Skip to main content

When and How to Perform Free Flaps

  • Chapter
  • First Online:
  • 449 Accesses

Abstract

The treatment of diabetic foot ulceration is complex with multiple considerations involving the multidisciplinary team. Despite the efforts of the team, the aggravation of the wound often leads to limb amputation. Throughout this book, important concepts such as multidisciplinary approach, understanding the overall systemic condition, improving vasculopathy, treating infection, and wound bed preparation all leads to enhance the outcome for reconstructive surgery. Thus understanding what value the multidisciplinary team brings to the overall treatment is crucial for reconstructive surgeons. An example would be evaluating the patient’s nutrition status and correcting accordingly prior to surgery. Prealbumin with a half-life of 2–3 days is a good indicator for acute nutritional status. Low prealbumin values have been reported to be a risk factor for poor healing and postoperative infection [1]. Another example would be to properly control blood sugar level prior and after surgery as poor glycemic control is related with significantly higher complications after surgery [2]. Most of all, understanding the vascularity of the limb is crucial when planning the reconstructive surgery as flap success is determined by the vascular status and supply. Building from the foundation of previous chapters, this chapter will focus on the reconstructive aspect of using free flaps to salvage the diabetic limb. The reconstructive surgeon brings on the capability to achieve healing by soft tissue manipulation. The surgeon may follow a reconstruction algorithm to manage and salvage diabetic foot ulcers. Having the reconstructive option in the treatment spectrum may enhance the healing process and increase the chances for salvage. Figure 9.1 shows the spectrum of care for diabetic foot. Understanding the spectrum of care and the role of each discipline will increase the chance for healing. While the systemic condition of the patient is being optimized wound specialists or surgeons can direct attention to the foot ulcer. Depending upon general condition, peripheral vascular status, bone pathology, wound depth, location, duration, involvement of chronic osteomyelitis, and patient motivation, wounds can be treated with debridement and other related surgical procedures [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Steed DL, Attinger C, Colaizzi T, Crossland M, Franz M, Harkless L, et al. Guidelines for the treatment of diabetic ulcers. Wound Repair Regen. 2006;14(6):680–92.

    Article  PubMed  Google Scholar 

  2. Endara M, Masden D, Goldstein J, Gondek S, Steinberg J, Attinger C. The role of chronic and perioperative glucose management in high-risk surgical closures: a case for tighter glycemic control. Plast Reconstr Surg. 2013;132(4):996–1004.

    Article  CAS  PubMed  Google Scholar 

  3. Hong JP, Oh TS. An algorithm for limb salvage for diabetic foot ulcers. Clin Plast Surg. 2012;39(3):341–52.

    Article  PubMed  Google Scholar 

  4. Goldenberg S, Alex M, Joshi RA, Blumenthal HT. Nonatheromatous peripheral vascular disease of the lower extremity in diabetes mellitus. Diabetes. 1959;8(4):261–73.

    Article  CAS  PubMed  Google Scholar 

  5. Barner HB, Kaiser GC, Willman VL. Blood flow in the diabetic leg. Circulation. 1971;43(3):391–4.

    Article  CAS  PubMed  Google Scholar 

  6. Conrad MC. Large and small artery occlusion in diabetics and nondiabetics with severe vascular disease. Circulation. 1967;36(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  7. LoGerfo FW, Coffman JD. Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care. N Engl J Med. 1984;311(25):1615–9.

    Article  CAS  PubMed  Google Scholar 

  8. Strandness DE Jr, Priest RE, Gibbons GE. Combined clinical and pathologic study of diabetic and nondiabetic peripheral arterial disease. Diabetes. 1964;13:366–72.

    Article  PubMed  Google Scholar 

  9. Colen LB, Reus WF, Kalus R. Posterior hindfoot reconstruction. J Reconstr Microsurg. 1990;6(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  10. Colen LB. Limb salvage in the patient with severe peripheral vascular disease: the role of microsurgical free-tissue transfer. Plast Reconstr Surg. 1987;79(3):389–95.

