel BORIS+ CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. In: Seminars in cancer biology. Elsevier, Amsterdam

    Google Scholar 

  • Kobayashi H, Hiura H et al (2009) DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet 17(12):1582–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Sato A et al (2007) Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16(21):2542–2551

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Kumar K et al (2013) Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 68:05–14

    Article  Google Scholar 

  • Kutchy NA, Velho A, Menezes ESB, Jacobsen M, Thibaudeau G, Wills RW, Moura A, Kaya A, Perkins A, Memili E (2017) Testis specific histone 2B is associated with sperm chromatin dynamics and bull fertility-a pilot study. Reprod Biol Endocrinol 15(1):59. https://doi.org/10.1186/s12958-017-0274-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutchy NA, Menezes ESB, Chiappetta A, Tan W, Wills RW, Kaya A, Topper E, Moura AA, Perkins AD, Memili E (2018) Acetylation and methylation of sperm histone 3 lysine 27 (H3K27ac and H3K27me3) are associated with bull fertility. Andrologia 50(3):e12915. https://doi.org/10.1111/and.12915

    Article  CAS  Google Scholar 

  • Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14(3):286–298

    Article  CAS  PubMed  Google Scholar 

  • Lahn BT, Tang ZL et al (2002) Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci 99(13):8707–8712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrot R, Xu C et al (2013) Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun 4:2889

    Article  CAS  PubMed  Google Scholar 

  • Lewis JD, Song Y et al (2003) A walk though vertebrate and invertebrate protamines. Chromosoma 111(8):473–482

    Article  PubMed  Google Scholar 

  • Lewis JD, Saperas N et al (2004) Histone H1 and the origin of protamines. Proc Natl Acad Sci 101(12):4148–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Beard C et al (1993) Role for DNA methylation in genomic imprinting. Nature 366(6453):362–365

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH et al (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926

    Article  CAS  PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135(6):1382–1386

    Article  CAS  PubMed  Google Scholar 

  • Lillycrop KA, Slater-Jefferies JL et al (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97(6):1064–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhou S et al (2010) Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J Biol Chem 285(4):2758–2770

    Article  CAS  PubMed  Google Scholar 

  • Lopes FL, Fortier AL et al (2009) Reproductive and epigenetic outcomes associated with aging mouse oocytes. Hum Mol Genet 18(11):2032–2044

    Article  CAS  PubMed  Google Scholar 

  • Maher ER (2005) Imprinting and assisted reproductive technology. Hum Mol Genet 14(suppl_1):R133–R138

    Article  CAS  PubMed  Google Scholar 

  • Maier W-M, Nussbaum G et al (1990) The lack of protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene. Nucleic Acids Res 18(5):1249–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manosalva I, Gonzalez A (2009) Aging alters histone H4 acetylation and CDC2A in mouse germinal vesicle stage oocytes. Biol Reprod 81(6):1164–1171

    Article  CAS  PubMed  Google Scholar 

  • McGraw S, Vigneault C et al (2007) Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction 133(3):597–608

    Article  CAS  PubMed  Google Scholar 

  • Meetei AR, Ullas KS et al (2002) Involvement of protein kinase a in the phosphorylation of spermatidal protein TP2 and its effect on DNA condensation. Biochemistry 41(1):185–195

    Article  CAS  PubMed  Google Scholar 

  • Meistrich ML, Mohapatra B et al (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111(8):483–488

    Article  PubMed  Google Scholar 

  • Misirlioglu M, Page G et al (2006) Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc Natl Acad Sci 103(50):18905–18910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Hasuike S et al (2003) Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362(9397):1714–1719

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD, Santos F et al (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(suppl_1):R47–R58

    Article  CAS  PubMed  Google Scholar 

  • Morison IM, Ramsay JP et al (2005) A census of mammalian imprinting. Trends Genet 21(8):457–465

    Article  CAS  PubMed  Google Scholar 

  • Morris J (2001) Genes, genetics, and epigenetics: a correspondence. Science 293(5532):1103–1105

    Article  PubMed  Google Scholar 

  • Narlikar GJ, Fan H-Y et al (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108(4):475–487

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Costa P, Nogueira P et al (2010) Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod 25(10):2647–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neri F, Incarnato D et al (2016) Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Nat Protoc 11(7):1191

    Article  CAS  PubMed  Google Scholar 

  • O’Bryan MK, De Kretser D (2006) Mouse models for genes involved in impaired spermatogenesis. Int J Androl 29(1):76–89

