Skip to main content

Cardiovascular Nanotechnology

  • Reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

Globally, the number of deaths caused by various diseases varies according to geographical distribution, gender, and age. Among all types of noncommunicable diseases, cardiovascular diseases such as atherosclerosis, thrombosis, acute myocardial infarction, stroke cause the largest number of deaths, which brings huge health and economic burdens to patients, their families, and the entire society. In clinic, rapid diagnosis and effective therapeutic intervention of cardiovascular diseases are the key to save patients’ lives. However, the conventional diagnosis technology and treatment methods are facing many bottlenecks. There is an urgent need to develop novel theranostic strategies. As a multidisciplinary discipline, the development of nanomaterials and nanostructure-based nanotechnology may provide an alternative and novel direction for the early diagnosis and research of cardiovascular diseases. The application of technologies such as multimodal molecular imaging, ultra-sensitive biosensing, targeted drug delivery, minimally invasive intervention has effectively improved the efficiency of diagnosis and treatment of cardiovascular diseases. This chapter will cover the latest applications and prospects of nanotechnology in the diagnosis and treatment of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Diseases GBD, Injuries C (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396:1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9

    Article  Google Scholar 

  2. Fonarow GC et al (2014) Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. JAMA 311:1632–1640. https://doi.org/10.1001/jama.2014.3203

    Article  Google Scholar 

  3. Menees DS et al (2013) Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med 369:901–909. https://doi.org/10.1056/NEJMoa1208200

    Article  Google Scholar 

  4. Park HB et al (2015) Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC Cardiovasc Imaging 8:1–10. https://doi.org/10.1016/j.jcmg.2014.11.002

    Article  Google Scholar 

  5. Lohrke J et al (2016) 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 33:1–28. https://doi.org/10.1007/s12325-015-0275-4

    Article  Google Scholar 

  6. Rodriguez-Luna D, Molina CA (2016) Vascular imaging: ultrasound. Handb Clin Neurol 136:1055–1064. https://doi.org/10.1016/B978-0-444-53486-6.00055-7

    Article  Google Scholar 

  7. Demchuk AM, Menon BK, Goyal M (2016) Comparing vessel imaging: noncontrast computed tomography/computed tomographic angiography should be the new minimum standard in acute disabling stroke. Stroke 47:273–281. https://doi.org/10.1161/STROKEAHA.115.009171

    Article  Google Scholar 

  8. Yaghi S et al (2017) Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48:e343–e361. https://doi.org/10.1161/STR.0000000000000152

    Article  Google Scholar 

  9. Wiendl H et al (2015) Gaps between aims and achievements in therapeutic modification of neuronal damage (“neuroprotection”). Neurotherapeutics 12:449–454. https://doi.org/10.1007/s13311-015-0348-8

    Article  Google Scholar 

  10. Muthu MS, Leong DT, Mei L, Feng SS (2014) Nanotheranostics – application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4:660–677. https://doi.org/10.7150/thno.8698

    Article  Google Scholar 

  11. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910. https://doi.org/10.1126/science.1226338

    Article  Google Scholar 

  12. Singh P et al (2016) Biomedical perspective of electrochemical nanobiosensor. Nano Lett 8:193–203. https://doi.org/10.1007/s40820-015-0077-x

    Article  Google Scholar 

  13. Jatzkewitz H (1954) Incorporation of physiologically-active substances into a colloidal blood plasma substitute. I. Incorporation of mescaline peptide into polyvinylpyrrolidone. Hoppe Seylers Z Physiol Chem 297:149–156

    Article  Google Scholar 

  14. De La Vega JC, Hafeli UO (2015) Utilization of nanoparticles as X-ray contrast agents for diagnostic imaging applications. Contrast Media Mol Imaging 10:81–95. https://doi.org/10.1002/cmmi.1613

    Article  Google Scholar 

  15. Lee N, Choi SH, Hyeon T (2013) Nano-sized CT contrast agents. Adv Mater 25:2641–2660. https://doi.org/10.1002/adma.201300081

    Article  Google Scholar 

  16. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253. https://doi.org/10.1259/bjr/13169882

    Article  Google Scholar 

  17. Chhour P et al (2016) Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials 87:93–103. https://doi.org/10.1016/j.biomaterials.2016.02.009

    Article  Google Scholar 

  18. Kim JY et al (2015) Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics 5:1098–1114. https://doi.org/10.7150/thno.11679