    Article  CAS  PubMed  Google Scholar 

  11. Dabb RW, Davis RM. Latissimus dorsi free flaps in the elderly: an alternative to below-knee amputation. Plast Reconstr Surg. 1984;73(4):633–40.

    Article  CAS  PubMed  Google Scholar 

  12. Godina M. Early microsurgical reconstruction of complex trauma of the extremities. Plast Reconstr Surg. 1986;78(3):285–92.

    Article  CAS  PubMed  Google Scholar 

  13. Irons GB, Wood MB, Schmitt EH. Experience with one hundred consecutive free flaps. Ann Plast Surg. 1987;18(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  14. Khouri RK, Shaw WW. Reconstruction of the lower extremity with microvascular free flaps: a 10-year experience with 304 consecutive cases. J Trauma. 1989;29(8):1086–94.

    Article  CAS  PubMed  Google Scholar 

  15. May JW, Halls MJ, Simon SR. Free microvascular muscle flaps with skin graft reconstruction of extensive defects of the foot: a clinical and gait analysis study. Plast Reconstr Surg. 1985;75(5):627–41.

    Article  PubMed  Google Scholar 

  16. Oishi SN, Levin LS, Pederson WC. Microsurgical management of extremity wounds in diabetics with peripheral vascular disease. Plast Reconstr Surg. 1993;92(3):485–92.

    Article  CAS  PubMed  Google Scholar 

  17. Searles JM, Colen LB. Foot reconstruction in diabetes mellitus and peripheral vascular insufficiency. Clin Plast Surg. 1991;18(3):467–83.

    Article  PubMed  Google Scholar 

  18. Shenaq SM, Dinh TA. Foot salvage in arteriolosclerotic and diabetic patients by free flaps after vascular bypass: report of two cases. Microsurgery. 1989;10(4):310–4.

    Article  CAS  PubMed  Google Scholar 

  19. Ducic I, Attinger CE. Foot and ankle reconstruction: pedicled muscle flaps versus free flaps and the role of diabetes. Plast Reconstr Surg. 2011;128(1):173–80.

    Article  CAS  PubMed  Google Scholar 

  20. Hong JP. Reconstruction of the diabetic foot using the anterolateral thigh perforator flap. Plast Reconstr Surg. 2006;117(5):1599–608.

    Article  CAS  PubMed  Google Scholar 

  21. Oh TS, Lee HS, Hong JP. Diabetic foot reconstruction using free flaps increases 5-year-survival rate. J Plast Reconstr Aesthet Surg. 2013;66(2):243–50.

    Article  PubMed  Google Scholar 

  22. Suh HS, Oh TS, Hong JP. Innovations in diabetic foot reconstruction using supermicrosurgery. Diabetes Metab Res Rev. 2016;32(Suppl 1):275–80.

    Article  PubMed  Google Scholar 

  23. Suh HS, Oh TS, Lee HS, Lee SH, Cho YP, Park JR, et al. A new approach for reconstruction of diabetic foot wounds using the Angiosome and Supermicrosurgery concept. Plast Reconstr Surg. 2016;138(4):702e–9e.

    Article  CAS  PubMed  Google Scholar 

  24. Fitzgerald O’Connor EJ, Vesely M, Holt PJ, Jones KG, Thompson MM, Hinchliffe RJ. A systematic review of free tissue transfer in the management of non-traumatic lower extremity wounds in patients with diabetes. Eur J Vasc endovasc Surg. 2011;41(3):391–9.

    Article  PubMed  Google Scholar 

  25. Moulik PK, Mtonga R, Gill GV. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. Diabetes Care. 2003;26(2):491–4.

    Article  PubMed  Google Scholar 

  26. Reiber GE. The epidemiology of diabetic foot problems. Diabet Med. 1996;13(Suppl 1):S6–11.

    Article  PubMed  Google Scholar 

  27. Knox KR, Datiashvili RO, Granick MS. Surgical wound bed preparation of chronic and acute wounds. Clin Plast Surg. 2007;34(4):633–41.

