
Chapter 8
Fault Identification Based on Local
Feature Correlation

Industrial data variables show obvious high dimension and strong nonlinear corre-
lation. Traditional multivariate statistical monitoring methods, such as PCA, PLS,
CCA, and FDA, are only suitable for solving the high-dimensional data processing
with linear correlation. The kernel mapping method is the most common technique
to deal with the nonlinearity, which projects the original data in the low-dimensional
space to the high-dimensional space through appropriate kernel functions so as to
achieve the goal of linear separability in the new space. However, the space projection
from the low dimension to the high dimension is contradictory to the actual require-
ment of dimensionality reduction of the data. So kernel-based method inevitably
increases the complexity of data processing. For this reason, we have proposed
another kind of nonlinear processing approach based on the manifold learning, a
class of unsupervised model that seeks to describe data sets as low-dimensional
manifold embedded in high-dimensional spaces. It characterizes the original data as
a low-dimensional manifold to achieve the goal of nonlinear correlation processing.
This strategy is consistent with the goal of dimensionality reduction. Furthermore,
manifold learning fits the nonlinear correlation by means of piecewise linearization
in an intuitive sense. It has significantly less complexity compared to the kernel
mapping method.

This chapter carries out the pattern classification techniques for multivariate vari-
ables with strong nonlinear correlation and applies them to the fault identification of
batch process. Two kinds of pattern classification methods are given in this chapter:
(1) kernel exponential discriminant analysis (KEDA): this method addresses the non-
linear correlation properties amongmulti-variables at two levels, kernel mapping and
exponential discrimination, respectively. It can significantly improve the classifica-
tion accuracy compared with the traditional FDA method. (2) The fusion method is
based on manifold learning and discriminant analysis: two different fusion strate-
gies, local linear exponential discriminant analysis (LLEDA) and neighborhood-
preserving embedding discriminant analysis (NPEDA), are given, respectively. Here
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locally linear embedding (LLE) is a popular algorithm of manifold learning. They
both combine the advantage of global discriminant analysis with the local structure
preserving. LLEDA is a parallel strategy to find a trade-off projection vector between
the local geometric structure preserving and the global data classification. NPEDA
is a cascaded strategy whose dimensionality reduction process is implemented in
two serial steps. The two methods emphasize the intrinsic structure of the data while
utilizing the global discriminant information, so they have better classification than
the traditional EDAmethod. Finally, a kind of hybrid fault diagnosis scheme is given
for the complex industrial process, which consists of PCA-based fault detection,
hierarchical clustering-based pre-diagnosis, and LLEDA-based final identification.

8.1 Fault Identification Based on Kernel Discriminant
Exponent Analysis

8.1.1 Methodology of KEDA

The kernel exponent discriminant analysis (KEDA) is also a discriminative classifi-
cation method, which aims to find a series of discriminant vectors that can transform
the data into the kernel space and achieve the greatest separation between different
types of data in the projection direction.

Consider the batch process data set with I batches, i.e.,

X(k) = [X1(k), X2(k), . . . , X I (k)]T,

where X i consists of ni , i = 1, . . . , I row vectors, and each row vector is a sample
vector X i

j (k), j = 1, . . . , ni acquired at time k and batch i . According to the analysis
from equations (7.1)–(7.9) in Sect. 7.1.1, the optimization function of kernel Fisher
discrimination analysis (KFDA) is given as follows,

max J (α) = tr(αTK bα)

tr(αTKwα)

= tr(αT(V bΛbVT
b )α))

tr(αT(VwΛwVT
w)α)

,

(8.1)

where K b = V bΛbVT
b and Kw = VwΛwVT

w are eigenvalue decompo-
sitions of between-class and within-class scatter matrices, respectively.
Λb = diag(λb1,λb2, . . . ,λbn), and Λw = diag(λw1,λw2, . . . ,λwn) are the
eigenvalues, V b = (vb1, vb2, . . . , vbn), and Vw = (vw1, vw2, . . . , vwn) are the
corresponding eigenvectors. The basic objective is to maximize the between-class
distance and minimize the with-class distance simultaneously during the projection.
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In order to improve the discrimination accuracy further, the discriminant function
(8.1) is exponentiated:

max J (α) = tr(αT(V b exp(Λb)VT
b )α)

tr(αT(Vw exp(Λw)VT
w)α)

= tr(αT exp(K b)α)

tr(αT exp(Kw)α)
.

(8.2)

The optimization problem (8.2) is transferred to the following generalized eigenvalue
problem:

exp(K b)α = Λ exp(Kw)α

or

exp(Kw)−1 exp(K b)α = Λα,

(8.3)

where Λ is the eigenvalue and α is the corresponding eigenvector. The discrimi-
nant vectors are calculated from (8.3). Usually, the first two vectors, optimal, and
suboptimal ones are selected for dimensionality reduction.

The within-class and between-class scatter matrices are exponentiated in KEDA.
Consider the general property of exponential function, ex > x for any x > 0, so the
scatter matrix of KEDA is greater than KFDA. It means KEDA has better discrimi-
natory capability than KFDA.Moreover, if the amount of sample data is less than the
number of variables, the rank of within-class scatter matrix is less than the dimension
of variables. Now thewithin-class scattermatrix is singular, and its inversion does not
exist. But both the within-class and between-class scatter matrices are exponentiated
in KEDA. The exponentiated matrices must be full rank, so the singular problem
caused by small samples is solved. Thus from this view, the KEDA method not only
solves the small sample problem, but also efficiently classifies the sample data into
different categories, which helps to improve the classification accuracy.

Let’s consider the nonlinear mappingΦ(xik) of original sample xik and project it to
the optimal and suboptimal discriminant directions, respectively. Then the eigenval-
ues T i (k) = [T 1

ik, T 2
ik]T and T 2

ik are obtained, which represent the projection values
in the optimal and suboptimal discriminant directions. Usually, the data in the same
class shows the similar project eigenvalues in the direction of selected discrimination
vectors. If the test data matches with the known fault class, it has maximum projec-
tion eigenvalue under this model, obviously nonzero. If the test data does not match
with this class, the eigenvalue is small even close to zero. It is unrealistic to judge
the data type simply based on the magnitude of eigenvalues. So difference degree D
between two projection values T i (k) and T j (k) is defined as follows:

Di, j (k) = 1 − (T i (k))TT j (k)

‖T i (k)‖2
∥
∥T j (k)

∥
∥
2

. (8.4)

The smaller the difference D, the higher the model matched.
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The KEDA-based fault classification and identification process for batch process
is given as follows:

Step 1: Data preprocess. The three-dimensional data set X (L × J × K ) is batch-
wise unfolded into two-dimensional data X (LK × J ), normalized along the time
in the batch cycle and variable-wise re-arranged.
Step 2: Kernel projection. The original data X is mapping to a high-dimensional
feature space via a nonlinear kernel function, and the kernel sampling data ξi

j =
[K (x1, xij ), K (x2, xij ), . . . , K (xn, xij )]T are obtained.
Step 3: KEDAmodeling. The optimal kernel discriminant vectors are solved from
the discriminant function equation (8.3). Project the sample data ξi

j to the selected
kernel discriminant vectors and calculate the corresponding eigenvalues Ti (k).
Step 4: Test calculation. The test sample x j,new(k) is collected and the correspond-
ing eigenvalues T i,new(k) according to the known S classes model are calculated,
respectively.
Step 5: Fault identification. The class of test data can be determined by calculating
the difference degree between test sample and trained data (8.4).

8.1.2 Simulation Experiment

The proposed KEDA was used for fault identification in the penicillin fermentation
process mentioned in Sect. 4.2. Here nine process variables were considered for
monitoring and three faults are shown in Table8.1. The data were generated by the
penicillin simulator when the amplitude and time of fault are changed. A total of
40 batches were selected as the training data set: 10 batches for normal and known
3 faults. The KEDA method with Gaussian kernel function was used to find the
optimal discriminant vectors for each type of model, and four different models were
obtained.

Experiment 1: Data classification Figures8.1, 8.2, 8.3, and 8.4 show the classi-
fication comparison of KFDA and KEDA for penicillin data: normal data and three
types of fault data. When the test data are different from the known four types, the
projections are also separated from each other. But the KFDA shows weaker clas-
sification performance: some faults are closer together and the boundaries are not
easily distinguishable, such as fault 3 data (red �) and test fault data (black �) in
Figs. 8.1 and 8.3. However, the KEDA works better for classifying these data, and

Table 8.1 Description of the fault type of penicillin process

No. Faults Types

1 Bottom logistics decline Step

2 Decreased power of the mixer Step

3 Decreased airflow Step
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Fig. 8.1 Two-dimensional classification visualization: KFDA method

the red and black parts are classified clearly in Figs. 8.2 and 8.4. These plots show
that the between-class and within-class distances have increased for different types
of data in KEDA, but the between-class distance has increased by a larger magnitude
than the within-class distance. So the different types of data can be better separated.

Experiment 2:Fault-type identificationLet’s consider the testingdata set,which
also consists of the four types of data and an unknown fault data. Table8.2 gives
the eigenvalues of the four testing data calculated based on the KEDA model of
fault 2. The eigenvalues are obtained by projecting the testing data to the selected
optimal discriminant directions. If there is a large difference between the testing data
and the training data, then the value of ‖ u − v ‖2 is large and the exponentiated
Gaussian kernel function, K (u, v) = exp(−‖ u − v ‖2/(2σ)2), is almost close to
zero. However, sometimes the fault occurrence eigenvalues are not close to zero, as
shown in Table8.2. At this case, the eigenvalues of the test data need to be analyzed
further.

It is impossible to show the values at any sampling instance, so we further analyze
the statistical characterizes of eigenvalues projected to the optimal discrimination
direction of known model. If the eigenvalue of testing data follows a normal distri-
bution in a model, the testing data belongs to this kind of model. Conversely, if the
eigenvalue does not follow a normal distribution, it means that the testing data does
not match with this model. Figures8.5, 8.6, and 8.7 give the statistical analysis of
the testing data (normal, faults 1 and 3) in the known fault 3 model. The eigenvalue
of fault 3 follows a normal distribution in the fault 3 model, while the normal data
or fault 1 data do not follow a normal distribution.
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Fig. 8.2 Two-dimensional classification visualization: KEDA method

Fig. 8.3 Three-dimensional classification visualization: KFDA method
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Fig. 8.4 Three-dimensional classification visualization: KEDA method

Table 8.2 The eigenvalues of test data in fault 2 model

Sampling
instant

Eigenvalues of test data (Tk)

Normal Fault 1 Fault 2 Fault 3 New fault

53 0.148 −0.148 −0.203 0 0

54 0.194 −0.194 0.0090 0 0

55 0.448 0 0.1660 0 0

56 0.187 0 0.1020 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

79 0.079 0 −0.024 0 0

80 0.103 0 −0.075 0 0

81 0.108 0 −0.084 0 0

82 0.041 0 −0.059 0 0

Moreover, the difference degree between test data and known model is used to
determine the type of fault. The results are shown in Table8.3. Since some of the
test data have zero eigenvalues in the known model, and the denominators in the
definition (8.4) are zero, the different degree cannot be calculated and expressed as
“–”. The difference degree is small if the test data belongs to the known type model,
and large if the test data does not belong to the model. It is found that the test data
has the smallest different degree in the matching model.
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Fig. 8.5 The eigenvalues of test normal data in fault 3 model

Fig. 8.6 The eigenvalues of test fault 1 data in fault 3 model
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Fig. 8.7 The eigenvalues of
test fault 3 data in fault 3
model

Table 8.3 The difference degree of test data in different models

Type of test data Normal model Fault 1 model Fault 2 model Fault 3 model

Normal 0.516679 0.669503 1.448272 1.630094

Fault 1 – 0.223966 – 1.578313

Fault 2 – 0.632128 0.550645 1.194915

Fault 3 – – – 0.553784

New fault 1.120218 – – 1.137496

8.2 Fault Identification Based on LLE and EDA

The new dimensionality reduction approach based on the combination of EDA and
LLE is proposed with two different combination performances, Local Linear Expo-
nential Discriminant Analysis (LLEDA) and Neighborhood-Preserving Embedding
Discriminant Analysis (NPEDA). This fusion idea combines the global discrimi-
nant analysis with local structure preservation during the dimensionality reduction
process. LLEDAandNPEDAare solved by different optimization objectives, respec-
tively, and the corresponding maximum values are derived to reduce the computa-
tional complexity. They both exhibit the good local preservation and global dis-
crimination capabilities. The nonlinear analytics is transformed into an equivalent
neighborhood holding problem based on the idea of piecewise linearization.

Themain difference between the twomethods is that LLEDA is a parallel strategy
whereas NPEDA is a cascading strategy. LLEDA focuses on the global supervised
discrimination balanced with local nonlinear dimensionality reduction. It finds a
balanced projection vector between the local geometry and the data classification
and results in an optimal subspace projection of the samples. When faults are diffi-
cult to distinguish, LLEDA method can improve the identification rate by adjusting
the trade-off parameter between the global index and the local index. NPEDA is a



128 8 Fault Identification Based on Local Feature Correlation

cascading strategy where the dimensionality reduction process is implemented in
two successive steps: the first aims at maintaining the local geometric relationships
and reconstructing each sample point using a linear weighted combination of near-
est neighbors, the second at performing discriminant analysis on the reconstructed
sample.

8.2.1 Local Linear Exponential Discriminant Analysis

The basic idea of LLEDA is to project the samples into the optimal discriminant space
while maintaining the local geometric structure of the original data. The schematic
diagram is shown in Fig. 8.8. LLEDA combines the advantages of LLE and EDA,
which extracts the global classification information while compressing the dimen-
sionality of the feature space without destroying local relationships. It finds a bal-
ance between global supervised discrimination and local preservation of nonlinearity
through an adjusted trade-off parameter.

Consider the original data being mapped into a hidden space F via function A.
An explicit linear mapping from X to Y , Y = ATX is constructed to circumvent the
out-of-sample problem. The original LLE problem is written as follows:

min ε(Y) =
n

∑

j=1

∣
∣
∣
∣
∣
y j −

k
∑

r=1

Wjr y jr

∣
∣
∣
∣
∣

2

=‖ Y(I − W) ‖2

= tr(Y(I − W)(I − W)TYT)

= tr(ATXMXTA).

(8.5)

The LLEDA problem is proposed with the following objective function:

max J (A) = tr
(

AT exp(Sb)A
)

tr
(

AT exp(Sw)A
) − μ · tr (

ATXMXTA,
)

(8.6)

where μ is a trade-off parameter that balances the intrinsic geometry and global
discriminant information. In general, (8.6) is equivalently transformed into an opti-
mization problem with constraint,

max J (A) = tr
(

AT exp(Sb)A
) − μ · tr(ATXMXTA)

s.t. AT exp(Sw)A = I,
(8.7)

where A = [a1, a2, . . . , an]. (8.7) is solvedby introducing theLagrangianmultiplier:

L1(ai ) = aTi
(

exp(Sb) − μXMXT
)

ai + θ(1 − aTi exp(Sw)ai ), (8.8)
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Fig. 8.8 The schematic diagram of LLEDA

where θ is Lagrangian multiplier. According to the zero gradient in L1(ai ) with
respect to ai , we have

(exp(Sb) − μXMXT)ai = θ exp(Sw)ai
or

(exp(Sw)−1(exp(Sb) − μXMXT)ai = θai ,

(8.9)

where θ is treated as a generalization eigenvalue. The discriminant matrix A is made
up of the corresponding eigenvectors of the first d largest eigenvalues in (8.9).
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8.2.2 Neighborhood-Preserving Embedding Discriminant
Analysis

NPEDA is also to find a series of discriminative vectors and map the samples into a
new space. The sample point is represented linearly by their neighbors tomaintain the
local geometry as much as possible during the projection process. The schematic dia-
gram is shown in Fig. 8.9. NPEDA is a cascade strategy in which the dimensionality
reduction process is divided into two successive steps, the first aiming at maintaining
local geometric relationships and the second aiming at a discriminant analysis in
which each sample point is reconstructed by a linearly weighted combination of its
neighbors.

Rewrite the between-class scatter matrix Sb and the within-class scatter matrix
Sw under the explicit linear mapping Y = ATX :

Fig. 8.9 The schematic diagram of NPEDA
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Sb =
c

∑

i=1

ni ( ȳi − ȳ)2 =
c

∑

i=1

ni
(

AT x̄i − AT x̄
)2

= AT

(
c

∑

i=1

ni (x̄i − x̄)(x̄i − x̄)T

)

A

= AT

(
c

∑

i=1

1

ni
(xi1 + · · · + xini )(x

i
1 + · · · + xini )

T − 2n x̄ x̄T + n x̄ x̄T
)

A

= AT

⎛

⎝

c
∑

i=1

ni∑

j,k=1

1

ni
xij x

iT
k − ni x̄ x̄T

⎞

⎠ A

= AT (

XBXT − n x̄ x̄T
)

A

= ATX
(

B − 1

n
eeT

)

XTA,

(8.10)

where x̄i = 1
ni

∑ni
j=1 x

i
j , ȳ =

∑c
i=1 ni ȳ

i
∑c

i=1 ni
, x̄ =

∑c
i=1 ni x̄

i
∑c

i=1 ni
= 1

n

∑c
i=1 ni x̄

i ; e =
[1, 1, . . . , 1]T with dimension n, and

Bi j =
⎧

⎨

⎩

1

nk
xi and x j ∈ k-th class.

0 otherwise.

Sw =
c

∑

i=1

ni∑

j=1

( yij − ȳi )2 =
c

∑

i=1

ni∑

j=1

(

ATxij − AT x̄i
)2

= AT

⎛

⎝

c
∑

i=1

⎛

⎝

ni∑

j=1

(xij − x̄i )(xij − x̄i )T

⎞

⎠

⎞

⎠ A

= AT

⎛

⎝

c
∑

i=1

⎛

⎝

ni∑

j=1

xij x
iT
j − ni x̄

i x̄iT

⎞

⎠

⎞

⎠ A

= AT

⎛

⎝

c
∑

i=1

(

X i X
T
i − 1

ni
X i (ei e

T
i )XT

i

)
⎞

⎠ A

= AT
c

∑

i=1

(X i Li X
T
i )A,

(8.11)

where Li = I − 1
ni
ei eTi , I is unit matrix, and ei = [1, 1, . . . , 1]T with dimension ni .

The discriminant vectors A∗ are solved by the following optimization problem:

A∗ = argmax

∣
∣ATX(B − 1

n ee
T)XTA

∣
∣

∣
∣AT ∑c

i=1(X i LiXT
i )A

∣
∣
. (8.12)
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Considering that the original data is reconstructed by its neighbors less than ε:

n
∑

j=1

‖ x j −
k

∑

r=1

W jr x jr ‖2< ε,

where ε is a small positive number. W is reconstruction mapping matrix such that
∑k

r=1 W ir = 1. Then

∥
∥
∥
∥
∥
xi −

k
∑

r=1

W ir xir

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

k
∑

r=1

(W ir x I − W ir xir )

∥
∥
∥
∥
∥

2

= ∥
∥QiW i

∥
∥
2
,

where Qi = [xi − xi1, xi − xi2, . . . , xi − xir ].
Matrix W can be solved by Lagrange multiplier.

L2 = 1

2

∥
∥QiW i

∥
∥
2 − λi

[
k

∑

r=1

W ir − 1

]

∂L2

∂W i
= QT

i QiW i − λi E = C iW i − λi E = 0,

where W i = λiC
−1
i E,C i = QT

i Qi , E = [1, 1, . . . , 1]T with dimension k.
Considering

k
∑

r=1

W ir = ETW i = 1 =⇒ ETλiC
−1
i E = 1 =⇒ λi = (ETC−1

i E)−1,

we have

W i = λiC
−1
i E = C−1

i E

ETC−1
i E

.

The sample point is reconstructed by the optimal weights W , i.e., x j =
∑k

r=1 W jr x jr . It is linearly represented by its neighbors by maintaining the local
geometry in the dimensionality reduction process. Substitute it into (8.12) and
NPEDA optimization is revised as follows:

A∗ = argmax
A

∣
∣
∣AT exp

(

(
∑k

r=1 W ir xir )(B − 1
n ee

T)(
∑k

r=1 W ir xir )T
)

A
∣
∣
∣

∣
∣
∣AT exp

(
∑c

i=1(
∑k

r=1 W jrX i
jr )Li (

∑k
r=1 W jrX i

jr )
T
)

A
∣
∣
∣

= argmax
A

∣
∣AT exp(Snb)A

∣
∣

∣
∣AT exp(Snw)A

∣
∣
.

(8.13)
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Equation (8.13) is equivalently to solve the maximum eigenvalue of the generalized
eigenvalue decomposition problem:

exp(Snb)A = σ exp(Snw)A

or

exp(Snw)−1 exp(Snb)A = σA,

(8.14)

where σ is the generalized eigenvalue and the linear transformation matrix A
of NPEDA is the eigenvector corresponding to the first d largest eigenvalues of
(exp(Snw))−1 exp(Snb).

8.2.3 Fault Identification Based on LLEDA and NPEDA

In this section, the LLEDA and NPEDA methods are implemented for fault identi-
fication with monitoring flowchart, as shown in Fig. 8.10. The fault recognition rate
(FCR) is introduced to test the identification effectiveness. FCR of fault model i is
defined as the percentage of test data identified in this corresponding model out of
the total number of samples tested:

FCR(i) = ni,identi f y
nall

× 100%, (8.15)

where ni,identi f y denotes the sample size identified as fault i and nall denotes the
sample size of all samples of fault i . The identification process is given as follows,

1. Process data are collected under the normal and faulty conditions, and standard-
ized.

2. The between-class scatter matrix Sb and the within-class scatter matrix Sw are
calculated by the LLEDA (or NPEDA) method, respectively.

3. The discriminant vector A is obtained bymaximizing the between class dispersion
matrix Sb and minimizing the with class dispersion matrix Sw.

4. The discriminant function g(x) of the online data x is observed by the projection
of discriminant vector A in the normal model:

g(x) = − 1

2
(x − x̄i )TA

(
1

ni − 1
AT exp(Siw)A

)−1

AT(x − x̄i )

+ ln(c) − 1

2
ln

[

det

(
1

ni − 1
AT exp(Siw)A

)]

.

(8.16)

If the value of the discriminant function exceeds the normal limitation, a fault
occurs.

5. The fault type of online data can be determinedwhen its posterior probability value
is maximum. The posterior probability of data x in fault ci class is calculated as
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Fig. 8.10 Flowchart of fault identification with LLEDA and NPEDA methods

P(x ∈ ci |x) = P(x|x ∈ ci )P(x ∈ ci )
∑c

i=1 P(x|x ∈ ci )P(x ∈ ci )
, (8.17)

where P(x ∈ ci ) is the prior probability and P(x|x ∈ ci ) is the conditional prob-
ability density function of the sample x:

P(x|x ∈ ci ) = exp[− 1
2 (x − x̄i )TAPq AT(x − x̄i )]

(2π)
m
2 [ 1

ni−1 A
T(

∑

x∈ci (x − x̄i )(x − x̄i )T)A] 1
2

, (8.18)

where Pq = [ 1
ni−1 A

T(
∑

x∈ci (x − x̄i )(x − x̄i )T)A]−1.

8.2.4 Simulation Experiment

Multi-classification methods, FDA, EDA, LLE+FDA, LLEDA, and NPEDA, were
carried to evaluate the classification performance in TE simulation platform. TE
operation lasted for 48h, with faults occurring in the 8thh and sampled every 3min.
400 training data were selected for building the classification model and 400 testing
data for evaluating the performance of the model. Three different types of faults were
considered: faults 2, 8, and 13. Fault 2 refers to a step change in the B component feed
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with the A�C feed ratio remaining constant. Fault 8 refers to a random change in the
A, B and C feed component variables. Fault 13 refers to a slow drift in the reaction
dynamics. Here faults 8 and 13 are difficult identified due to its random variation and
slow drift. The training and testing data for the three types of faults were projected
onto the first and second eigenvectors, respectively, by different methods and the
classification results are shown in Fig. 8.11.

Table8.4 shows the identification rate for faults 2, 8, and 13 under different classi-
fication methods. Here the number of discrimination directions, i.e., reduction order,
is considered from 1 to 10. It is shown that the identification rates are improved
with increasing the number of discrimination vectors. The recognition rate for fault
2 is high, almost close to 100%. The recognition rate for faults 8 and 13 gradually
increases as the number of discrimination vectors increases. NPEDA and LLEDA
show higher recognition rates on faults 2, 8, and 13, compared with other methods,
such as FDA and LLE+EDA.

Figure8.12 shows the posterior probability values for the different test data under
the LLEDA and NPEDA methods. The larger posteriori probability values mean the
higher possibility of the test data belong to this category. Furthermore, the diagnostic
results are related to the classification capability. If the classification performance is
good, higher identification rate is achieved.

8.3 Cluster-LLEDA-Based Hybrid Fault Monitoring

8.3.1 Hybrid Monitoring Strategy

Generally, the data collected from an actual industrial process are unlabeled and
initially undiagnosed. It isworth noting that theLLEDAmethodperformswell in fault
identification, but it is a supervised algorithm that requires the known classification
of the historical data set. To overcome this problem, the supervised LLEDA method
is extended into an unsupervised learning method by introducing the cluster analysis
method. The cluster method can obtain the fault data category information which is
input to LLEDA modeling module as a prior. To make better use of the proposed
cluster-LLEDA classification method, a hybrid fault monitoring strategy is given, as
shown in Fig. 8.13.

Figure8.13 indicates that the hybrid fault monitoring strategy is mainly divided
into three parts, historical data analysis, fault model library establishment, and
online detection and fault identification. First, the historical data of industrial pro-
cesses is roughly detected by PCA to label the fault data. Then hierarchical clustering
technique is used to classify the process data detected as fault into different types.
The model library is established for all fault types by LLEDA, which further extracts
the fault features and obtain fine identification. Finally, the online detection and fault
identification are realized.

The procedure of historical data analysis part is summarized as follows:
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Fig. 8.11 Projection of different fault data on the first two feature vectors
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Table 8.4 Comparison of identification rate for faults 2, 8, and 13

Reduction
order

Fault No. FDA EDA LLE+FDA LLEDA NPEDA

1 Fault 2 1 1 1 1 1

Fault 8 0.4425 0.2125 0.4625 0.2125 0.2125

Fault 13 0.415 0.6875 0.4175 0.6875 0.6875

2 Fault 2 1 1 1 1 1

Fault 8 0.3525 0.475 0.48 0.4175 0.475

Fault 13 0.36 0.6325 0.3475 0.6875 0.6325

3 Fault 2 1 1 1 1 1

Fault 8 0.4375 0.67 0.3825 0.5975 0.67

Fault 13 0.29 0.55 0.3375 0.6275 0.55

4 Fault 2 1 1 1 0.9925 1

Fault 8 0.47 0.8325 0.425 0.705 0.8325

Fault 13 0.2825 0.6575 0.295 0.565 0.6575

5 Fault 2 1 1 995 1 1

Fault 8 0.625 0.8825 0.4875 0.815 0.8825

Fault 13 0.53 0.6375 0.3025 0.5975 0.6325

6 Fault 2 1 1 1 1 1

Fault 8 0.664 0.9325 0.62 0.895 0.9325

Fault 13 0.5125 0.7225 0.25 0.6225 0.7225

7 Fault 2 1 1 9925 1 1

Fault 8 0.695 0.8925 0.6 0.9125 0.8925

Fault 13 0.49 0.7425 0.2425 0.725 0.7425

8 Fault 2 1 1 9825 1 1

Fault 8 0.7275 0.88 0.7075 0.885 0.88

Fault 13 0.4775 0.74 0.2275 0.7125 0.74

9 Fault 2 1 1 0.99 1 1

Fault 8 0.745 0.88 0.6575 0.89 0.88

Fault 13 0.49 1 0.995 1 1

10 Fault 2 0.99 1 0.995 1 1

Fault 8 0.7625 0.8725 0.5825 0.8825 0.8725

Fault 13 0.47 0.735 0.225 0.7125 0.735

1. Collect and standardize the normal process data from theDCS historical database.
2. Analyze the collected process data by PCA to extract the independent principle

components, establish PCA model of the normal operation, and calculate the
statistics of the data.

3. Calculate the statistics T2 and SPE and their control limit.
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Fig. 8.12 Diagnosis results of faults 2, 8, and 13 by LLEDA and NPEDA methods

Fig. 8.13 Hybrid fault detection and diagnosis information process

The procedure of fault model library establishment is summarized as follows:

1. Performhierarchical clustering analysis on the abnormal operation data and divide
them into different fault categories.

2. Calculate the between-class and within-class scatter matrices Sb and Sw, find the
corresponding projection vector A based on LLEDA method, and establish the
fault model library for all fault classes.

The procedure of online detection and fault identification is summarized as fol-
lows:



8.3 Cluster-LLEDA-Based Hybrid Fault Monitoring 139

1. Sample the real-time data and standardize it.
2. Perform the discriminant analysis based on LLEDA method, project the sample

data to the projection direction, and extract the feature vector.
3. Project the sample data to the projection vector A based on the normal model

and judge the current operation is normal or abnormal by observing whether the
discriminant function exceeds the limit.

4. If a fault occurs, calculate the posterior probability in each fault model to identify
the fault type. If the sample data is not in the existing fault category, this new fault
will be modeled and introduced into the fault model library.

Clustering Analysis The hierarchical clustering algorithm is more widely used and
has the advantages of simple calculation, fast and easy to obtain similar results, with-
out knowing the number of clusters in advance (Saxena et al. 2017). The clustering
starts with n samples each as a class, specifies the distance between samples and the
clustering between classes. Then the two closest classes are merged into a new class,
and the distance between the new class and the other classes are calculated. Repeat
the merging process between the two closest classes, and the number of classes
is reduced by one after each merging. The merging will stop until all samples are
merged into one class or a certain condition is met.

The class is denoted by G in the cluster analysis. Suppose class G has m samples
denoted by the column vector xi (i = 1, 2, . . . ,m), di j is the distance between xi
and x j , and DKL is the distance between two different categories GK and GL . The
squared distance DKL between GK and GL is defined as follows:

D2
K L = 1

nKnL
Σxi∈GK ,x j∈GL d

2
i j . (8.19)

The recursive formula for between-class squared clustering is

D2
ML = nK

nM
D2

K J + nK

nM
D2

L J . (8.20)

The inconsistency coefficient Y is used to determine the final number of clusters
c. Here Y is a matrix of (n − 1) × 4, where the first column is the mean of all link
lengths (i.e., merging class distances) involved, the second column is the standard
deviation of all the related link lengths, the third column is the number of related
links, and the fourth column is the inconsistency coefficient.

For the links obtained by the kth merging class, the inconsistency coefficient is
calculated as follows:

Y (k, 4) = (Z(k, 3) − Y (k, 1))

(Y (k, 2))
, (8.21)

where the input Z(n−1)×3 is a matrix of systematic clustering trees. Under the con-
dition that guarantees the number of classes as small as possible, the change of the
inconsistency coefficient determines the final value of classes number.
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8.3.2 Simulation Study

The experiment uses the Tennessee Eastman (TE) process to evaluate the effective-
ness of the proposed hybrid method.

Experiment 1: Failure Initial Screening and Classification The TE data set
was first detected by the PCA method, and the fault detection results are shown in
Fig. 8.14, the final T2 and SPE statistics obtained were 0.4951 and 0.6882, respec-
tively. The specific detection is shown in Table8.5. The results show that the recog-
nition rate of faults 1, 2, 6, 7, 8, 12, 13, 14, 17, and 18 is high, and the recognition
rate of other faults is low. This indicates that the significant faults can be detected,
while the potential faults cannot be detected.

Therefore, PCA-based fault detection methods can only coarsely split the data
set and detect significant faults. Potential faults can be identified with a high fault
identification rate only in the case of known fault categories. In the coarse separation
stage of historical data, the fault data can be identified not only by PCA method,
but also by improved PCA or other fault detection methods to further improve the
identification rate.

After the historical data analysis, the fault data set is collected and clustered into
different fault classes by using the hierarchical clustering method. According to the
inconsistency coefficient, the final number of fault classes is 10. As the fault type is
in a large number, it is difficult to display the classified fault data together in a tree
diagram. As example, we select the faults 1, 2, and 6 to demonstrate the clustering
effect of the hierarchical cluster analysis algorithm. Fault 1 is a step change in the
A/C feed ratio with component B remaining unchanged, while fault 2 is a step change
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Fig. 8.14 Fault detection based on PCA
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Table 8.5 Fault recognition rate based on PCA

Fault No. T2 SPE Fault No. T2

Fault 1 0.995 0.9988 Fault 12 0.9875 0.99

Fault 2 0.9825 0.9925 Fault 23 0.9513 0.9625

Fault 3 0.0225 0.2675 Fault 14 0.9988 1

Fault 4 0.41 1 Fault 15 0.0488 0.2625

Fault 5 0.2625 0.5025 Fault 16 0.2325 0.6937

Fault 6 0.99 1 Fault 17 0.8013 0.975

Fault 7 1 1 Fault 18 0.8912 0.9375

Fault 8 0.975 0.9825 Fault 19 0.0675 0.5913

Fault 9 0.0362 0.235 Fault 20 0.3738 0.735

Fault 10 0.4163 0.7638 Fault 21 0.3775 0.6687

Fault 11 0.5212 0.8163
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Fig. 8.15 Hierarchical cluster analysis

in component B with the A/C ratio remaining unchanged. Fault 6 is a step change in
the feed loss of A. The hierarchical clustering tree diagram is given Fig. 8.15. The
final number of categories is three according to the inconsistency coefficient, which
is consistent with the actual classification.

Now the fault data have been divided into 10 classes by hierarchical cluster anal-
ysis. Obviously, the dimension is high and its visualization effect is poor. In order to
improve the visualization effect and reflect the change trend and the interrelationship
between each variable at the same time, the parallel coordinate visualization method
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Fig. 8.16 Parallel coordinate visualization of fault data
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Fig. 8.16 (continued)

is selected. It is a visualization technique that allows the high-dimensional variables
to be represented by a series of axes parallel to each other. The value of the variables
is corresponding to the positions on the axes.

The visualization results for each type of fault data are shown in Fig. 8.16. The
blue dash in each subplot indicates the normal data and the other color dashes indicate
different fault data. Since each variable in the TE data has a corresponding actual
physicalmeaning, the type of fault can be judged by comparing the other color dashes
with the blue dash in each variable. These faults can be labeled for establishing the
fault model library.

Experiment 2: LLEDA-based Fault Identification The fault identification
method used here is LLEDA, which increases the distance between different classes
and improves the classification ability even if fault samples are small. Here faults 4,
8, and 13 are selected as example to show the identification results. Fault 4 is a minor
fault, which is manifested in the step change of the inlet temperature of the reactor
cooling water, but the other 50 variables are still in a stable state, and the change
is less than 2% compared with the normal data. Fault 13 refers to the slow drift of
reactor kinetic constants when the fault occurs, which will cause a violent reaction
of each variable, and the final product G is always in a fluctuating state. Fault 8 refers
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Fig. 8.17 Projection of different fault data on feature vectors

to the change of random variables of A, B, and C feed ingredients when the fault
occurs.
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fault8 test data (LLEDA)
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Fig. 8.18 Diagnosis results of fault 4, 8, and 13 by LLEDA methods

To better observe the classification in spatial structure, the training data and testing
data of the three faults are projected onto the first three feature vectors by different
methods. The classification results are shown in Fig. 8.17.

Figure8.18 shows the posterior probability values of different test data by LLEDA
method under different models. The posterior probability values are larger when the
samples belong to category i . The colored bars indicate the diagnostic result, i.e.,
probability values, in which color bar from bottom to top is corresponding to the
probability values 0–1 (white indicates that the probability of identification is 0 and
red indicates that the probability value of identification is 1.) In this way, the fault
identification results are visualized. The diagnosis result is related to the classification
ability. The better classification performance leads to a higher fault recognition rate.
Here fault 13 is in poor classification owing to the small number of feature vectors.
The recognition rate of faults can be improved by increasing the number of feature
vectors.

8.4 Conclusion

This chapter presents three discriminant analysis methods, KEDA, LLEDA and
NPEDA, that can handle nonlinearities and avoid small sample data problems. Nor-
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mal and faulty datamodels are developed, and thesemodels are used to checkwhether
abnormal behavior occurs, and variance-based performance metrics are used to iden-
tify the type of data tested. Especially, two new supervised dimensionality reduction
methods, LLEDA and NPEDA, are proposed which combines the advantages of
local linear embedding and exponential discriminant analysis methods, taking into
account both global and local information. The nonlinear data is piecewise linearized
by maintaining the internal structure during the extraction of the eigenvalues. They
overcome the singularity problemofwithin-class scattermatrices, and therefore show
good performance for the small sample problem.

Furthermore, the hybrid process monitoring and fault identification algorithm is
proposed in this chapter, which effectively combines the PCA initial detection, the
classification of hierarchical clustering, and the discriminative analysis of LLEDA.
This hybrid method ensures the monitoring and diagnosis is performed directly on
the collected data without a priori knowledge.
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