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty AM, O'Shea LC et al (2012) Bovine DNA methylation imprints are established in an oocyte size-specific manner, which are coordinated with the expression of the DNMT3 family proteins. Biol Reprod 86(3): 67:61–10

    Google Scholar 

  • Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12(4):417–435

    Article  CAS  PubMed  Google Scholar 

  • Oliva R, Dixon GH (1991) Vertebrate protamine genes and the histone-to-protamine replacement reaction. In: Progress in nucleic acid research and molecular biology, vol 40. Elsevier, Amsterdam, pp 25–94

    Chapter  Google Scholar 

  • Ooi SK, Qiu C et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne C, Braun RE (2006) Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev Biol 293(2):461–472

    Article  CAS  PubMed  Google Scholar 

  • Petty E, Pillus L (2013) Balancing chromatin remodeling and histone modifications in transcription. Trends Genet 29(11):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poplinski A, Tüttelmann F et al (2010) Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl 33(4):642–649

    CAS  PubMed  Google Scholar 

  • Queralt R, Adroer R et al (1995) Evolution of protamine P1 genes in mammals. J Mol Evol 40(6):601–607

    Article  CAS  PubMed  Google Scholar 

  • Rahman MB, Vandaele L, Rijsselaere T, Maes D, Hoogewijs M, Frijters A, Noordman J, Granados A, Dernelle E, Shamsuddin M, Parrish JJ, Van Soom A (2011) Scrotal insulation and its relationship to abnormal morphology chromatin protamination and nuclear shape of spermatozoa in Holstein-Friesian and Belgian Blue bulls. Theriogenology 76(7):1246–1257. https://doi.org/10.1016/j.theriogenology.2011.05.031

    Article  PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Rhind SM, King TJ et al (2003) Cloned lambs—lessons from pathology. Nat Biotechnol 21(7):744–745

    Article  CAS  PubMed  Google Scholar 

  • Ross PJ, Ragina NP et al (2008) Polycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation development. Reproduction 136(6):777–785

    Article  CAS  PubMed  Google Scholar 

  • Rossetto D, Avvakumov N et al (2012) Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7(10):1098–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotondo J, Bosi S et al (2012) Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum Reprod 27(12):3632–3638

    Article  CAS  PubMed  Google Scholar 

  • Royo H, Bortolin M-L et al (2006) Small non-coding RNAs and genomic imprinting. Cytogenet Genome Res 113(1–4):99–108

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296(5576):2176–2178

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Hiura H et al (2011) Assessing loss of imprint methylation in sperm from subfertile men using novel methylation polymerase chain reaction Luminex analysis. Fertil Steril 95(1):e124

    Article  CAS  Google Scholar 

  • Seisenberger S, Andrews S et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48(6):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seisenberger S, Peat JR et al (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans Roy Soc Biol Sci 368(1609):20110330

    Article  CAS  Google Scholar 

  • Seitz H, Royo H et al (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14(9):1741–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao GB, Wang J et al (2015) Aging alters histone H3 lysine 4 methylation in mouse germinal vesicle stage oocytes. Reprod Fertil Dev 27(2):419–426

    Article  CAS  PubMed  Google Scholar 

  • Smith SL, Everts RE, Tian XC, Du F, Sung L-Y, Rodriguez-Zas SL, Jeong B-S, Renard J-P, Lewin HA, Yang X (2005) Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci 102(49):17582–17587. https://doi.org/10.1073/pnas.0508952102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SL, Everts RE, Sung L-Y, Du F, Page RL, Henderson B, Rodriguez-Zas SL, Nedambale TL, Renard J-P, Lewin HA, Yang X, Tian XC (2009) Gene expression profiling of single bovine embryos uncovers significant effects of in vitro maturation fertilization and culture. Mol Reprod Dev 76(1):38–47. https://doi.org/10.1002/mrd.20927

    Article  CAS  PubMed  Google Scholar 

  • Štiavnická M, García-Álvarez O, Ulčová-Gallová Z, Sutovsky P, Abril-Parreño L, Dolejšová M, Řimnáčová H, Moravec J, Hošek P, Lošan P, Gold L, Fenclová T, Králíčková M, Nevoral J (2020) H3K4me2 accompanies chromatin immaturity in human spermatozoa: an epigenetic marker for sperm quality assessment. Syst Biol Reprod Med 66(1):3–11. https://doi.org/10.1080/19396368.2019.1666435

    Article  CAS  PubMed  Google Scholar 

  • Suganuma T, Workman JL (2008) Crosstalk among histone modifications. Cell 135(4):604–607

