Skip to main content

Anti-cancer Nanotechnology

  • Reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

  • 789 Accesses

Abstract

Nanomaterials have been widely used for cancer therapy in many years, receiving enhanced therapeutic efficacy compared with conventional strategy. However, the review comprehensively summarized various anti-cancer nanotechnologies are still missing. Herein we compared the differences deliver systems based on nanocarriers for cancer treatment at first. Second, we highlighted the importance of the self-function of nanomaterials (photothermal property, chemodynamic property, photodynamic property, and catalytic property) in the application of cancer therapy. The multimodal composite systems were further described to demonstrate the advantage of synergistic effect for cancer treatment. The review may generate new thought in the design of anti-cancer strategy based on the nanotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. El Sawy HS, Al Abd AM, Ahmed TA, El-Say KM, Torchilin VP (2018) Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12(11):10636–10664

    Article  Google Scholar 

  2. Dai Y, Xu C, Sun X, Chen X (2017) Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 46(12):3830–3852

    Article  Google Scholar 

  3. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    Article  Google Scholar 

  4. Huang X, Zhang W, Guan G, Song G, Zou R, Hu J (2017) Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc Chem Res 50(10):2529–2538

    Article  Google Scholar 

  5. Jia C, Guo YX, Wu FG (2021) Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small 18:2103868

    Article  Google Scholar 

  6. Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W (2018) Nanoscale metal–organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc 140(17):5670–5673

    Article  Google Scholar 

  7. Wenpei F, Yung BC, Xiaoyuan C (2018) Stimuli-responsive NO release for on-demand gas-sensitized synergistic cancer therapy. Angew Chem Int Ed Engl 57(28):8383–8394

    Article  Google Scholar 

  8. Song W, Tang Z, Zhang D, Yu H, Chen X (2015) Coadministration of vascular disrupting agents and nanomedicines to eradicate tumors from peripheral and central regions. Small 11(31):3755–3761

    Article  Google Scholar 

  9. Li W-P, Su C-H, Chang Y-C, Lin Y-J, Yeh C-S (2016) Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano 10(2):2017–2027

    Article  Google Scholar 

  10. Lin L-S, Huang T, Song J, Ou X-Y, Wang Z, Deng H, Tian R, Liu Y, Wang J-F, Liu Y, Yu G, Zhou Z, Wang S, Niu G, Yang H-H, Chen X (2019) Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J Am Chem Soc 141(25):9937–9945

    Article  Google Scholar 

  11. Wen J, Yang K, Liu F, Li H, Xu Y, Sun S (2017) Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 46:122

    Article  Google Scholar 

  12. Guo X, Su Q, Liu T, He XN, Yuan PY, Tian R, Li B, Zhang YM, Chen X (2021) Intelligent gold nanoparticles for synergistic tumor treatment via intracellular Ca2+ regulation and resulting on-demand photothermal therapy. Chem Eng J 433:133850

    Article  Google Scholar 

  13. Yuan PY, Yang TF, Liu T, Yu XQ, Bai YK, Zhang YM, Chen X (2020) Nanocomposite hydrogel with NIR/magnet/enzyme multiple responsiveness to accurately manipulate local drugs for on-demand tumor therapy. Biomaterials 262:120357

    Article  Google Scholar 

  14. Bardal SK, Waechter JE, Martin DS (2011) Chapter 2 - Pharmacokinetics, in: Bardal SK, Waechter JE, Martin DS (Eds.). Appl Pharmacol, Saunders WB, Philadelphia: 17–34

    Google Scholar 

  15. Wang N, Cheng X, Li N, Wang H, Chen H (2019) Nanocarriers and their loading strategies. Adv Healthc Mater 8(6):e1801002

    Article  Google Scholar 

  16. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9):1401

    Article  Google Scholar 

  17. He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W (2019) Adapting liposomes for oral drug delivery. Acta Pharm Sin B 9(1):36–48

    Article  Google Scholar 

  18. Elbayoumi TA, Torchilin VP (2010) Current trends in liposome research. Methods Mol Biol 605:1–7

    Article  Google Scholar 

  19. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    Article  Google Scholar 

  20. Gong C, Zhang X, Shi M, Li F, Wang S, Wang Y, Wang Y, Wei W, Ma G (2021) Tumor exosomes reprogrammed by low pH are efficient targeting vehicles for smart drug delivery and personalized therapy against their homologous tumor. Adv Sci 8(10):2002787

    Article  Google Scholar 

  21. Sun C, Lu J, Wang J, Hao P, Li C, Qi L, Yang L, He B, Zhong Z, Hao N (2021) Redox-sensitive polymeric micelles with aggregation-induced emission for bioimaging and delivery of anticancer drugs. J Nanobiotechnol 19(1):14

    Article  Google Scholar 

  22. Fan W, Wei Q, Xiang J, Tang Y, Zhou Q, Geng Y, Liu Y, Sun R, Xu L, Wang G, Piao Y, Shao S, Zhou Z, Tang J, Xie T, Li Z, Shen Y (2022) Mucus penetrating and cell-binding polyzwitterionic micelles as potent Oral nanomedicine for cancer drug delivery. Adv Mater 34:e2109189

    Article  Google Scholar 

  23. Liu T, Liu Z, Chen J, Jin R, Bai Y, Zhou Y, Chen X (2018) Redox-responsive supramolecular micelles for targeted imaging and drug delivery to tumor. J Biomed Nanotechnol 14(6):1107–1116

    Article  Google Scholar 

  24. Leiro V, Spencer AP, Magalhaes N, Pego AP (2022) Versatile fully biodegradable dendritic nanotherapeutics. Biomaterials 281:121356

    Article  Google Scholar 

  25. Hu X, Chai Z, Lu L, Ruan H, Wang R, Zhan C, Xie C, Pan J, Liu M, Wang H, Lu W (2019) Bortezomib dendrimer prodrug-based nanoparticle system. Adv Funct Mater 29(14):1807941

    Article  Google Scholar 

  26. Pu Y, Chang S, Yuan H, Wang G, He B, Gu Z (2013) The anti-tumor efficiency of poly(L-glutamic acid) dendrimers with polyhedral oligomeric silsesquioxane cores. Biomaterials 34(14):3658–3666

    Article  Google Scholar 

  27. Xiao D, Jia HZ, Zhang J, Liu CW, Zhuo RX, Zhang XZ (2014) A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery. Small 10(3):591–598

    Article  Google Scholar 

  28. Chen X, Soeriyadi AH, Lu X, Sagnella SM, Kavallaris M, Gooding JJ (2014) Dual bioresponsive mesoporous silica nanocarrier as an “AND” logic gate for targeted drug delivery cancer cells. Adv Funct Mater 24(44):6999–7006

    Article  Google Scholar 

  29. Jin R, Liu Z, Bai Y, Zhou Y, Chen X (2018) Multiple-responsive mesoporous silica nanoparticles for highly accurate drugs delivery to tumor cells. ACS Omega 3(4):4306–4315

    Article  Google Scholar 

  30. Majumder J, Taratula O, Minko T (2019) Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 144:57–77

    Article  Google Scholar 

  31. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075

    Article  Google Scholar 

  32. Guo K, Liu Y, Tang L, Shubhra QTH (2022) Homotypic biomimetic coating synergizes chemo-photothermal combination therapy to treat breast cancer overcoming drug resistance. Chem Eng J 428:131120

    Article  Google Scholar 

  33. Semkina AS, Abakumov MA, Skorikov AS, Abakumova TO, Melnikov PA, Grinenko NF, Cherepanov SA, Vishnevskiy DA, Naumenko VA, Ionova KP, Majouga AG, Chekhonin VP (2018) Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine 14(5):1733–1742

    Article  Google Scholar 

  34. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359(6372):eaan4672

    Article  Google Scholar 

  35. Ohyagi M, Nagata T, Ihara K, Yoshida-Tanaka K, Nishi R, Miyata H, Abe A, Mabuchi Y, Akazawa C, Yokota T (2021) DNA/RNA heteroduplex oligonucleotide technology for regulating lymphocytes in vivo. Nat Commun 12(1):7344

    Article  Google Scholar 

  36. Yoo YJ, Lee CH, Park SH, Lim YT (2022) Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 343:564–583

    Article  Google Scholar 

  37. Eygeris Y, Gupta M, Kim J, Sahay G (2022) Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res 55(1):2–12

    Article  Google Scholar 

  38. Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J, Fenton OS, Zhang Y, Olejnik KT, Yesilyurt V, Chen D, Barros S, Klebanov B, Novobrantseva T, Langer R, Anderson DG (2014) Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun 5:4277

    Article  Google Scholar 

  39. Liang X, Shi B, Wang K, Fan M, Jiao D, Ao J, Song N, Wang C, Gu J, Li Z (2016) Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials 82:194–207