    Article  Google Scholar 

  19. Beard P (2011) Biomedical photoacoustic imaging. Interface Focus 1:602–631. https://doi.org/10.1098/rsfs.2011.0028

    Article  Google Scholar 

  20. Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13:639–650. https://doi.org/10.1038/nmeth.3929

    Article  Google Scholar 

  21. Yang L et al (2020) Indocyanine green assembled Nanobubbles with enhanced fluorescence and Photostability. Langmuir 36:12983–12989. https://doi.org/10.1021/acs.langmuir.0c02288

    Article  Google Scholar 

  22. Li W, Chen X (2015) Gold nanoparticles for photoacoustic imaging. Nanomedicine (Lond) 10:299–320. https://doi.org/10.2217/nnm.14.169

    Article  Google Scholar 

  23. Varna M, Xuan HV, Fort E (2018) Gold nanoparticles in cardiovascular imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10. https://doi.org/10.1002/wnan.1470

  24. Agrawal A et al (2006) Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells. J Biomed Opt 11:041121. https://doi.org/10.1117/1.2339071

    Article  Google Scholar 

  25. Lopez-Chaves C et al (2018) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 14:1–12. https://doi.org/10.1016/j.nano.2017.08.011

    Article  Google Scholar 

  26. Saam T et al (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77. https://doi.org/10.1148/radiol.2441051769

    Article  Google Scholar 

  27. Merino JG, Warach S (2010) Imaging of acute stroke. Nat Rev Neurol 6:560–571. https://doi.org/10.1038/nrneurol.2010.129

    Article  Google Scholar 

  28. Vazquez-Prada KX et al (2021) Targeted molecular imaging of cardiovascular diseases by iron oxide nanoparticles. Arterioscler Thromb Vasc Biol 41:601–613. https://doi.org/10.1161/ATVBAHA.120.315404

    Article  Google Scholar 

  29. Dadfar SM et al (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325. https://doi.org/10.1016/j.addr.2019.01.005

    Article  Google Scholar 

  30. Chen B et al (2018) Ferumoxytol of ultrahigh magnetization produced by hydrocooling and magnetically internal heating co-precipitation. Nanoscale 10:7369–7376. https://doi.org/10.1039/c8nr00736e

    Article  Google Scholar 

  31. Chen B et al (2020) Moderate cooling coprecipitation for extremely small iron oxide as a pH dependent T-1-MRI contrast agent. Nanoscale 12:5521–5532. https://doi.org/10.1039/c9nr10397j

    Article  Google Scholar 

  32. Bai C et al (2018) Time-dependent t-1-t-2 switchable magnetic resonance imaging realized by c(rgdyk) modified ultrasmall Fe3O4 nanoprobes. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201802281

  33. Zhang H et al (2017) Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS Nano 11:3614–3631. https://doi.org/10.1021/acsnano.6b07684

    Article  Google Scholar 

  34. Liu Y, Li M, Yang F, Gu N (2017) Magnetic drug delivery systems. Sci China Mater 60:471–486. https://doi.org/10.1007/s40843-017-9049-0

    Article  Google Scholar 

  35. Faust O et al (2017) Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review. Phys Med 33:1–15. https://doi.org/10.1016/j.ejmp.2016.12.005

    Article  Google Scholar 

  36. Darmoch F et al (2020) Intravascular ultrasound imaging-guided versus coronary angiography-guided percutaneous coronary intervention: a systematic review and meta-analysis. J Am Heart Assoc 9:e013678. https://doi.org/10.1161/JAHA.119.013678

    Article  Google Scholar 

  37. Rix A, Curaj A, Liehn E, Kiessling F (2020) Ultrasound microbubbles for diagnosis and treatment of cardiovascular diseases. Semin Thromb Hemost 46:545–552. https://doi.org/10.1055/s-0039-1688492

    Article  Google Scholar 

  38. Partovi S et al (2012) Contrast-enhanced ultrasound for assessing carotid atherosclerotic plaque lesions. AJR Am J Roentgenol 198:W13–W19. https://doi.org/10.2214/AJR.11.7312

    Article  Google Scholar 

  39. Schumann PA et al (2002) Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Investig Radiol 37:587–593. https://doi.org/10.1097/00004424-200211000-00001

    Article  Google Scholar 

  40. Wang X et al (2012) Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation 125:3117–3126. https://doi.org/10.1161/CIRCULATIONAHA.111.030312

    Article  Google Scholar 

  41. Unger E, Porter T, Lindner J, Grayburn P (2014) Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev 72:110–126. https://doi.org/10.1016/j.addr.2014.01.012

    Article  Google Scholar 

  42. Qian L et al (2018) The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis 10:1099–1111. https://doi.org/10.21037/jtd.2018.01.101

    Article  Google Scholar 

  43. Fix SM, Borden MA, Dayton PA (2015) Therapeutic gas delivery via microbubbles and liposomes. J Control Release 209:139–149. https://doi.org/10.1016/j.jconrel.2015.04.027

    Article  Google Scholar 

  44. Chandan R, Mehta S, Banerjee R (2020) Ultrasound-responsive carriers for therapeutic applications. ACS Biomater Sci Eng 6:4731–4747. https://doi.org/10.1021/acsbiomaterials.9b01979

    Article  Google Scholar 

  45. Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I (2021) Opening doors with ultrasound and microbubbles: beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 172:9–36. https://doi.org/10.1016/j.addr.2021.02.015

    Article  Google Scholar 

  46. Tu Y, Sun Y, Fan Y, Cheng Z, Yu B (2018) Multimodality molecular imaging of cardiovascular disease based on nanoprobes. Cell Physiol Biochem 48:1401–1415. https://doi.org/10.1159/000492251

    Article  Google Scholar 

  47. Yang F et al (2009) Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 30:3882–3890. https://doi.org/10.1016/j.biomaterials.2009.03.051

    Article  Google Scholar 

  48. Yang F et al (2012) A hydrogen peroxide-responsive O(2) nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv Mater 24:5205–5211. https://doi.org/10.1002/adma.201202367

    Article  Google Scholar 

  49. Yang F et al (2013) Silver nanoparticle-embedded microbubble as a dual-mode ultrasound and optical imaging probe. ACS Appl Mater Interfaces 5:9217–9223. https://doi.org/10.1021/am4029747

    Article  Google Scholar 

  50. Liu Y et al (2017) Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano 11:1509–1519. https://doi.org/10.1021/acsnano.6b06815

    Article  Google Scholar 

  51. Ding J et al (2013) CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques. Biomaterials 34:209–216. https://doi.org/10.1016/j.biomaterials.2012.09.025

    Article  Google Scholar 

  52. Nahrendorf M et al (2009) Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 29:1444–1451. https://doi.org/10.1161/ATVBAHA.109.193086

    Article  Google Scholar 

  53. Altintas Z, Fakanya WM, Tothill IE (2014) Cardiovascular disease detection using bio-sensing techniques. Talanta 128:177–186. https://doi.org/10.1016/j.talanta.2014.04.060

    Article  Google Scholar 

  54. Zong C et al (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118:4946–4980. https://doi.org/10.1021/acs.chemrev.7b00668

    Article  Google Scholar 

  55. Fu X et al (2019) A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I. Analyst 144:1582–1589. https://doi.org/10.1039/c8an02022a

    Article  Google Scholar 

  56. Laing S, Jamieson LE, Faulds K, Graham D (2017) Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat Rev Chem 1. https://doi.org/10.1038/s41570-017-0060

  57. Henry AI, Sharma B, Cardinal MF, Kurouski D, Van Duyne RP (2016) Surface-enhanced raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging. Anal Chem 88:6638–6647. https://doi.org/10.1021/acs.analchem.6b01597

    Article  Google Scholar 

  58. McQueenie R et al (2012) Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal Chem 84:5968–5975. https://doi.org/10.1021/ac3006445

    Article  Google Scholar 

  59. Ahammad AJS et al (2011) Electrochemical detection of cardiac biomarker troponin I at gold nanoparticle-modified ? To electrode by using open circuit potential. Int J Electrochem Sci 6:1906–1916

    Google Scholar 

  60. Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal Chem 85:3858–3863. https://doi.org/10.1021/ac302801z

    Article  Google Scholar 

  61. Suprun E et al (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosens Bioelectron 25:1694–1698. https://doi.org/10.1016/j.bios.2009.12.009

    Article  Google Scholar 

  62. Metkar SK, Girigoswami K (2019) Diagnostic biosensors in medicine – a review. Biocatal Agric Biotechnol 17:271–283. https://doi.org/10.1016/j.bcab.2018.11.029

    Article  Google Scholar 

  63. Regan B, Boyle F, O’Kennedy R, Collins D (2019) Evaluation of molecularly imprinted polymers for point-of-care testing for cardiovascular disease. Sensors (Basel) 19. https://doi.org/10.3390/s19163485