    Article  PubMed  Google Scholar 

  28. Gottlieb LJ, Krieger LM. From the reconstructive ladder to the reconstructive elevator. Plast Reconstr Surg. 1994;93(7):1503–4.

    Article  CAS  PubMed  Google Scholar 

  29. Azoury SC, Stranix JT, Kovach SJ, Levin LS. Principles of orthoplastic surgery for lower extremity reconstruction: why is this important? J Reconstr Microsurg. 2019;37(1):42–50.

    PubMed  Google Scholar 

  30. Hong JP. Reconstructive surgery: lower extremity coverage. In: Neligan P, editor. Plastic surgery. 4th ed. London: Elsevier; 2018. p. 127–50.

    Google Scholar 

  31. Attinger CE, Bulan EJ. Debridement. The key initial first step in wound healing. Foot Ankle Clin. 2001;6(4):627–60.

    Article  CAS  PubMed  Google Scholar 

  32. Reiber GE, Vileikyte L, Boyko EJ, del Aguila M, Smith DG, Lavery LA, et al. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care. 1999;22(1):157–62.

    Article  CAS  PubMed  Google Scholar 

  33. Badia JM, Torres JM, Tur C, Sitges-Serra A. Saline wound irrigation reduces the postoperative infection rate in guinea pigs. J Surg Res. 1996;63(2):457–9.

    Article  CAS  PubMed  Google Scholar 

  34. Granick M, Boykin J, Gamelli R, Schultz G, Tenenhaus M. Toward a common language: surgical wound bed preparation and debridement. Wound Repair Regen. 2006;14(Suppl 1):S1–10.

    Article  PubMed  Google Scholar 

  35. Granick MS, Posnett J, Jacoby M, Noruthun S, Ganchi PA, Datiashvili RO. Efficacy and cost-effectiveness of a high-powered parallel waterjet for wound debridement. Wound Repair Regen. 2006;14(4):394–7.

    Article  PubMed  Google Scholar 

  36. Clemens MW, Attinger CE. Angiosomes and wound care in the diabetic foot. Foot Ankle Clin. 2010;15(3):439–64.

    Article  PubMed  Google Scholar 

  37. Attinger C, Cooper P, Blume P, Bulan E. The safest surgical incisions and amputations applying the angiosome principles and using the Doppler to assess the arterial-arterial connections of the foot and ankle. Foot Ankle Clin. 2001;6(4):745–99.

    Article  CAS  PubMed  Google Scholar 

  38. Christensen KS, Klarke M. Transcutaneous oxygen measurement in peripheral occlusive disease. An indicator of wound healing in leg amputation. J Bone Joint Surg Br. 1986;68(3):423–6.

    Article  CAS  PubMed  Google Scholar 

  39. Got I. [Transcutaneous oxygen pressure (TcPO2): advantages and limitations]. Diabetes Metab 1998;24(4):379–84.

    Google Scholar 

  40. Du Clos TW. Function of C-reactive protein. Ann Med. 2000;32(4):274–8.

    Article  PubMed  Google Scholar 

  41. Goss DE, de Trafford J, Roberts VC, Flynn MD, Edmonds ME, Watkins PJ. Raised ankle/brachial pressure index in insulin-treated diabetic patients. Diabet Med. 1989;6(7):576–8.

    Article  CAS  PubMed  Google Scholar 

  42. Cho MJ, Kwon JG, Pak CJ, Suh HP, Hong JP. The role of duplex ultrasound in microsurgical reconstruction: review and technical considerations. J Reconstr Microsurg. 2020;36(7):514–21.

    Article  PubMed  Google Scholar 

  43. Romiti M, Albers M, Brochado-Neto FC, Durazzo AE, Pereira CA, De Luccia N. Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg. 2008;47(5):975–81.

    Article  PubMed  Google Scholar 

  44. Saqib NU, Domenick N, Cho JS, Marone L, Leers S, Makaroun MS, et al. Predictors and outcomes of restenosis following tibial artery endovascular interventions for critical limb ischemia. J Vasc Surg. 2013;57(3):692–9.

    Article  PubMed  Google Scholar 

  45. Yue DK, McLennan S, Marsh M, Mai YW, Spaliviero J, Delbridge L, et al. Effects of experimental diabetes, uremia, and malnutrition on wound healing. Diabetes. 1987;36(3):295–9.

    Article  CAS  PubMed  Google Scholar 

  46. Berman SJ. Infections in patients with end-stage renal disease. An overview. Infect Dis Clin N Am. 2001;15(3):709–20, vii.

    Article  CAS  Google Scholar 

  47. Hong JP. The use of supermicrosurgery in lower extremity reconstruction: the next step in evolution. Plast Reconstr Surg. 2009;123(1):230–5.

    Article  CAS  PubMed  Google Scholar 

  48. Randon C, Jacobs B, De Ryck F, Van Landuyt K, Vermassen F. A 15-year experience with combined vascular reconstruction and free flap transfer for limb-salvage. Eur J Vasc Endovasc Surg. 2009;38(3):338–45.

    Article  CAS  PubMed  Google Scholar 

  49. Bush HL Jr, Nabseth DC, Curl GR, O’Hara ET, Johnson WC, Vollman RW. In situ saphenous vein bypass grafts for limb salvage. A current fad or a viable alternative to reversed vein bypass grafts? Am J Surg. 1985;149(4):477–80.

    Article  PubMed  Google Scholar 

  50. Suh HP, Kim Y, Suh Y, Hong J. Multidetector computed tomography (CT) analysis of 168 cases in diabetic patients with Total superficial femoral artery occlusion: is it safe to use an anterolateral thigh flap without CT angiography in diabetic patients? J Reconstr Microsurg. 2018;34(1):65–70.

    Article  PubMed  Google Scholar 

  51. Shestak KC, Hendricks DL, Webster MW. Indirect revascularization of the lower extremity by means of microvascular free-muscle flap—a preliminary report. J Vasc Surg. 1990;12(5):581–5.

    CAS  PubMed  Google Scholar 

  52. Chang N, Mathes SJ. Comparison of the effect of bacterial inoculation in musculocutaneous and random-pattern flaps. Plast Reconstr Surg. 1982;70(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  53. Ecker ML, Jacobs BS. Lower extremity amputation in diabetic patients. Diabetes. 1970;19(3):189–95.

    Article  CAS  PubMed  Google Scholar 

  54. Goldner MG. The fate of the second leg in the diabetic amputee. Diabetes. 1960;9:100–3.

    Article  CAS  PubMed  Google Scholar 

  55. Kucan JO, Robson MC. Diabetic foot infections: fate of the contralateral foot. Plast Reconstr Surg. 1986;77(3):439–41.

    Article  CAS  PubMed  Google Scholar 

  56. Abdelfattah U, Power HA, Song S, Min K, Suh HP, Hong JP. Algorithm for free perforator flap selection in lower extremity reconstruction based on 563 cases. Plast Reconstr Surg. 2019;144(5):1202–13.

    Article  CAS  PubMed  Google Scholar 

  57. Adedeji R, Oragui E, Khan W, Maruthainar N. The importance of correct patient positioning in theatres and implications of mal-positioning. J Perioper Pract. 2010;20(4):143–7.

    PubMed  Google Scholar 

  58. Winfree CJ, Kline DG. Intraoperative positioning nerve injuries. Surg Neurol. 2005;63(1):5–18. discussion

    Article  PubMed  Google Scholar 

  59. Jeong HH, Hong JP, Suh HS. Thin elevation: a technique for achieving thin perforator flaps. Arch Plast Surg. 2018;45(4):304–13.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goh TL, Park SW, Cho JY, Choi JW, Hong JP. The search for the ideal thin skin flap: superficial circumflex iliac artery perforator flap—a review of 210 cases. Plast Reconstr Surg. 2015;135(2):592–601.