    Article  Google Scholar 

  40. Chen Y, Zhu X, Zhang X, Liu B, Huang L (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18(9):1650–1656

    Article  Google Scholar 

  41. Ding M, Song N, He X, Li J, Zhou L, Tan H, Fu Q, Gu Q (2013) Toward the next-generation nanomedicines: design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano 7(3):1918–1928

    Article  Google Scholar 

  42. Lopez-Bertoni H, Kozielski KL, Rui Y, Lal B, Vaughan H, Wilson DR, Mihelson N, Eberhart CG, Laterra J, Green JJ (2018) Bioreducible polymeric nanoparticles containing multiplexed cancer stem cell regulating miRNAs inhibit glioblastoma growth and prolong survival. Nano Lett 18(7):4086–4094

    Article  Google Scholar 

  43. Hu QL, Jiang QY, Jin X, Shen J, Wang K, Li YB, Xu FJ, Tang GP, Li ZH (2013) Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 34(9):2265–2276

    Article  Google Scholar 

  44. Wang Y, Gao S, Ye W-H, Yoon HS, Yang Y-Y (2006) Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5(10):791–796

    Article  Google Scholar 

  45. Lin G, Revia RA, Zhang M (2021) Inorganic nanomaterial-mediated gene therapy in combination with other antitumor treatment modalities. Adv Funct Mater 31(5):2007096

    Article  Google Scholar 

  46. Mu Q, Lin G, Patton VK, Wang K, Press OW, Zhang M (2016) Gemcitabine and chlorotoxin conjugated iron oxide nanoparticles for glioblastoma therapy. J Mater Chem B 4(1):32–36

    Article  Google Scholar 

  47. Taratula O, Garbuzenko OB, Chen AM, Minko T (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 19(10):900–914

    Article  Google Scholar 

  48. Wang X, Yang T, Yu Z, Liu T, Jin R, Weng L, Bai Y, Gooding JJ, Zhang Y, Chen X (2022) Intelligent gold nanoparticles with oncogenic microRNA-dependent activities to manipulate tumorigenic environments for synergistic tumor therapy. Adv Mater 34:2110219

    Article  Google Scholar 

  49. Wang X, Liu Z, Jin R, Cai B, Liu S, Bai Y, Chen X (2021) Multifunctional hierarchical nanohybrids perform triple antitumor theranostics in a cascaded manner for effective tumor treatment. Acta Biomater 128:408–419

    Article  Google Scholar 

  50. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39

    Article  Google Scholar 

  51. Pisal DS, Kosloski MP, Balu-Iyer SV (2010) Delivery of therapeutic proteins. J Pharm Sci 99(6):2557–2575

    Article  Google Scholar 

  52. Liu ZN, Chen X, Zhang ZP, Zhang XJ, Saunders L, Zhou YS, Ma PX (2018) Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss. ACS Nano 12(10):9785–9799

    Article  Google Scholar 

  53. Yuan PY, Dou G, Liu T, Guo XY, Bai YK, Chu DK, Liu SY, Chen X, Jin Y (2021) On-demand manipulation of tumorigenic microenvironments by nano-modulator for synergistic tumor therapy. Biomaterials 275:120956

    Article  Google Scholar 

  54. Jin RH, Liu ZN, Liu T, Yuan PY, Bai YK, Chen X (2021) Redox-responsive micelles integrating catalytic nanomedicine and selective chemotherapy for effective tumor treatment. Chin Chem Lett 32(10):3076–3082

    Article  Google Scholar 

  55. Zhao M, Hu B, Gu Z, Joo K-I, Wang P, Tang Y (2013) Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today 8(1):11–20

    Article  Google Scholar 

  56. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  Google Scholar 

  57. Porter CJH, Wasan KM (2008) Lipid-based systems for the enhanced delivery of poorly water soluble drugs. Adv Drug Deliv Rev 60(6):615–616

    Article  Google Scholar 

  58. Kim SK, Foote MB, Huang L (2012) The targeted intracellular delivery of cytochrome C protein to tumors using lipid-apolipoprotein nanoparticles. Biomaterials 33(15):3959–3966

    Article  Google Scholar 

  59. Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, Jay SM, Demento SL, Agawu A, Licona Limon P, Ferrandino AF, Gonzalez D, Habermann A, Flavell RA, Fahmy TM (2012) Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater 11(10):895–905

    Article  Google Scholar 

  60. Wang M, Alberti K, Sun S, Arellano CL, Xu QB (2014) Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew Chem Int Ed Engl 53(11):2893–2898