  64. Vasantham S et al (2019) Paper based point of care immunosensor for the impedimetric detection of cardiac troponin I biomarker. Biomed Microdevices 22:6. https://doi.org/10.1007/s10544-019-0463-0

    Article  Google Scholar 

  65. Phonklam K, Wannapob R, Sriwimol W, Thavarungkul P, Phairatana T (2020) A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection. Sensors Actuators B Chem 308. https://doi.org/10.1016/j.snb.2019.127630

  66. Mansuriya BD, Altintas Z (2020) Applications of graphene quantum dots in biomedical sensors. Sensors (Basel) 20. https://doi.org/10.3390/s20041072

  67. Mukherjee A, Shim Y, Myong Song J (2016) Quantum dot as probe for disease diagnosis and monitoring. Biotechnol J 11:31–42. https://doi.org/10.1002/biot.201500219

    Article  Google Scholar 

  68. Yola ML, Atar N (2019) Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens Bioelectron 126:418–424. https://doi.org/10.1016/j.bios.2018.11.016

    Article  Google Scholar 

  69. Sun J et al (2018) Comet-like heterodimers “gold nanoflower @graphene quantum dots” probe with fret “off” to DNA circuit signal “on” for sensing and imaging microrna in vitro and in vivo. Anal Chem 90:11538–11547. https://doi.org/10.1021/acs.analchem.8b02854

    Article  Google Scholar 

  70. Jain KK (2008) Drug delivery systems – an overview. Methods Mol Biol 437:1–50. https://doi.org/10.1007/978-1-59745-210-6_1

    Article  Google Scholar 

  71. El-Say KM, El-Sawy HS (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–691. https://doi.org/10.1016/j.ijpharm.2017.06.052

    Article  Google Scholar 

  72. Banik BL, Fattahi P, Brown JL (2016) Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:271–299. https://doi.org/10.1002/wnan.1364

    Article  Google Scholar 

  73. Larson N, Ghandehari H (2012) Polymeric conjugates for drug delivery. Chem Mater 24:840–853. https://doi.org/10.1021/cm2031569

    Article  Google Scholar 

  74. Shamay Y, Paulin D, Ashkenasy G, David A (2009) E-selectin binding peptide-polymer-drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials 30:6460–6468. https://doi.org/10.1016/j.biomaterials.2009.08.013

    Article  Google Scholar 

  75. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers-Basel 3:1215–1242. https://doi.org/10.3390/polym3031215

    Article  Google Scholar 

  76. Alvarez-Lorenzo C, Bromberg L, Concheiro A (2009) Light-sensitive intelligent drug delivery systems. Photochem Photobiol 85:848–860. https://doi.org/10.1111/j.1751-1097.2008.00530.x

    Article  Google Scholar 

  77. Ge J, Neofytou E, Cahill TJ 3rd, Beygui RE, Zare RN (2012) Drug release from electric-field-responsive nanoparticles. ACS Nano 6:227–233. https://doi.org/10.1021/nn203430m

    Article  Google Scholar 

  78. Thevenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099–7116. https://doi.org/10.1039/c3cs60058k

    Article  Google Scholar 

  79. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166. https://doi.org/10.1016/j.addr.2008.03.005

    Article  Google Scholar 

  80. Wang J, Kaplan JA, Colson YL, Grinstaff MW (2017) Mechanoresponsive materials for drug delivery: harnessing forces for controlled release. Adv Drug Deliv Rev 108:68–82. https://doi.org/10.1016/j.addr.2016.11.001

    Article  Google Scholar 

  81. Korin N et al (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337:738–742. https://doi.org/10.1126/science.1217815

    Article  Google Scholar 

  82. Gao W, Chan JM, Farokhzad OC (2010) pH-responsive nanoparticles for drug delivery. Mol Pharm 7:1913–1920. https://doi.org/10.1021/mp100253e

    Article  Google Scholar 

  83. Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5:1519–1528. https://doi.org/10.1039/c3py01192e

    Article  Google Scholar 

  84. de la Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64:967–978. https://doi.org/10.1016/j.addr.2012.01.002

    Article  Google Scholar 

  85. Hu X, Li FY, Wang SY, Xia F, Ling DS (2018) Biological stimulus-driven assembly/disassembly of functional nanoparticles for targeted delivery, controlled activation, and bioelimination. Adv Healthc Mater 7. https://doi.org/10.1002/adhm.201800359

  86. Cheng R, Meng FH, Deng C, Klok HA, Zhong ZY (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657. https://doi.org/10.1016/j.biomaterials.2013.01.084

    Article  Google Scholar 

  87. Yu MM et al (2015) Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules 16:2588–2598. https://doi.org/10.1021/acs.biomac.5b00979

    Article  Google Scholar 

  88. Pradhan D et al (2019) Dendrimer grafted albumin nanoparticles for the treatment of post cerebral stroke damages: a proof of concept study. Colloid Surf B 184. https://doi.org/10.1016/j.colsurfb.2019.110488

  89. Won YW et al (2013) Post-translational regulation of a hypoxia-responsive VEGF plasmid for the treatment of myocardial ischemia. Biomaterials 34:6229–6238. https://doi.org/10.1016/j.biomaterials.2013.04.061

    Article  Google Scholar 

  90. Bader H, Ringsdorf H, Schmidt B (1984) Watersoluble polymers in medicine. Angew Makromol Chem 123:457–485. https://doi.org/10.1002/apmc.1984.051230121

    Article  Google Scholar 

  91. Yokoyama M (2014) Polymeric micelles as drug carriers: their lights and shadows. J Drug Target 22:576–583. https://doi.org/10.3109/1061186x.2014.934688

    Article  Google Scholar 

  92. Jin Q et al (2017) Edaravone-encapsulated agonistic micelles rescue ischemic brain tissue by tuning blood-brain barrier permeability. Theranostics 7:884–898. https://doi.org/10.7150/thno.18219

    Article  Google Scholar 

  93. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J Mol Biol 13:238-+. https://doi.org/10.1016/S0022-2836(65)80093-6

    Article  Google Scholar 

  94. Bowey K, Tanguay JF, Tabrizian M (2012) Liposome technology for cardiovascular disease treatment and diagnosis. Expert Opin Drug Deliv 9:249–265. https://doi.org/10.1517/17425247.2012.647908

    Article  Google Scholar 

  95. Saxena V et al (2015) Temperature-sensitive liposome-mediated delivery of thrombolytic agents. Int J Hyperth 31:67–73. https://doi.org/10.3109/02656736.2014.991428

    Article  Google Scholar 

  96. Wang HJ et al (2020) Liposomal 9-aminoacridine for treatment of ischemic stroke: from drug discovery to drug delivery. Nano Lett 20:1542–1551. https://doi.org/10.1021/acs.nanolett.9b04018

    Article  Google Scholar 

  97. Tapeinos C, Battaglini M, Ciofani G (2017) Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 264:306–332. https://doi.org/10.1016/j.jconrel.2017.08.033

    Article  Google Scholar 

  98. Tan ME et al (2017) Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats. Int J Nanomedicine 12:3253–3265. https://doi.org/10.2147/Ijn.S131893

    Article  Google Scholar 

  99. Banskota S, Yousefpour P, Chilkoti A (2017) Cell-based biohybrid drug delivery systems: the best of the synthetic and natural worlds. Macromol Biosci 17. https://doi.org/10.1002/mabi.201600361

  100. Song YA et al (2019) Platelet membrane-coated nanoparticle-mediated targeting delivery of rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE(-/-)) mice. Nanomed-Nanotechnol 15:13–24. https://doi.org/10.1016/j.nano.2018.08.002

    Article  Google Scholar 

  101. Zhang C et al (2017) Direct macromolecular drug delivery to cerebral ischemia area using neutrophil-mediated nanoparticles. Theranostics 7:3260–3275. https://doi.org/10.7150/thno.19979

    Article  Google Scholar 

  102. Li M et al (2018) Platelet bio-nanobubbles as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics. Theranostics 8:4870–4883. https://doi.org/10.7150/thno.27466

    Article  Google Scholar 

  103. Li M et al (2020) Platelet membrane biomimetic magnetic nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 14:2024–2035. https://doi.org/10.1021/acsnano.9b08587

    Article  Google Scholar 

  104. Xu JP et al (2019) Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano 13:8577–8588. https://doi.org/10.1021/acsnano.9b01798

    Article  Google Scholar 

  105. Tang J et al (2017) Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun 8:13724. https://doi.org/10.1038/ncomms13724

    Article  Google Scholar 

  106. Tang J et al (2018) Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat Biomed Eng 2:17–26. https://doi.org/10.1038/s41551-017-0182-x

    Article  Google Scholar 

  107. Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405. https://doi.org/10.1016/j.jconrel.2015.07.030

    Article  Google Scholar 

  108. Yang JL, Zhang XF, Chen XJ, Wang L, Yang GD (2017) Exosome mediated delivery of mir-124 promotes neurogenesis after ischemia. Mol Ther–Nucleic Acids 7:278–287. https://doi.org/10.1016/j.omtn.2017.04.010

    Article  Google Scholar 

  109. Khan M et al (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117:52–64. https://doi.org/10.1161/Circresaha.117.305990

    Article  Google Scholar 

  110. Tian T et al (2018) Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150:137–149. https://doi.org/10.1016/j.biomaterials.2017.10.012

    Article  Google Scholar 

  111. Lu ZR (2014) Theranostics: fusion of therapeutics and diagnostics. Pharm Res 31:1355–1357. https://doi.org/10.1007/s11095-014-1343-1

    Article  Google Scholar 

  112. Yang F et al (2016) Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. J Control Release 228:87–95. https://doi.org/10.1016/j.jconrel.2016.03.002

    Article  Google Scholar 

  113. Huang P et al (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32:9796–9809. https://doi.org/10.1016/j.biomaterials.2011.08.086

    Article  Google Scholar 

  114. Lovell JF et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332. https://doi.org/10.1038/Nmat2986

    Article  Google Scholar 

  115. Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282. https://doi.org/10.1146/annurev-bioeng-071812-152409

    Article  Google Scholar 

  116. Li S, Sengupta D, Chien S (2014) Vascular tissue engineering: from in vitro to in situ. WIREs Syst Biol Med 6:61–76. https://doi.org/10.1002/wsbm.1246

    Article  Google Scholar 

  117. Gruntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis – percutaneous trans-luminal coronary angioplasty. N Engl J Med 301:61–68. https://doi.org/10.1056/Nejm197907123010201

    Article  Google Scholar 

  118. Bagheri M, Mohammadi M, Steele TWJ, Ramezani M (2016) Nanomaterial coatings applied on stent surfaces. Nanomedicine 11:1309–1326. https://doi.org/10.2217/nnm-2015-0007

    Article  Google Scholar 

  119. Goh D et al (2013) Nanotechnology-based gene-eluting stents. Mol Pharm 10:1279–1298. https://doi.org/10.1021/mp3006616

    Article  Google Scholar 

  120. Palmerini T et al (2014) Clinical outcomes with bioabsorbable polymer-versus durable polymer-based drug-eluting and bare-metal stents evidence from a comprehensive network meta-analysis. J Am Coll Cardiol 63:299–307. https://doi.org/10.1016/j.jacc.2013.09.061

    Article  Google Scholar 

  121. Im SH, Jung Y, Kim SH (2017) Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater 60:3–22. https://doi.org/10.1016/j.actbio.2017.07.019

    Article  Google Scholar 

  122. Pashneh-Tala S, MacNeil S, Claeyssens F (2016) The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev 22:68–100. https://doi.org/10.1089/ten.teb.2015.0100

    Article  Google Scholar 

  123. Ren XK et al (2015) Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 44:5680–5742. https://doi.org/10.1039/C4CS00483C

    Article  Google Scholar 

  124. Zhuang Y et al (2021) Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 6:1791–1809. https://doi.org/10.1016/j.bioactmat.2020.11.028

    Article  Google Scholar 

  125. Ghorbani F, Zamanian A, Shams A, Shamoosi A, Aidun A (2019) Fabrication and characterisation of super-paramagnetic responsive PLGA-gelatine-magnetite scaffolds with the unidirectional porous structure: a physicochemical, mechanical, and in vitro evaluation. IET Nanobiotechnol 13:860–867. https://doi.org/10.1049/iet-nbt.2018.5305

    Article  Google Scholar 

  126. Ishii M et al (2011) Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler Thromb Vasc Biol 31:2210–2215. https://doi.org/10.1161/Atvbaha.111.231100

    Article  Google Scholar 

  127. Liu X et al (2022) Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair. Bioact Mater 7:126–143. https://doi.org/10.1016/j.bioactmat.2021.04.036

    Article  Google Scholar 

  128. Flores D, Yu XJ (2017) Innovative tissue-engineered and synthetic vascular graft models for the treatment of PAD in small-diameter arteries. Regen Eng Transl Med 3:215–223. https://doi.org/10.1007/s40883-017-0040-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, M., Yang, F. (2023). Cardiovascular Nanotechnology. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8984-0_12

Download citation

Publish with us

Policies and ethics