    Article  CAS  PubMed  Google Scholar 

  • Sung MT, Dixon GH (1970) Modification of histones during spermiogenesis in trout: a molecular mechanism for altering histone binding to DNA. Proc Natl Acad Sci 67(3):1616–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suo L, Meng Q-G et al (2010) Changes in acetylation on lysine 12 of histone H4 (acH4K12) of murine oocytes during maternal aging may affect fertilization and subsequent embryo development. Fertil Steril 93(3):945–951

    Article  CAS  PubMed  Google Scholar 

  • Swartz SZ, Wessel GM (2015) Germ line versus Soma in the transition from egg to embryo. Curr Top Dev Biol 113:149–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MCW, Jacobs SA, Mattiske DM, Soh YM, Graham AN, Tran A, Lim SL, Hudson DF, Kalitsis P, O’Bryan MK, Wong LH, Mann JR, Tremethick D (2015) Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice. PLoS Genet 11(2):e1004964. https://doi.org/10.1371/journal.pgen.1004964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WW, Kobayashi T et al (2016) Specification and epigenetic programming of the human germ line. Nat Rev Genet 17(10):585–600

    Article  CAS  PubMed  Google Scholar 

  • Tatone C, Amicarelli F et al (2008) Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update 14(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa S-I, Nowacka-Woszuk J et al (2013) DNA methylation establishment during oocyte growth: mechanisms and significance. Int J Dev Biol 56(10–11-12):867–875

    Google Scholar 

  • Trasler JM (2005) Gamete imprinting: setting epigenetic patterns for the next generation. Reprod Fertil Dev 18(2):63–69

    Article  Google Scholar 

  • Ugur MR, Kutchy NA, de Menezes EB, Ul-Husna A, Haynes BP, Uzun A, Kaya A, Topper E, Moura A, Memili E (2019) Retained acetylated histone four in bull sperm associated with fertility. Front Vet Sci 6:223. https://doi.org/10.3389/fvets.2019.00223

    Article  PubMed  PubMed Central  Google Scholar 

  • Verger A, Perdomo J et al (2003) Modification with SUMO. EMBO Rep 4(2):137–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma A, Rajput S et al (2014) Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility. Theriogenology 82(5):750-759. e751

    Article  CAS  Google Scholar 

  • Verma A, Rajput S et al (2015) Differential histone modification status of spermatozoa in relation to fertility of buffalo bulls. J Cell Biochem 116(5):743–753

    Article  CAS  PubMed  Google Scholar 

  • Vieweg M, Dvorakova-Hortova K et al (2015) Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients. Clin Epigenetics 7(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waterland RA, Lin J-R et al (2006) Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 15(5):705–716

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Yamauchi T et al (2016) An overview of mammalian pluripotency. Development 143(10):1644–1648

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Lu C et al (2010a) Lack of association between DAZ gene methylation patterns and spermatogenic failure. Clin Chem Lab Med 48(3):355–360

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Shen O et al (2010b) Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS One 5:11

    Article  Google Scholar 

  • Young L (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3(3):155–163. https://doi.org/10.1530/ror.0.0030155

    Article  CAS  PubMed  Google Scholar 

  • Yu YE, Zhang Y et al (2000) Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci 97(9):4683–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue M-x, Fu X-w et al (2012) Abnormal DNA methylation in oocytes could be associated with a decrease in reproductive potential in old mice. J Assist Reprod Genet 29(7):643–650

    Article  PubMed  PubMed Central  Google Scholar 

  • Yun Y, An P, Ning J, Zhao G-M, Yang W-L, Lei A-M (2015) H1foo is essential for in vitro meiotic maturation of bovine oocytes. Zygote 23(3):416–425. https://doi.org/10.1017/S0967199414000021

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Liu J et al (2008) Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet 4:4

    Article  CAS  Google Scholar 

  • Zhang L, Hou X et al (2014) Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB J 28(3):1435–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang F et al (2016) Dynamic changes of histone H3 lysine 9 following trimethylation in bovine oocytes and pre-implantation embryos. Biotechnol Lett 38(3):395–402

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Shirley CR et al (2001) Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol 21(21):7243–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H-Y, Shi X-Y et al (2011) Assisted reproductive technologies do not increase risk of abnormal methylation of PEG1/MEST in human early pregnancy loss. Fertil Steril 96(1):84-89. e82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, T.K., Kumar, S., Verma, V., Batra, V., Kumar, R. (2022). Epigenetic Bearing on Fertility in Farm Animals. In: Kumaresan, A., Srivastava, A.K. (eds) Current Concepts in Bovine Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-19-0116-4_16

Download citation

Publish with us

Policies and ethics