    Article  Google Scholar 

  61. Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K (2014) Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials 35(28):8186–8196

    Article  Google Scholar 

  62. Chen Y, Chen HR, Shi JL (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25(23):3144–3176

    Article  Google Scholar 

  63. Chen L, Liu Z, Jin R, Yang X, Bai Y, Liu S, Chen X (2018) Stepwise co-delivery of an enzyme and prodrug based on a multi-responsive nanoplatform for accurate tumor therapy. J Mater Chem B 6(39):6262–6268

    Article  Google Scholar 

  64. Jin R, Liu Z, Bai Y, Zhou Y, Chen X (2018) Effective control of enzyme activity based on a subtle nanoreactor: a promising strategy for biomedical applications in the future. ACS Appl Nano Mater 1(1):302–309

    Article  Google Scholar 

  65. Yang X, Zhou F, Yuan P, Dou G, Liu X, Liu S, Wang X, Jin R, Dong Y, Zhou J, Lv Y, Deng Z, Liu S, Chen X, Han Y, Jin Y (2021) T cell-depleting nanoparticles ameliorate bone loss by reducing activated T cells and regulating the Treg/Th17 balance. Bioact Mater 6(10):3150–3163

    Article  Google Scholar 

  66. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  Google Scholar 

  67. Tang R, Kim CS, Solfiell DJ, Rana S, Mout R, Velazquez-Delgado EM, Chompoosor A, Jeong Y, Yan B, Zhu ZJ, Kim C, Hardy JA, Rotello VM (2013) Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS Nano 7(8):6667–6673

    Article  Google Scholar 

  68. Jiang TY, Sun WJ, Zhu QW, Burns NA, Khan SA, Mo R, Gu Z (2015) Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv Mater 27(6):1021–1028

    Article  Google Scholar 

  69. He CL, Tang ZH, Tian HY, Chen XS (2016) Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv Drug Deliv Rev 98:64–76

    Article  Google Scholar 

  70. Khan MM, Filipczak N, Torchilin VP (2021) Cell penetrating peptides: a versatile vector for co-delivery of drug and genes in cancer. J Control Release 330:1220–1228

    Article  Google Scholar 

  71. Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17(17–18):1044–1052

    Article  Google Scholar 

  72. Yu XQ, Su Q, Chang XW, Chen K, Yuan PY, Liu T, Tian R, Bai YK, Zhang YM, Chen X (2021) Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials 278:11

    Article  Google Scholar 

  73. Jin RH, Xie JR, Yang XS, Tian Y, Yuan PY, Bai YK, Liu SY, Cai BL, Chen X (2020) A tumor-targeted nanoplatform with stimuli-responsive cascaded activities for multiple model tumor therapy. Biomater Sci 8(7):1865–1874

    Article  Google Scholar 

  74. Chen X, Liu Z (2016) Dual responsive mesoporous silica nanoparticles for targeted co-delivery of hydrophobic and hydrophilic anticancer drugs to tumor cells. J Mater Chem B 4(25):4382–4388

    Article  Google Scholar 

  75. Xiang Y, Duan XH, Feng LB, Jiang SQ, Deng L, Shen J, Yang YJ, Guo R (2019) tLyp-1-conjugated GSH-sensitive biodegradable micelles mediate enhanced pUNO1-hTRAILa/curcumin co-delivery to gliomas. Chem Eng J 374:392–404

    Article  Google Scholar 

  76. Yang Y, Meng Y, Ye J, Xia X, Wang H, Li L, Dong W, Jin D, Liu Y (2018) Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle. J Control Release 287:103–120

    Article  Google Scholar 

  77. Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C (2019) Nanomaterials as photothermal therapeutic agents. Prog Mater Sci 99:1–26

    Article  Google Scholar 

  78. Wu C, Wu Y, Zhu X, Zhang J, Liu J, Zhang Y (2021) Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today 36:100963

    Article  Google Scholar 

  79. Jin R, Liu Z, Bai Y, Zhou Y, Gooding JJ, Chen X (2018) Core–satellite mesoporous silica–gold nanotheranostics for biological stimuli triggered multimodal cancer therapy. Adv Funct Mater 28(31):1801961

    Article  Google Scholar 

  80. Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M (2017) Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater 29(6):4894

    Google Scholar 

  81. Wang X, Jin N, Wang Q, Liu T, Liu K, Li Y, Bai Y, Chen X (2019) MiRNA delivery system based on stimuli-responsive gold nanoparticle aggregates for multimodal tumor therapy. ACS Appl Bio Mater 2(7):2833–2839

    Article  Google Scholar 

  82. Saleem J, Wang L, Chen C (2018) Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv Healthc Mater 7(20):e1800525

    Article  Google Scholar 

  83. Lu GH, Shang WT, Deng H, Han ZY, Hu M, Liang XY, Fang CH, Zhu XH, Fan YF, Tian J (2019) Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging. Biomaterials 195:13–22

    Article  Google Scholar 

  84. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323

    Article  Google Scholar 

  85. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–8561

    Article  Google Scholar 

  86. Song J, Wang F, Yang X, Ning B, Harp MG, Culp SH, Hu S, Huang P, Nie L, Chen J, Chen X (2016) Gold nanoparticle coated carbon nanotube ring with enhanced Raman scattering and photothermal conversion property for theranostic applications. J Am Chem Soc 138(22):7005–7015

    Article  Google Scholar 

  87. Bian W, Wang Y, Pan Z, Chen N, Li X, Wong W-L, Liu X, He Y, Zhang K, Lu Y-J (2021) Review of functionalized nanomaterials for photothermal therapy of cancers. ACS Appl Nano Mater 4(11):11353–11385

    Article  Google Scholar 

  88. Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z (2012) In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 24(41):5586–5592

    Article  Google Scholar 

  89. Lin M, Wang D, Li S, Tang Q, Liu S, Ge R, Liu Y, Zhang D, Sun H, Zhang H, Yang B (2016) Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy. Biomaterials 104:213–222

    Article  Google Scholar 

  90. Han SI, Lee SW, Cho MG, Yoo JM, Oh MH, Jeong B, Kim D, Park OK, Kim J, Namkoong E, Jo J, Lee N, Lim C, Soh M, Sung YE, Yoo J, Park K, Hyeon T (2020) Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv Mater 32(31):e2001566

    Article  Google Scholar 

  91. Huang C, Zhang L, Guo Q, Zuo Y, Wang N, Wang H, Kong D, Zhu D, Zhang L (2021) Robust nanovaccine based on polydopamine-coated mesoporous silica nanoparticles for effective photothermal-immunotherapy against melanoma. Adv Funct Mater 31(18):2010637

    Article  Google Scholar 

  92. Zhou YF, Fan SY, Feng LL, Huang X, Chen X (2021) Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv Mater 33:2104223

    Article  Google Scholar 

  93. Wang Y, Yin W, Ke W, Chen W, He C, Ge Z (2018) Multifunctional polymeric micelles with amplified Fenton reaction for tumor ablation. Biomacromolecules 19(6):1990–1998

    Article  Google Scholar 

  94. Tang Z, Liu Y, He M, Bu W (2019) Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed Engl 58(4):946–956

    Article  Google Scholar 

  95. Li SL, Jiang P, Jiang FL, Liu Y (2021) Recent advances in nanomaterial-based nanoplatforms for chemodynamic cancer therapy. Adv Funct Mater 31(22):2100243

    Article  Google Scholar 

  96. Fu LH, Hu YR, Qi C, He T, Jiang S, Jiang C, He J, Qu J, Lin J, Huang P (2019) Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 13(12):13985–13994

    Article  Google Scholar 

  97. Huang Y, Wu S, Zhang L, Deng Q, Ren J, Qu X (2022) A metabolic multistage glutathione depletion used for tumor-specific chemodynamic therapy. ACS Nano 16(3):4228–4238

    Article  Google Scholar 

  98. Zhou Z, Song J, Tian R, Yang Z, Yu G, Lin L, Zhang G, Fan W, Zhang F, Niu G, Nie L, Chen X (2017) Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angew Chem Int Ed Engl 56(23):6492–6496

    Article  Google Scholar 

  99. Sang Y, Cao F, Li W, Zhang L, You Y, Deng Q, Dong K, Ren J, Qu X (2020) Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J Am Chem Soc 142(11):5177–5183

    Article  Google Scholar 

  100. Chen L, Yang T, Tian R, Yin T, Weng L, Bai Y, Zhang Y, Chen X (2021) Near-infrared and tumor environment Co-activated nanoplatform for precise tumor therapy in multiple models. Appl Mater Today 24:101133

    Article  Google Scholar 

  101. Chen L, Zhao L, Hu G, Jin R, Cai B, Bai Y, Chen X (2020) Tumor-specific nanomedicine via sequential catalytic reactions for accurate tumor therapy. J Mater Chem B 8(31):6857–6865

    Article  Google Scholar 

  102. Guo X, Zhu M, Yuan PY, Liu T, Tian R, Bai YK, Zhang YM, Chen X (2021) The facile formation of hierarchical mesoporous silica nanocarriers for tumor-selective multimodal theranostics. Biomater Sci 9(15):5237–5246

    Article  Google Scholar 

  103. Jin R, Wang Q, Dou G, Bai Y, Liu S, Cai B, Chen X (2020) Stimuli responsive nanoplatform with mitochondria-specific multiple model therapeutics for effective tumor treatment. Appl Mater Today 21:100883

    Article  Google Scholar 

  104. Liu C, Wang D, Zhang S, Cheng Y, Yang F, Xing Y, Xu T, Dong H, Zhang X (2019) Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 13(4):4267–4277

    Article  Google Scholar 

  105. Wang P, Xiao M, Pei H, Xing H, Luo S-H, Tsung C-K, Li L (2021) Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy. Chem Eng J 415:129036

    Article  Google Scholar 

  106. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J (2018) Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107

    Article  Google Scholar 

  107. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  Google Scholar 

  108. Hu JJ, Lei Q, Zhang XZ (2020) Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Prog Mater Sci 114:100685

    Article  Google Scholar 

  109. Han K, Zhang J, Zhang W, Wang S, Xu L, Zhang C, Zhang X, Han H (2017) Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy. ACS Nano 11(3):3178–3188

    Article  Google Scholar 

  110. Jacques SL (2013) Corrigendum: optical properties of biological tissues: a review. Phys Med Biol 58(14):5007–5008

    Article  Google Scholar 

  111. Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138

    Article  Google Scholar 

  112. Thambi T, Deepagan VG, Yoon HY, Han HS, Kim S-H, Son S, Jo D-G, Ahn C-H, Suh YD, Kim K, Chan Kwon I, Lee DS, Park JH (2014) Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35(5):1735–1743

    Article  Google Scholar 

  113. Zhang W, Li S, Liu X, Yang C, Hu N, Dou L, Zhao B, Zhang Q, Suo Y, Wang J (2018) Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv Funct Mater 28(13):1706375

    Article  Google Scholar 

  114. Fu L-H, Qi C, Hu Y-R, Lin J, Huang P (2019) Glucose oxidase-instructed multimodal synergistic cancer therapy. Adv Mater 31(21):1808325

    Article  Google Scholar 

  115. Yu S, Chen Z, Zeng X, Chen X, Gu Z (2019) Advances in nanomedicine for cancer starvation therapy. Theranostics 9(26):8026–8047

    Article  Google Scholar 

  116. Shojaei F (2012) Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett 320(2):130–137

    Article  Google Scholar 

  117. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5(6):423–435

    Article  Google Scholar 

  118. Fu L-H, Qi C, Lin J, Huang P (2018) Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem Soc Rev 47(17):6454–6472

    Article  Google Scholar 

  119. Zhang C, Ni D, Liu Y, Yao H, Bu W, Shi J (2017) Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat Nanotechnol 12(4):378–386

    Article  Google Scholar 

  120. Yu XQ, Su Q, Chang XW, Chen K, Yuan PY, Liu T, Tian R, Bai YK, Zhang YM, Chen X (2021) Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials 278:121181

    Article  Google Scholar 

  121. Sui H, Zhao J, Zhou L, Wen H, Deng W, Li C, Ji Q, Liu X, Feng Y, Chai N, Zhang Q, Cai J, Li Q (2017) Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. Cancer Lett 403:86–97

    Article  Google Scholar 

  122. Zhang Y-H, Qiu W-X, Zhang M, Zhang L, Zhang X-Z (2018) MnO2 motor: a prospective cancer-starving therapy promoter. ACS Appl Mater Interfaces 10(17):15030–15039

    Article  Google Scholar 

  123. Jin Q, Deng Y, Jia F, Tang Z, Ji J (2018) Gas therapy: an emerging “green” strategy for anticancer therapeutics. Adv Ther 1(6):1800084

    Article  Google Scholar 

  124. Yu L, Hu P, Chen Y (2018) Gas-generating nanoplatforms: material chemistry, multifunctionality, and gas therapy. Adv Mater 30(49):e1801964

    Article  Google Scholar 

  125. Xu J, Zeng F, Wu H, Hu C, Yu C, Wu S (2014) Preparation of a mitochondria-targeted and NO-releasing nanoplatform and its enhanced pro-apoptotic effect on cancer cells. Small 10(18):3750–3760

    Article  Google Scholar 

  126. Chen H, Tian J, He W, Guo Z (2015) H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J Am Chem Soc 137(4):1539–1547

    Article  Google Scholar 

  127. Hoshikawa H, Indo K, Mori T, Mori N (2011) Enhancement of the radiation effects by D-allose in head and neck cancer cells. Cancer Lett 306(1):60–66

    Article  Google Scholar 

  128. Seiwert TY, Salama JK, Vokes EE (2007) The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol 4(3):156–171

    Article  Google Scholar 

  129. Karasawa K, Shinoda H, Katsui K, Seki K, Kohno M, Hanyu N, Nasu S, Muramatsu H, Maebayashi K, Mitsuhashi N, Yoshihara T (2002) Radiotherapy with concurrent docetaxel and carboplatin for head and neck cancer. Anticancer Res 22(6b):3785–3788

    Google Scholar 

  130. Werner ME, Copp JA, Karve S, Cummings ND, Sukumar R, Li C, Napier ME, Chen RC, Cox AD, Wang AZ (2011) Folate-targeted polymeric nanoparticle formulation of docetaxel is an effective molecularly targeted radiosensitizer with efficacy dependent on the timing of radiotherapy. ACS Nano 5(11):8990–8998

    Article  Google Scholar 

  131. Fan W, Shen B, Bu W, Chen F, Zhao K, Zhang S, Zhou L, Peng W, Xiao Q, Xing H, Liu J, Ni D, He Q, Shi J (2013) Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging. J Am Chem Soc 135(17):6494–6503

    Article  Google Scholar 

  132. Wang M, Morsbach F, Sander D, Gheorghiu L, Nanda A, Benes C, Kriegs M, Krause M, Dikomey E, Baumann M, Dahm-Daphi J, Settleman J, Willers H (2011) EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks. Cancer Res 71(19):6261–6269

    Article  Google Scholar 

  133. Nakae T, Uto Y, Tanaka M, Shibata H, Nakata E, Tominaga M, Maezawa H, Hashimoto T, Kirk KL, Nagasawa H, Hori H (2008) Design, synthesis, and radiosensitizing activities of sugar-hybrid hypoxic cell radiosensitizers. Bioorg Med Chem 16(2):675–682

    Article  Google Scholar 

  134. Mimeault M, Hauke R, Batra SK (2008) Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther 83(5):673–691

    Article  Google Scholar 

  135. Makin G, Hickman JA (2000) Apoptosis and cancer chemotherapy. Cell Tissue Res 301(1):143–152

    Article  Google Scholar 

  136. Rashmi R, Kumar S, Karunagaran D (2004) Ectopic expression of Hsp70 confers resistance and silencing its expression sensitizes human colon cancer cells to curcumin-induced apoptosis. Carcinogenesis 25(2):179–187

    Article  Google Scholar 

  137. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234

    Article  Google Scholar 

  138. Trindade GS, Farias SL, Rumjanek VM, Capella MA (2000) Methylene blue reverts multidrug resistance: sensitivity of multidrug resistant cells to this dye and its photodynamic action. Cancer Lett 151(2):161–167

    Article  Google Scholar 

  139. Khdair A, Chen D, Patil Y, Ma L, Dou QP, Shekhar MP, Panyam J (2010) Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release 141(2):137–144

    Article  Google Scholar 

  140. He C, Liu D, Lin W (2015) Self-assembled core-shell nanoparticles for combined chemotherapy and photodynamic therapy of resistant head and neck cancers. ACS Nano 9(1):991–1003

    Article  Google Scholar 

  141. Zhou Z, Hu K, Ma R, Yan Y, Ni B, Zhang Y, Wen L, Zhang Q, Cheng Y (2016) Dendritic platinum-copper alloy nanoparticles as theranostic agents for multimodal imaging and combined chemophotothermal therapy. Adv Funct Mater 26(33):5971–5978

    Article  Google Scholar 

  142. Zhu A, Miao K, Deng Y, Ke H, He H, Yang T, Guo M, Li Y, Guo Z, Wang Y, Yang X, Zhao Y, Chen H (2015) Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. ACS Nano 9(8):7874–7885

    Article  Google Scholar 

  143. Dong K, Liu Z, Li Z, Ren J, Qu X (2013) Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Adv Mater 25(32):4452–4458

    Article  Google Scholar 

  144. Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WCW (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20(20):3832–3838

    Article  Google Scholar 

  145. Li J, Lyv Z, Li Y, Liu H, Wang J, Zhan W, Chen H, Chen H, Li X (2015) A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug. Biomaterials 51:12–21

    Article  Google Scholar 

  146. Huang Y, Qiu F, Shen L, Chen D, Su Y, Yang C, Li B, Yan D, Zhu X (2016) Combining two-photon-activated fluorescence resonance energy transfer and near-infrared photothermal effect of unimolecular micelles for enhanced photodynamic therapy. ACS Nano 10(11):10489–10499

    Article  Google Scholar 

  147. Sun X, Wang C, Gao M, Hu A, Liu Z (2015) Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv Funct Mater 25(16):2386–2394

    Article  Google Scholar 

  148. Kolemen S, Ozdemir T, Lee D, Kim GM, Karatas T, Yoon J, Akkaya EU (2016) Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: towards a paradigm change in photodynamic therapy. Angew Chem Int Ed Engl 55(11):3606–3610

    Article  Google Scholar 

  149. Wei J, Li J, Sun D, Li Q, Ma J, Chen X, Zhu X, Zheng N (2018) A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv Funct Mater 28(17):1706310

    Article  Google Scholar 

  150. Vijayaraghavan P, Liu CH, Vankayala R, Chiang CS, Hwang KC (2014) Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv Mater 26(39):6689–6695

    Article  Google Scholar 

  151. Abbas M, Zou Q, Li S, Yan X (2017) Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv Mater 29(12):1605021

    Article  Google Scholar 

  152. Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G, Chen X, Nie Z (2013) Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7(6):5320–5329

    Article  Google Scholar 

  153. Liu T, Jin R, Yuan P, Bai Y, Cai B, Chen X (2019) Intracellular enzyme-triggered assembly of amino acid-modified gold nanoparticles for accurate cancer therapy with multimode. ACS Appl Mater Interfaces 11(32):28621–28630

    Article  Google Scholar 

  154. Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D, Bosia A (2005) Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 65(2):516–525

    Article  Google Scholar 

  155. Wen J, Yang K, Liu F, Li H, Xu Y, Sun S (2017) Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 46(19):6024–6045

    Article  Google Scholar 

  156. Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 26(32):5646–5652

    Article  Google Scholar 

  157. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13(11):813–827

    Article  Google Scholar 

  158. Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, Zou Q, Ma G, Yan X (2016) An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 28(19):3669–3676

    Article  Google Scholar 

  159. Zhang P, Wang Y, Lian J, Shen Q, Wang C, Ma B, Zhang Y, Xu T, Li J, Shao Y, Xu F, Zhu J-J (2017) Engineering the surface of smart nanocarriers using a pH-/thermal-/GSH-responsive polymer zipper for precise tumor targeting therapy in vivo. Adv Mater 29(36):1702311

    Article  Google Scholar 

  160. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  Google Scholar 

  161. Oh SH, Ward CL, Atala A, Yoo JJ, Harrison BS (2009) Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials 30(5):757–762

    Article  Google Scholar 

  162. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM (2018) Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 18(7):452–464

    Article  Google Scholar 

  163. Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166(3):555–566

    Article  Google Scholar 

  164. Xiang H, Xue F, Yi T, Tham HP, Liu J-G, Zhao Y (2018) Cu2-xS nanocrystals cross-linked with Chlorin e6-functionalized polyethylenimine for synergistic photodynamic and photothermal therapy of cancer. ACS Appl Mater Interfaces 10(19):16344–16351

    Article  Google Scholar 

  165. Dong Z, Feng L, Hao Y, Chen M, Gao M, Chao Y, Zhao H, Zhu W, Liu J, Liang C, Zhang Q, Liu Z (2018) Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J Am Chem Soc 140(6):2165–2178

    Article  Google Scholar 

  166. Chen D, Tang Y, Zhu J, Zhang J, Song X, Wang W, Shao J, Huang W, Chen P, Dong X (2019) Photothermal-pH-hypoxia responsive multifunctional nanoplatform for cancer photo-chemo therapy with negligible skin phototoxicity. Biomaterials 221:119422

    Article  Google Scholar 

  167. Wang J, Sun J, Hu W, Wang Y, Chou T, Zhang B, Zhang Q, Ren L, Wang H (2020) A porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv Mater 32(22):2001862

    Article  Google Scholar 

  168. Li W, Peng J, Tan L, Wu J, Shi K, Qu Y, Wei X, Qian Z (2016) Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Biomaterials 106:119–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, X. et al. (2023). Anti-cancer Nanotechnology. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8984-0_11

Download citation

Publish with us

Policies and ethics