Skip to main content

ILC Differentiation from Progenitors in the Bone Marrow

  • Chapter
  • First Online:
Innate Lymphoid Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1365))

Abstract

Innate lymphoid cells (ILCs) are a family of immune cells that possess similar functions as T cells. We review steps of central ILC development in the bone marrow of adult mice and discuss recent evidence for peripheral ILC development suggesting extramedullary sites of ILC development. We also assess the contribution of development during different phases of life towards shaping the composition of the adult ILC pool. Finally, we briefly review the local cues that lead to heterogeneity of ILCs between tissues. We propose that tissue-resident ILC progenitors may economically allow tissues to elicit rapid expansion of specific ILC types that are needed based on the nature of antigenic assaults in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klose CSN, Artis D. Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Res. 2020;30(6):475–91.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054–66.

    Article  CAS  PubMed  Google Scholar 

  3. Hazenberg MD, Spits H. Human innate lymphoid cells. Blood. 2014;124(5):700–9.

    Article  CAS  PubMed  Google Scholar 

  4. Wang S, Xia P, Chen Y, Qu Y, Xiong Z, Ye B, et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell. 2017;171(1):201–16. e18

    Article  CAS  PubMed  Google Scholar 

  5. Bando JK, Gilfillan S, Di Luccia B, Fachi JL, Sécca C, Cella M, et al. ILC2s are the predominant source of intestinal ILC-derived IL-10. J Exp Med. 2019;217(2)

    Google Scholar 

  6. Huehn J, Siegmund K, Lehmann JCU, Siewert C, Haubold U, Feuerer M, et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med. 2004;199(3):303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gronke K, Kofoed-Nielsen M, Diefenbach A. Innate lymphoid cells, precursors and plasticity. Immunol Lett. 2016;179:9–18.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang K, Xu X, Pasha MA, Siebel CW, Costello A, Haczku A, et al. Cutting edge: notch signaling promotes the plasticity of Group-2 innate lymphoid cells. J Immunol. 2017;198(5):1798–803.

    Article  CAS  PubMed  Google Scholar 

  9. Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, Dubrot J, et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria–specific CD4+ T cells. Science. 2015;348(6238):1031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou L, Chu C, Teng F, Bessman NJ, Goc J, Santosa EK, et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019;568(7752):405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sonnenberg GF, Hepworth MR. Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol. 2019;19(10):599–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colonna M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity. 2018;48(6):1104–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klose CSN, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765–74.

    Article  CAS  PubMed  Google Scholar 

  14. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  15. De Obaldia ME, Bhandoola A. Transcriptional regulation of innate and adaptive lymphocyte lineages. Annu Rev Immunol. 2015;33(1):607–42.

    Article  PubMed  CAS  Google Scholar 

  16. Fan X, Rudensky AY. Hallmarks of tissue-resident lymphocytes. Cell. 2016;164(6):1198–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paust S, Gill HS, Wang B-Z, Flynn MP, Moseman EA, Senman B, et al. Critical role for the chemokine receptor CXCR6 in NK cell–mediated antigen-specific memory of haptens and viruses. Nat Immunol. 2010;11(12):1127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez-Gonzalez I, Mathä L, Steer CA, Ghaedi M, Poon GFT, Takei F. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity. 2016;45(1):198–208.

    Article  CAS  PubMed  Google Scholar 

  19. Yang Q, Bhandoola A. The development of adult innate lymphoid cells. Curr Opin Immunol. 2016;39:114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Das A, Harly C, Yang Q, Bhandoola A. Lineage specification in innate lymphocytes. Cytokine Growth Factor Rev. 2018;42:20–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell. 2017;168(6):1086–100e10.

    Article  CAS  PubMed  Google Scholar 

  22. Ghaedi M, Shen ZY, Orangi M, Martinez-Gonzalez I, Wei L, Lu X, et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J Exp Med. 2019;217(3)

    Google Scholar 

  23. Zeis P, Lian M, Fan X, Herman JS, Hernandez DC, Gentek R, et al. In situ maturation and tissue adaptation of type 2 innate lymphoid cell progenitors. Immunity. 2020;53(4):775–92. e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oherle K, Acker E, Bonfield M, Wang T, Gray J, Lang I, et al. Insulin-like growth factor 1 supports a pulmonary niche that promotes type 3 innate lymphoid cell development in newborn lungs. Immunity. 2020;52(2):275–94. e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012;30:647–75.

    Article  CAS  PubMed  Google Scholar 

  26. Meininger I, Carrasco A, Rao A, Soini T, Kokkinou E, Mjösberg J. Tissue-specific features of innate lymphoid cells. Trends Immunol. 2020;41(10):902–17.

    Article  CAS  PubMed  Google Scholar 

  27. Robinette ML, Colonna M. Immune modules shared by innate lymphoid cells and T cells. J Allergy Clin Immunol. 2016;138(5):1243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lim AI, Verrier T, Vosshenrich CAJ, Di Santo JP. Developmental options and functional plasticity of innate lymphoid cells. Curr Opin Immunol. 2017;44:61–8.

    Article  CAS  PubMed  Google Scholar 

  29. Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41(3):354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 2016;179:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yokoyama WM, Plougastel BFM. Immune functions encoded by the natural killer gene complex. Nat Rev Immunol. 2003;3(4):304–16.

    Article  CAS  PubMed  Google Scholar 

  32. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiao Y, Huntington ND, Belz GT, Seillet C. Type 1 innate lymphoid cell biology: lessons learnt from natural killer cells. Front Immunol. 2016;7:426.

    Google Scholar 

  34. Weizman O-E, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, et al. ILC1 confer early host protection at initial sites of viral infection. Cell. 2017;171(4):795–808e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Marotel M, Fauteux-Daniel S, Mathieu A-L, Viel S, Marçais A, et al. T-bet and EOMES govern differentiation and function of mouse and human NK cells and ILC1. Eur J Immunol. 2018;48(5):738–50.

    Article  CAS  PubMed  Google Scholar 

  36. Cooper MA, Colonna M, Yokoyama WM. Hidden talents of natural killers: NK cells in innate and adaptive immunity. EMBO Rep. 2009;10(10):1103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vosshenrich CAJ, García-Ojeda ME, Samson-Villéger SI, Pasqualetto V, Enault L, Goff OR-L, et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol. 2006;7(11):1217–24.

    Article  CAS  PubMed  Google Scholar 

  38. Gabrielli S, Sun M, Bell A, Zook EC, de Pooter RF, Zamai L, et al. Murine thymic NK cells are distinct from ILC1s and have unique transcription factor requirements. Eur J Immunol. 2017;47(5):800–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ribeiro VSG, Hasan M, Wilson A, Boucontet L, Pereira P, Lesjean-Pottier S, et al. Cutting edge: Thymic NK cells develop independently from T cell precursors. J Immunol. 2010;185(9):4993–7.

    Article  CAS  PubMed  Google Scholar 

  40. Aw Yeang HX, Piersma SJ, Lin Y, Yang L, Malkova ON, Miner C, et al. Cutting edge: human CD49e-; NK cells are tissue resident in the liver. J Immunol. 2017;198(4):1417–22.

    Article  CAS  PubMed  Google Scholar 

  41. McFarland AP, Yalin A, Wang S-Y, Cortez VS, Landsberger T, Sudan R, et al. Multi-tissue single-cell analysis deconstructs the complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity. 2021;54(6):1320–1337e4.

    Article  CAS  PubMed  Google Scholar 

  42. Mackay LK, Minnich M, Kragten NAM, Liao Y, Nota B, Seillet C, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science. 2016;352(6284):459–63.

    Article  CAS  PubMed  Google Scholar 

  43. Koyasu S, Moro K. Innate Th2-type immune responses and the natural helper cell, a newly identified lymphocyte population. Curr Opin Allergy Clin Immunol. 2011;11(2):109–14.

    Article  CAS  PubMed  Google Scholar 

  44. Van Dyken SJ, Mohapatra A, Nussbaum JC, Molofsky AB, Thornton EE, Ziegler SF, et al. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and γδ T cells. Immunity. 2014;40(3):414–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Halim TYF, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity. 2012;37(3):463–74.

    Article  CAS  PubMed  Google Scholar 

  46. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CGK, Doering TA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Howard E, Lewis G, Galle-Treger L, Hurrell BP, Helou DG, Shafiei-Jahani P, et al. IL-10 production by ILC2s requires Blimp-1 and CMAF, modulates cellular metabolism, and ameliorates airway hyperreactivity. J Allergy Clin Immunol. 2021;147(4):1281–1295e5.

    Article  CAS  PubMed  Google Scholar 

  48. Neill DR, Fallon PG. Innate lymphoid cells and parasites: ancient foes with shared history. Parasite Immunol. 2018;40(2):e12513.

    Article  PubMed Central  Google Scholar 

  49. Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev. 2018;286(1):37–52.

    Article  CAS  PubMed  Google Scholar 

  50. Jacquelot N, Seillet C, Wang M, Pizzolla A, Liao Y, Hediyeh-zadeh S, et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat Immunol. 2021;22(7):851–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cardoso V, Chesné J, Ribeiro H, García-Cassani B, Carvalho T, Bouchery T, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature. 2017;549(7671):277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour R-EE, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549(7672):351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar A-L, Kabata H, et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature. 2017;549(7671):282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nagashima H, Mahlakõiv T, Shih H-Y, Davis FP, Meylan F, Huang Y, et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity. 2019;51(4):682–695e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential “inflammatory” type 2 innate lymphoid cells. Nat Immunol. 2015;16(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  56. Price AE, Liang H-E, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, et al. Systemically dispersed innate IL-13–expressing cells in type 2 immunity. Proc Natl Acad Sci. 2010;107(25):11489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463(7280):540–4.

    Article  CAS  PubMed  Google Scholar 

  58. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mackley EC, Houston S, Marriott CL, Halford EE, Lucas B, Cerovic V, et al. CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun. 2015;6(1):5862.

    Article  CAS  PubMed  Google Scholar 

  60. Satoh-Takayama N. Heterogeneity and diversity of group 3 innate lymphoid cells: new cells on the block. Int Immunol. 2016;28(1):29–34.

    CAS  PubMed  Google Scholar 

  61. Melo-Gonzalez F, Hepworth MR. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells. Immunology. 2017;150(3):265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15(4):354–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eberl G, Colonna M, Di Santo JP, McKenzie ANJ. Innate lymphoid cells: a new paradigm in immunology. Science. 2015;348(6237):aaa6566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Klose CSN, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d'Hargues Y, et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature. 2013;494(7436):261–5.

    Article  CAS  PubMed  Google Scholar 

  65. van de Pavert SA. Lymphoid tissue inducer (LTi) cell ontogeny and functioning in embryo and adult. Biom J. 2021;44(2):123–32.

    Google Scholar 

  66. Satoh-Takayama N, Vosshenrich CAJ, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008;29(6):958–70.

    Article  CAS  PubMed  Google Scholar 

  67. Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343(6178):1249288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14(3):282–9.

    Article  CAS  PubMed  Google Scholar 

  69. Guo X, Qiu J, Tu T, Yang X, Deng L, Anders RA, et al. Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection. Immunity. 2014;40(1):25–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JKM, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457(7230):722–5.

    Article  CAS  PubMed  Google Scholar 

  71. Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528(7583):560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keir ME, Yi T, Lu TT, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med. 2020;217(3)

    Google Scholar 

  73. Hepworth MR, Monticelli LA, Fung TC, Ziegler CGK, Grunberg S, Sinha R, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010;464(7293):1371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. Immunity. 2010;33(5):736–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pearson C, Thornton EE, McKenzie B, Schaupp A-L, Huskens N, Griseri T, et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife. 2016:e10066.

    Google Scholar 

  77. Song C, Lee JS, Gilfillan S, Robinette ML, Newberry RD, Stappenbeck TS, et al. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J Exp Med. 2015;212(11):1869–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zeng B, Shi S, Ashworth G, Dong C, Liu J, Xing F. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 2019;10(4):315.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Eberl G, Marmon S, Sunshine M-J, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol. 2004;5(1):64–73.

    Article  CAS  PubMed  Google Scholar 

  80. Eberl G. Development and evolution of RORγt+ cells in a microbe’s world. Immunol Rev. 2012;245(1):177–88.

    Article  CAS  PubMed  Google Scholar 

  81. Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 1997;7(4):493–504.

    Article  CAS  PubMed  Google Scholar 

  82. Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol. 2008;9(6):667–75.

    Article  CAS  PubMed  Google Scholar 

  83. Yang Q, Li F, Harly C, Xing S, Ye L, Xia X, et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol. 2015;16(10):1044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature. 2014;508(7496):397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157(2):340–56.

    Article  CAS  PubMed  Google Scholar 

  86. Xu W, Cherrier DE, Chea S, Vosshenrich C, Serafini N, Petit M, et al. An Id2RFP-reporter mouse redefines innate lymphoid cell precursor potentials. Immunity. 2019;50(4):1054–1068e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Walker JA, Clark PA, Crisp A, Barlow JL, Szeto A, Ferreira ACF, et al. Polychromic reporter mice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow. Immunity. 2019;51(1):104–118e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kasal DN, Bendelac A. Multi-transcription factor reporter mice delineate early precursors to the ILC and LTi lineages. J Exp Med. 2020;218(2)

    Google Scholar 

  89. Inlay MA, Bhattacharya D, Sahoo D, Serwold T, Seita J, Karsunky H, et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 2009;23(20):2376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Possot C, Schmutz S, Chea S, Boucontet L, Louise A, Cumano A, et al. Notch signaling is necessary for adult, but not fetal, development of RORγt(+) innate lymphoid cells. Nat Immunol. 2011;12(10):949–58.

    Article  CAS  PubMed  Google Scholar 

  92. Ishizuka IE, Chea S, Gudjonson H, Constantinides MG, Dinner AR, Bendelac A, et al. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage. Nat Immunol. 2016;17(3):269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cherrier M, Sawa S, Eberl G. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med. 2012;209(4):729–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghaedi M, Steer CA, Martinez-Gonzalez I, Halim TYF, Abraham N, Takei F. Common-lymphoid-progenitor-independent pathways of innate and T lymphocyte development. Cell Rep. 2016;15(3):471–80.

    Article  CAS  PubMed  Google Scholar 

  95. Yang Q, Saenz SA, Zlotoff DA, Artis D, Bhandoola A. Cutting edge: natural helper cells derive from lymphoid progenitors. J Immunol. 2011;187(11):5505–9.

    Article  CAS  PubMed  Google Scholar 

  96. Harly C, Cam M, Kaye J, Bhandoola A. Development and differentiation of early innate lymphoid progenitors. J Exp Med. 2018;215(1):249–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, et al. The basic Leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. Elife. 2014;3

    Google Scholar 

  98. Rosmaraki EE, Douagi I, Roth C, Colucci F, Cumano A, Di Santo JP. Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol. 2001;31(6):1900–9.

    Article  CAS  PubMed  Google Scholar 

  99. Fathman JW, Bhattacharya D, Inlay MA, Seita J, Karsunky H, Weissman IL. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood. 2011;118(20):5439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Constantinides MG, Gudjonson H, McDonald BD, Ishizuka IE, Verhoef PA, Dinner AR, et al. PLZF expression maps the early stages of ILC1 lineage development. Proc Natl Acad Sci. 2015;112(16):5123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoyler T, Klose CSN, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 2012;37(4):634–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yu Y, Tsang JCH, Wang C, Clare S, Wang J, Chen X, et al. Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature. 2016;539(7627):102–6.

    Article  CAS  PubMed  Google Scholar 

  103. Seillet C, Mielke LA, Amann-Zalcenstein DB, Su S, Gao J, Almeida FF, et al. Deciphering the innate lymphoid cell transcriptional program. Cell Rep. 2016;17(2):436–47.

    Article  CAS  PubMed  Google Scholar 

  104. Chea S, Schmutz S, Berthault C, Perchet T, Petit M, Burlen-Defranoux O, et al. Single-cell gene expression analyses reveal heterogeneous responsiveness of fetal innate lymphoid progenitors to notch signaling. Cell Rep. 2016;14(6):1500–16.

    Article  CAS  PubMed  Google Scholar 

  105. Harly C, Kenney D, Ren G, Lai B, Raabe T, Yang Q, et al. The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nat Immunol. 2019;20(9):1150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, et al. Lineage relationship analysis of ROR+ innate lymphoid cells. Science. 2010;330(6004):665–9.

    Article  CAS  PubMed  Google Scholar 

  107. Cherrier M, Eberl G. The development of LTi cells. Curr Opin Immunol. 2012;24(2):178–83.

    Article  CAS  PubMed  Google Scholar 

  108. Nagasawa M, Heesters BA, Kradolfer CMA, Krabbendam L, Martinez-Gonzalez I, de Bruijn MJW, et al. KLRG1 and NKp46 discriminate subpopulations of human CD117+CRTH2− ILCs biased toward ILC2 or ILC3. J Exp Med. 2019;216(8):1762–76.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Liu C, Gong Y, Zhang H, Yang H, Zeng Y, Bian Z, et al. Delineating spatiotemporal and hierarchical development of human fetal innate lymphoid cells. Cell Res . 2021

    Google Scholar 

  110. Goh W, Huntington ND. Regulation of murine natural killer cell development. Front Immunol. 2017;8:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72.

    Article  CAS  PubMed  Google Scholar 

  112. Carotta S, Pang SHM, Nutt SL, Belz GT. Identification of the earliest NK-cell precursor in the mouse BM. Blood. 2011;117(20):5449–52.

    Article  CAS  PubMed  Google Scholar 

  113. Seehus CR, Kaye J. The role of TOX in the development of innate lymphoid cells. Mediat Inflamm. 2015;2015:243868.

    Article  CAS  Google Scholar 

  114. Zhu J. GATA3 regulates the development and functions of innate lymphoid cell subsets at multiple stages. Front Immunol. 2017;8:1571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Cherrier DE, Serafini N, Di Santo JP. Innate lymphoid cell development: a T cell perspective. Immunity. 2018;48(6):1091–103.

    Article  CAS  PubMed  Google Scholar 

  116. Califano D, Cho JJ, Uddin MN, Lorentsen KJ, Yang Q, Bhandoola A, et al. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity. 2015;43(2):354–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhong C, Zhu J. Transcriptional regulatory network for the development of innate lymphoid cells. Mediat Inflamm. 2015;2015:264502.

    Google Scholar 

  118. Hosokawa H, Romero-Wolf M, Yang Q, Motomura Y, Levanon D, Groner Y, et al. Cell type–specific actions of Bcl11b in early T-lineage and group 2 innate lymphoid cells. J Exp Med. 2019;217(1)

    Google Scholar 

  119. Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G, et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med. 2009;206(13):2977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J, Chopin M, et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med. 2014;211(9):1733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Geiger TL, Abt MC, Gasteiger G, Firth MA, O'Connor MH, Geary CD, et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med. 2014;211(9):1723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu W, Domingues RG, Fonseca-Pereira D, Ferreira M, Ribeiro H, Lopez-Lastra S, et al. NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 2015;10(12):2043–54.

    Article  CAS  PubMed  Google Scholar 

  123. Male V, Nisoli I, Kostrzewski T, Allan DSJ, Carlyle JR, Lord GM, et al. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med. 2014;211(4):635–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L, Funari VA, et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol. 2015;16(6):599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kee BL. E and ID proteins branch out. Nat Rev Immunol. 2009;9(3):175–84.

    Article  CAS  PubMed  Google Scholar 

  126. Ling F, Kang B, Sun X-H. Chapter five - Id proteins: small molecules, mighty regulators. In: Taneja R, editor. bHLH transcription factors in development and disease. Academic Press; 2014. p. 189–216. Current Topics in Developmental Biology; vol. 110.

    Google Scholar 

  127. Zook EC, Li Z-Y, Xu Y, de Pooter RF, Verykokakis M, Beaulieu A, et al. Transcription factor ID2 prevents E proteins from enforcing a naïve T lymphocyte gene program during NK cell development. Sci Immunol. 2018;3(22):eaao2139.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Li Z-Y, Morman RE, Hegermiller E, Sun M, Bartom ET, Maienschein-Cline M, et al. The transcriptional repressor ID2 supports natural killer cell maturation by controlling TCF1 amplitude. J Exp Med. 2021;218(6)

    Google Scholar 

  129. Berrett H, Qian L, Roman O, Cordova A, Simmons A, Sun X-H, et al. Development of type 2 innate lymphoid cells is selectively inhibited by sustained E protein activity. Immuno Horizons. 2019;3(12):593–605.

    Article  CAS  Google Scholar 

  130. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature. 1999;397(6721):702–6.

    Article  CAS  PubMed  Google Scholar 

  131. Zhong C, Zheng M, Cui K, Martins AJ, Hu G, Li D, et al. Differential expression of the transcription factor GATA3 specifies lineage and functions of innate lymphoid cells. Immunity. 2020;52(1):83–95e4.

    Article  CAS  PubMed  Google Scholar 

  132. Bando JK, Liang H-E, Locksley RM. Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol. 2015;16(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  133. Scoville SD, Mundy-Bosse BL, Zhang MH, Chen L, Zhang X, Keller KA, et al. A progenitor cell expressing transcription factor RORγt generates all human innate lymphoid cell subsets. Immunity. 2016;44(5):1140–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Montaldo E, Teixeira-Alves LG, Glatzer T, Durek P, Stervbo U, Hamann W, et al. Human RORγt(+)CD34(+) cells are lineage-specified progenitors of group 3 RORγt(+) innate lymphoid cells. Immunity. 2014;41(6):988–1000.

    Article  CAS  PubMed  Google Scholar 

  135. Mielke LA, Groom JR, Rankin LC, Seillet C, Masson F, Putoczki T, et al. TCF-1 controls ILC2 and NKp46+RORγt+ innate lymphocyte differentiation and protection in intestinal inflammation. J Immunol. 2013;191(8):4383–91.

    Article  CAS  PubMed  Google Scholar 

  136. Cortez VS, Fuchs A, Cella M, Gilfillan S, Colonna M. Cutting edge: salivary gland NK cells develop independently of Nfil3 in steady-state. J Immunol. 2014;192(10):4487–91.

    Article  CAS  PubMed  Google Scholar 

  137. Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife. 2014;3:e01659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Boulenouar S, Doisne J-M, Sferruzzi-Perri A, Gaynor LM, Kieckbusch J, Balmas E, et al. The residual innate lymphoid cells in NFIL3-deficient mice support suboptimal maternal adaptations to pregnancy. Front Immunol. 2016;7:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Doisne J-M, Balmas E, Boulenouar S, Gaynor LM, Kieckbusch J, Gardner L, et al. Composition, development, and function of uterine innate lymphoid cells. J Immunol. 2015;195(8):3937–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Erick TK, Anderson CK, Reilly EC, Wands JR, Brossay L. NFIL3 expression distinguishes tissue-resident NK cells and conventional NK-like cells in the mouse submandibular glands. J Immunol. 2016;197(6):2485–91.

    Article  CAS  PubMed  Google Scholar 

  141. Aliahmad P, de la Torre B, Kaye J. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue–inducer cell and NK cell lineages. Nat Immunol. 2010;11(10):945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Miyazaki M, Miyazaki K, Chen K, Jin Y, Turner J, Moore AJ, et al. The E-id protein Axis specifies adaptive lymphoid cell identity and suppresses Thymic innate lymphoid cell development. Immunity. 2017;46(5):818–834e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Qian L, Bajana S, Georgescu C, Peng V, Wang H-C, Adrianto I, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216(4):884–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ghaedi M, Shen ZY, Orangi M, Martinez-Gonzalez I, Wei L, Lu X, et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J Exp Med. 2020;217(3)

    Google Scholar 

  146. Bai L, Vienne M, Tang L, Kerdiles Y, Etiennot M, Escalière B, et al. Liver type 1 innate lymphoid cells develop locally via an interferon-γ-dependent loop. Science. 2021;371(6536)

    Google Scholar 

  147. Lim AI, Di Santo JP. ILC-poiesis: ensuring tissue ILC differentiation at the right place and time. Eur J Immunol. 2019;49(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  148. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell. 2007;131(5):994–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cardier JE, Barberá-Guillem E. Extramedullary hematopoiesis in the adult mouse liver is associated with specific hepatic sinusoidal endothelial cells. Hepatology. 1997;26(1):165–75.

    Article  CAS  PubMed  Google Scholar 

  150. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001;294(5548):1933–6.

    Article  CAS  PubMed  Google Scholar 

  151. Saenz SA, Siracusa MC, Monticelli LA, Ziegler CGK, Kim BS, Brestoff JR, et al. IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J Exp Med. 2013;210(9):1823–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Griseri T, McKenzie BS, Schiering C, Powrie F. Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation. Immunity. 2012;37(6):1116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Siracusa MC, Saenz SA, Wojno EDT, Kim BS, Osborne LC, Ziegler CG, et al. Thymic stromal lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation. Immunity. 2013;39(6):1158–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chea S, Possot C, Perchet T, Petit M, Cumano A, Golub R. CXCR6 expression is important for retention and circulation of ILC precursors. Mediat Inflamm. 2015;2015:368427.

    Article  CAS  Google Scholar 

  155. Stier MT, Zhang J, Goleniewska K, Cephus JY, Rusznak M, Wu L, et al. IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. J Exp Med. 2018;215(1):263–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science. 2015;350(6263):981–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kotas ME, Locksley RM. Why innate lymphoid cells? Immunity. 2018;48(6):1081–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Koga S, Hozumi K, Hirano K, Yazawa M, Terooatea T, Minoda A, et al. Peripheral PDGFRα+gp38+ mesenchymal cells support the differentiation of fetal liver-derived ILC2. J Exp Med. 2018;215(6):1609–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schneider C, Lee J, Koga S, Ricardo-Gonzalez RR, Nussbaum JC, Smith LK, et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity. 2019;50(6):1425–1438e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ni F, Sun R, Fu B, Wang F, Guo C, Tian Z, et al. IGF-1 promotes the development and cytotoxic activity of human NK cells. Nat Commun. 2013;4(1):1479.

    Article  PubMed  CAS  Google Scholar 

  161. Dahlgren MW, Jones SW, Cautivo KM, Dubinin A, Ortiz-Carpena JF, Farhat S, et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity. 2019;50(3):707–722e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC, Liang H-E, et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol. 2018;19(10):1093–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim D-H, Van Dyken SJ. ILC2s in high definition: decoding the logic of tissue-based immunity. Trends Immunol. 2020;41(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  164. Simoni Y, Fehlings M, Kløverpris HN, McGovern N, Koo S-L, Loh CY, et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 2017;46(1):148–61.

    Article  CAS  PubMed  Google Scholar 

  165. Lehmann FM, von Burg N, Ivanek R, Teufel C, Horvath E, Peter A, et al. Microbiota-induced tissue signals regulate ILC3-mediated antigen presentation. Nat Commun. 2020;11(1):1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mucida D, Husain MM, Muroi S, Van Wijk F, Shinnakasu R, Naoe Y, et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nature. 2013;14(3)

    Google Scholar 

  167. Ricardo-Gonzalez RR, Schneider C, Liao C, Lee J, Liang H-E, Locksley RM. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J Exp Med. 2020;7, 217(4)

    Google Scholar 

  168. Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 2015;16(3):306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nussbaum K, Burkhard SH, Ohs I, Mair F, Klose CSN, Arnold SJ, et al. Tissue microenvironment dictates the fate and tumor-suppressive function of type 3 ILCs. J Exp Med. 2017;214(8):2331–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D, et al. The Spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell. 2016;166(5):1231–1246e13.

    Article  CAS  PubMed  Google Scholar 

  171. Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N, Boyd A, et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science. 2014;343(6169):432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang H-E, Pollack JL, et al. A tissue checkpoint regulates type 2 immunity. Nat Immunol. 2016;17(12):1381–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Bhandoola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, A., Harly, C., Ding, Y., Bhandoola, A. (2022). ILC Differentiation from Progenitors in the Bone Marrow. In: Sun, XH. (eds) Innate Lymphoid Cells. Advances in Experimental Medicine and Biology, vol 1365. Springer, Singapore. https://doi.org/10.1007/978-981-16-8387-9_2

Download citation

Publish with us

Policies and ethics