    Article  CAS  PubMed  Google Scholar 

  61. Altiparmak M, Cha HG, Hong JP, Suh HP. Superficial circumflex iliac artery perforator flap as a workhorse flap: systematic review and meta-analysis. J Reconstr Microsurg. 2020;36(8):600–5.

    Article  PubMed  Google Scholar 

  62. Kim HB, Altiparmak M, Pak CJ, Suh HP, Hong JP. Reconstruction using free flaps for diabetic heel defects: outcomes and risk factor analysis. J Reconstr Microsurg. 2020;36(7):494–500.

    Article  PubMed  Google Scholar 

  63. McGregor IA, Jackson IT. The groin flap. Br J Plast Surg. 1972;25(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  64. Daniel RK, Taylor GI. Distant transfer of an island flap by microvascular anastomoses. A clinical technique. Plast Reconstr Surg. 1973;52(2):111–7.

    Article  CAS  PubMed  Google Scholar 

  65. Koshima I, Nanba Y, Tsutsui T, Takahashi Y, Urushibara K, Inagawa K, et al. Superficial circumflex iliac artery perforator flap for reconstruction of limb defects. Plast Reconstr Surg. 2004;113(1):233–40.

    Article  PubMed  Google Scholar 

  66. Hsu WM, Chao WN, Yang C, Fang CL, Huang KF, Lin YS, et al. Evolution of the free groin flap: the superficial circumflex iliac artery perforator flap. Plast Reconstr Surg. 2007;119(5):1491–8.

    Article  CAS  PubMed  Google Scholar 

  67. Wei FC, Mardini S. Free-style free flaps. Plast Reconstr Surg. 2004;114(4):910–6.

    Article  PubMed  Google Scholar 

  68. Hong JP, Koshima I. Using perforators as recipient vessels (supermicrosurgery) for free flap reconstruction of the knee region. Ann Plast Surg. 2010;64(3):291–3.

    Article  CAS  PubMed  Google Scholar 

  69. Choi DH, Goh T, Cho JY, Hong JP. Thin superficial circumflex iliac artery perforator flap and supermicrosurgery technique for face reconstruction. J Craniofac Surg. 2014;25(6):2130–3.

    Article  PubMed  Google Scholar 

  70. Hong JP, Sun SH, Ben-Nakhi M. Modified superficial circumflex iliac artery perforator flap and supermicrosurgery technique for lower extremity reconstruction: a new approach for moderate-sized defects. Ann Plast Surg. 2013;71(4):380–3.

    Article  CAS  PubMed  Google Scholar 

  71. Suh YC, Hong JP, Suh HP. Elevation technique for medial branch based superficial circumflex iliac artery perforator flap. Handchir Mikrochir Plast Chir. 2018;50(4):256–8.

    Article  PubMed  Google Scholar 

  72. Hong JPJ, Goh TLH, Choi DH, Kim JJ, Suh HS. The efficacy of perforator flaps in the treatment of chronic osteomyelitis. Plast Reconstr Surg. 2017;140(1):179–88.

    Article  CAS  PubMed  Google Scholar 

  73. Suh HS, Jeong HH, Choi DH, Hong JP. Study of the medial superficial perforator of the superficial circumflex iliac artery perforator flap using computed tomographic angiography and surgical anatomy in 142 patients. Plast Reconstr Surg. 2017;139(3):738–48.

    Article  CAS  PubMed  Google Scholar 

  74. Fuse Y, Yoshimatsu H, Yamamoto T. Lateral approach to the deep branch of the superficial circumflex iliac artery for harvesting a SCIP flap. Microsurgery. 2018;38(5):589–90.

    Article  PubMed  Google Scholar 

  75. Yoshimatsu H, Iida T, Yamamoto T, Hayashi A. Superficial circumflex iliac artery-based iliac bone flap transfer for reconstruction of bony defects. J Reconstr Microsurg. 2018;34(9):719–28.

    Article  PubMed  Google Scholar 

  76. Yoshimatsu H, Steinbacher J, Meng S, Hamscha UM, Weninger WJ, Tinhofer IE, et al. Superficial circumflex iliac artery perforator flap: an anatomical study of the correlation of the superficial and the deep branches of the artery and evaluation of perfusion from the deep branch to the Sartorius muscle and the iliac bone. Plast Reconstr Surg. 2019;143(2):589–602.

    Article  CAS  PubMed  Google Scholar 

  77. Baek SM. Two new cutaneous free flaps: the medial and lateral thigh flaps. Plast Reconstr Surg. 1983;71(3):354–65.

    Article  CAS  PubMed  Google Scholar 

  78. Song YG, Chen GZ, Song YL. The free thigh flap: a new free flap concept based on the septocutaneous artery. Br J Plast Surg. 1984;37(2):149–59.

    Article  CAS  PubMed  Google Scholar 

  79. Wei FC, Jain V, Celik N, Chen HC, Chuang DC, Lin CH. Have we found an ideal soft-tissue flap? An experience with 672 anterolateral thigh flaps. Plast Reconstr Surg. 2002;109(7):2219–26. discussion 27-30

    Article  PubMed  Google Scholar 

  80. Hong JP, Chung IW. The superficial fascia as a new plane of elevation for anterolateral thigh flaps. Ann Plast Surg. 2013;70(2):192–5.

    Article  CAS  PubMed  Google Scholar 

  81. Kehrer A, Sachanadani NS, da Silva NPB, Lonic D, Heidekrueger P, Taeger CD, et al. Step-by-step guide to ultrasound-based design of alt flaps by the microsurgeon—basic and advanced applications and device settings. J Plast Reconstr Aesthet Surg. 2020;73(6):1081–90.

    Article  PubMed  Google Scholar 

  82. Kim EK, Kang BS, Hong JP. The distribution of the perforators in the anterolateral thigh and the utility of multidetector row computed tomography angiography in preoperative planning. Ann Plast Surg. 2010;65(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  83. Chen KT, Mardini S, Chuang DC, Lin CH, Cheng MH, Lin YT, et al. Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plast Reconstr Surg. 2007;120(1):187–95.

    Article  CAS  PubMed  Google Scholar 

  84. Ashjian P, Chen CM, Pusic A, Disa JJ, Cordeiro PG, Mehrara BJ. The effect of postoperative anticoagulation on microvascular thrombosis. Ann Plast Surg. 2007;59(1):36–9. discussion 9–40

    Article  CAS  PubMed  Google Scholar 

  85. Glicksman A, Ferder M, Casale P, Posner J, Kim R, Strauch B. 1457 years of microsurgical experience. Plast Reconstr Surg. 1997;100(2):355–63.

    Article  CAS  PubMed  Google Scholar 

  86. Hanasono MM, Butler CE. Prevention and treatment of thrombosis in microvascular surgery. J Reconstr Microsurg. 2008;24(5):305–14.

    Article  PubMed  Google Scholar 

  87. Suh HP, Jeong HH, Hong JPJ. Is early compression therapy after perforator flap safe and reliable? J Reconstr Microsurg. 2019;35(5):354–61.

    Article  PubMed  Google Scholar 

  88. Wraight PR, Lawrence SM, Campbell DA, Colman PG. Creation of a multidisciplinary, evidence based, clinical guideline for the assessment, investigation and management of acute diabetes related foot complications. Diabet Med. 2005;22(2):127–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Pio Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, J.P., Suh, H.P. (2022). When and How to Perform Free Flaps. In: Hong, J.P., Suh, H. (eds) Diabetic Foot Reconstruction. Springer, Singapore. https://doi.org/10.1007/978-981-16-9816-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9816-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9815-6

  • Online ISBN: 978-981-16-9816-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics