Skip to main content

An Automatic Pollen Grain Detector Using Deep Learning

  • Conference paper
  • First Online:
Frontier Computing (FC 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 827))

Included in the following conference series:

  • 65 Accesses

Abstract

In this paper, we propose a deep learning framework to automatically detect pollen grains instead of the manual counting of pollen numbers under an optical microscope. Specifically, we first establish a large-scale dataset of pollen grains, which contains 3000 images of five subcategories. All the images in our dataset are scanned by an optical microscope. Then, a pollen grain detector (PGD) based on deep learning is designed to eliminate the effects of noise and capture subtle features of pollen grains. Finally, extensive experiments are conducted and show that the proposed PGD method achieves the best performance (84.52% mAP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://openslide.org/api/python/.

  2. 2.

    https://www.imnc.in2p3.fr/pagesperso/deroulers/software/ndpitools/.

  3. 3.

    https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=meanshiftfiltering.

References

  1. Battiato, S., Ortis, A., Trenta, F., Ascari, L., Politi, M., Siniscalco, C.: Detection and classification of pollen grain microscope images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 980–981 (2020)

    Google Scholar 

  2. Carrión, P., Cernadas, E., Gálvez, J.F., Damián, M., de Sá-Otero, P.: Classification of honeybee pollen using a multiscale texture filtering scheme. Mach. Vis. Appl. 15(4), 186–193 (2004)

    Article  Google Scholar 

  3. Chica, M.: Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing. Microsc. Res. Tech. 75(11), 1475–1485 (2012)

    Article  Google Scholar 

  4. Dai, L.P., Lu, C.: The pollen and its measurement technique in spring. Meteorol. Mon. 26(12), 49–52 (2000)

    Google Scholar 

  5. D’amato, G., et al.: Pollen-related allergy in Europe. Allergy 53(6), 567–578 (1998)

    Article  Google Scholar 

  6. Daood, A., Ribeiro, E., Bush, M.: Pollen grain recognition using deep learning. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 321–330. Springer, Cham (2016) . https://doi.org/10.1007/978-3-319-50835-1_30

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Imran, A., Li, J., Pei, Y., Akhtar, F., Wang, Q.: Cataract detection and grading with retinal images using SOM-RBF neural network. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2626–2632 (2019)

    Google Scholar 

  9. Imran, A., Li, J., Pei, Y., Yang, J.J., Wang, Q.: Comparative analysis of vessel segmentation techniques in retinal images. IEEE Access 7, 114862–114887 (2019)

    Article  Google Scholar 

  10. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Liu, H.: Protection guidance for patients with pollen allergy. Lishizhen Med. Materia Medica Res. 17(006), 1091–1091 (2006)

    Google Scholar 

  12. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

  13. Liu, Z., et al.: Detection of Dermatophagoides farinae in the dust of air conditioning filters. Int. Archiv. Allergy Immunol. 144(1), 85–90 (2007)

    Article  Google Scholar 

  14. Mahmood, T., Li, J., Pei, Y., Akhtar, F., Rehman, K.U.: A brief survey on breast cancer diagnostic with deep learning schemes using multi-image modalities. IEEE Access 8, 165779–165809 (2020)

    Article  Google Scholar 

  15. Marcos, J.V., et al.: Automated pollen identification using microscopic imaging and texture analysis. Micron 68, 36–46 (2015)

    Article  Google Scholar 

  16. Nguyen, N.R., Donalson-Matasci, M., Shin, M.C.: Improving pollen classification with less training effort. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 421–426. IEEE (2013)

    Google Scholar 

  17. Nikolov, D.N., Tsankova, D.D.: Features extraction for pollen recognition using Gabor filters. Food Sci. Appl. Biotechnol. 1(2), 86–95 (2018)

    Article  Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  19. Rodriguez-Damian, M., Cernadas, E., Formella, A., Sa-Otero, R.: Pollen classification using brightness-based and shape-based descriptors. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 212–215. IEEE (2004)

    Google Scholar 

  20. Rodriguez-Damian, M., Cernadas, E., Formella, A., Fernández-Delgado, M., De Sa-Otero, P.: Automatic detection and classification of grains of pollen based on shape and texture. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 36(4), 531–542 (2006)

    Google Scholar 

  21. Sun, J., et al.: A deep learning method for MRI brain tumor segmentation. In: Hung, J., Yen, N., Chang, J.W. (eds.) FC 2019. LNCS, vol. 551, pp. 161–169. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3250-4_19

  22. Travieso, C.M., Briceño, J.C., Ticay-Rivas, J.R., Alonso, J.B.: Pollen classification based on contour features. In: 2011 15th IEEE International Conference on Intelligent Engineering Systems, pp. 17–21. IEEE (2011)

    Google Scholar 

  23. Zhang, L., et al.: Automatic cataract detection and grading using deep convolutional neural network. In: 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), pp. 60–65 (2017)

    Google Scholar 

Download references

Acknowledgement

This study is supported by Beijing Municipal Science and Technology Project with no. Z191100009119013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, C., Li, J., Pei, Y., Kang, J., Jia, Y., Ye, C. (2022). An Automatic Pollen Grain Detector Using Deep Learning. In: Hung, J.C., Yen, N.Y., Chang, JW. (eds) Frontier Computing. FC 2021. Lecture Notes in Electrical Engineering, vol 827. Springer, Singapore. https://doi.org/10.1007/978-981-16-8052-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8052-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8051-9

  • Online ISBN: 978-981-16-8052-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics