
Chapter 7
Kernel Fisher Envelope Surface for
Pattern Recognition

It is found that the batch process is more difficultly monitored compared with the
continuous process, due to its complex features, such as nonlinearity, non-stable
operation, unequal production cycles, and most variables only measured at the end
of batch. Traditional methods for batch process, such as multiway FDA (Chen 2004)
and multi-model FDA (He et al. 2005), cannot solve these issues well. They require
complete batch data only available at the end of a batch. Therefore, the complete
batch trajectorymust be estimated real time, or alternatively only themeasured values
at the current moment are used for online diagnosis. Moreover, the above approaches
do not consider the problem of inconsistent production cycles.

To address these issues, this chapter presents the modeling of kernel Fisher enve-
lope surface (KFES) and applies it to the fault identification of batch process. This
method builds separate envelope models for the normal and faulty data based on
the eigenvalues projected to the two discriminant vectors of kernel FDA. The high-
lights of the proposed method include the kernel project aiming at the nonlinearity,
data batch-wise unfolding, envelope modeling aiming at unequal cycles, and new
detection indicator easily for online implementation.

7.1 Process Monitoring Based on Kernel Fisher Envelope
Analysis

7.1.1 Kernel Fisher Envelope Surface

Consider the batch-wise data matrix with I batches, i.e.,

X(k) = [
X1(k), X2(k), . . . , X I (k)

]T
,
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where X i consists of ni (i = 1, . . . , I ) row vectors and each row vector is a sample
vector X i

j (k), j = 1, . . . , ni acquired at time k and batch i . Each batch has the same
sampling period but different operation cycles, i.e., batch i has ni (i = 1, 2, . . . , I )
sampling point. Suppose K is the largest sampling moment among all batches, i.e.,
K = max [n1, n2, . . . , nI ].

LetΦ(x) be a nonlinear mapping rule that maps the sample data from the original
space X into the high-dimensional space F. Suppose that each batch is treated as a
class, then thewhole data set canbe categorized as I classes. Theoptimal discriminant
vector w is obtained using the exponential criterion function in the feature space F.
Since computing Φ(x) is not always feasible, a kernel function can be introduced,

K (xi , x j ) =< Φ(xi ),Φ(x j ) >= Φ(xi )TΦ(x j ). (7.1)

This kernel function is introduced to allow the dot product in F without directly
computing Φ. According to the principle of reproducing kernel, any solution w ∈ F
of discriminant vector must lie in the span of all training samples of w:

w =
n∑

(i=1)

αiΦ(xi ) = Φα, (7.2)

where xm,m = 1, . . . , n, n = n1 + n2 + · · · + nI is the row vector of X . Φ(x) =
[Φ(x1), . . . , Φ(xn)];α = (α1,α2, . . . αn)

T. The eigenvalues Ti j are obtained by
projecting the sampled values Φ(xij ) in space onto w.

Ti j = wTΦ(xij ) = αTΦTΦ(xij )

= αT[Φ(x1)TΦ(xij ), . . . , Φ(xi )TΦ(xij )]
= αTξi

j .

(7.3)

The kernel sample vector ξi
j is defined as follows:

ξi
j = [K (x1, xij ), K (x2, xij ), . . . , K (xn, xij )]T. (7.4)

Consider the projection of within-class mean vectormΦ
i , i = 1, . . . , I , the kernel

within-class mean vector μi is obtained as

μi =
⎡

⎣ 1

ni

ni∑

j=1

K (x1, xij ), . . . ,
1

ni

ni∑

j=1

K (xn, xij )

⎤

⎦

T

. (7.5)

Then the kernel between-class scatter matrix K b is



7.1 Process Monitoring Based on Kernel Fisher Envelope Analysis 103

K b =
I∑

i=1

ni
n

(μi − μ0)(μi − μ0)
T. (7.6)

Similarly, consider the projection of overall mean vector mΦ
0 to the discriminant

vector w, the kernel overall mean vector μ0 and between-class scatter matrix Kw

can be calculated as

μ0 =
⎡

⎣1

n

n∑

j=1

K (x1, x j ), . . . ,
1

n

n∑

j=1

K (xn, x j )

⎤

⎦

T

(7.7)

Kw = 1

n

I∑

i=1

ni∑

j=1

(ξi
j − μi )(ξ

i
j − μi )

T. (7.8)

The discriminant function with the objective of maximizing between class and
minimizing within class is equivalent to

max J (α) = tr(αTK bα)

tr(αTKwα)

= tr(αT(V bΛbVT
b )α))

tr(αT(VwΛwVT
w)α)

,

(7.9)

where K b = V bΛbVT
b and Kw = VwΛwVT

w are eigenvalue decompositions of
between-class and within-class scatter matrices, respectively. To construct the enve-
lope surface model, it is usually assumed that two discriminant vectors are obtained,
namely, the optimal discriminant vector and the suboptimal discriminant vector. The
kernel sampling vector for sampling point k of batch i is ξi

k, which is projected onto
the two discriminant vectors to obtain the eigenvalues T 1

ik and T 2
ik .

The eigenvalue vectors of all batch at time k in the first two projection direction
are

[
T 1
1k, T

1
2k, . . . , T

1
I k

]
and

[
T 2
1k, T

2
2k, . . . , T

2
I k

]
. Their means of the two eigenvalue

vectors are mean1(k) and mean2(k), respectively. Define that

max1(k) = max
[|T 1

1k − mean1(k)|, · · · , |T 1
I k − mean1(k)|

]

max2(k) = max
[|T 2

1k − mean2(k)|, · · · , |T 2
I k − mean2(k)|

]
,

(7.10)

where max(k) is the larger between max1(k) and max2(k), for all k = 1, 2, . . . , K ).
Then the envelope surface in high-dimensional space is

(xk − mean1(k))
2 + (yk − mean2(k))

2 = max (k)2(k = 1, 2, . . . , K ), (7.11)

where (xk, yk) is a projection of original data in the feature space, i.e., xk is the
eigenvalue in the optimal discriminant direction and yk is the eigenvalue in the
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suboptimal discriminant direction. Equation (7.11) gives the envelope surface with
the maximum variation which allows the eigenvalues at different sampling times for
this kind of data.

Unequal Cycle Discussion

Suppose the production period of each batch is different, i.e., ni is varying with
the batch i . The envelope surface model is similar as described above, but the dif-
ference lies in the composition of the eigenvalue vector. As a simple example, it
is known that there are I batches of data in a training data set, and the sampling
moment k for each batch varies from 1 to K , K is the largest sampling moment of
all batches. Suppose only batch i does not reach the maximum sampling moment K ,
k = 1, . . . , ni , ni ≤ K . The corresponding eigenvalue vectors are

[
T 1
1k, T

1
2k, . . . , T

1
I k

]

and
[
T 2
1k, T

2
2k, . . . , T

2
I k

]
if k = 1, . . . , ni . When the time increases k = ni +

1, . . . , K , the eigenvalue vectors are
[
T 1
1k, T

1
2k, · · · T 1

(i−1)k, T
1
(i+1)k, . . . , T

1
I k

]
and

[
T 2
1k, T

2
2k, · · · T 2

(i−1)k, T
2
(i+1)k, . . . , T

2
I k

]
. Obviously, the parameters in envelope sur-

face model (7.11), max(k), max1(k), and max2(k) are time varying with k.

7.1.2 Detection Indicator

Define the detection indicators as follows:

P1(k) = |T 1
k − mean1(k)|

max(k)

P2(k) = |T 2
k − mean2(k)|

max(k)

T (k) = (T 1
k )2 + (T 2

k )2,

(7.12)

where T 1
k and T 2

k are the eigenvalues obtained by mapping the real-time sampling
vector xk onto the discriminant vector in the higher dimensional space. When the
trajectory of eigenvalues at that moment is contained within the envelope surface,
there must be P1(k) < 1 and P2(k) < 1 holds. If the difference between the new
batch of data and the training data for this type of envelope surface model is large,
the Gaussian kernel function used in the kernel Fisher criterion is almost zero, such
that T 1

k =0, T 2
k =0, i.e., T (k) = 0. Thus, for a given measured data, using the above

indicators, a judgement can be made. When P1(k) < 1, P2(k) < 1, and T (k) = 0
does not occur, the data sampled at that moment belong to this mode type. When
T (k) = 0 occurs consistently, it indicates that the sampled data does not belong to
this mode type.
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It is assumed that it has been determined from the normal operating envelope
surface model that the batch of data is faulty at some point. Fault identification is
carried out using fault envelope surface models. Consider one of the fault envelope
surface models, if P1(k) < 1, P2(k) < 1, and no T (k) = 0, then the batch fault is in
current fault type. If T (k) = 0 appears consistently in each envelope model, then the
fault that exists may be a new one. When that fault occurs multiple times, the pattern
type needs to be updated and an additional envelope model need to be constructed
for new fault.

The fault identification using the proposed kernel Fisher envelope surface analysis
(KFES) is given as follows. Its fault monitoring flowchart is shown in Fig. 7.1.

Fault Monitoring Algorithm Based on KFES
Step 1: Collect the historical data with S fault categories. Construct S envelope

surface models for each category based on the description in Sect. 7.1.1:

(xk − meanS
1 (k))

2 + (yk − meanS
2 (k))

2=maxS(k)2, (k = 1, 2, . . . , K ). (7.13)

Then store all the model parameters meanS
1 (k), meanS

2 (k), and maxS(k), (k =
1, 2, . . . , K ). Thus, the envelope model library Env − model(S, k) is constructed.

Step 2: Sample the real-time data xk . After normalization, the kernel sampling
vector ξk is obtained.

Step 3: Under the known S fault envelope surface model at time k, project the
kernel sampling vector ξk of xk in the direction of the discriminant vectors. Calculate
the corresponding project eigenvalues T 1

k , T
2
k and detection indicators. If PS

1 (k) <

1, PS
2 (k) < 1, and T S(k) �= 0, then the fault belongs to category S.
Step 4: If detection indicators in Step 3 are not satisfied for all known fault type,

it is possible that a new fault has occurred. When that unknown fault lasts for a

Fig. 7.1 Fault monitoring
flowchart based on fault
envelope surface model
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period of time, the model library needs to be updated. The envelope surface for this
new fault is modeled according to the accumulated new batch data as Step 1, and
augmented into the model library.

7.1.3 KFES-PCA-Based Synthetic Diagnosis in Batch
Process

The basic idea of synthetic diagnosis integrates the advantage of KFES and PCA.
It builds a multiway PCA model for normal operating in the historical database
and calculates the monitoring statistics T2 and SPE of PCA model and their control
limits. ThemultiwayPCA is used for fault detection. For the fault data in the historical
database, the KFES is modeled for known fault categories. The KFES analysis is
used for fault identification. Themodeling and onlinemonitoring process of synthetic
diagnosis is shown in Fig. 7.2.

The normal operating data and S classes fault data were obtained from the histor-
ical data set. Firstly, the normal operating condition data X(I × J × K ) is expanded
into two-dimensional matrix X(I × J K ) in the time direction. After normalization,
the data is unfolding again as Y(I K × J ) in the batch direction. Perform multiway
PCA on the matrix to obtain score matrix T (I K × R) and load matrix P(J × R),
where R is the number of principal components. Then calculate the control limits of
the statistics T2 and SPE.

Fig. 7.2 Process monitoring flowchart based on KFES-PCA
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Instead of using contributionmaps, kernel Fisher envelope surface analysis is used
for fault diagnosis. Assume that there are S classes in the fault data set. The envelope
surface model is first constructed for each fault type. When the new data xnew,k is
obtained, it should be judged whether the current operation is normal by PCAmodel.
If the T2 and SPE exceed the control limits, and the fault is detected. Then we can
identify the type of fault by KFES model library. If the eigenvalues do not satisfy the
indicators in all the known fault models, this fault seems to be new. As long as enough
data toKFESmodeling are collected, update the new fault model in themodel library.

Process Monitoring Algorithm Based on KFES-PCA
A. Offline Modeling

Step 1: Develop an improved multiway PCA model for normal operating con-
ditions data, calculate the statistics T2 and SPE, and determine the corresponding
control T2

lim and SPElim based on the score matrix T (K I × R) and load matrix
P(J × R) obtained from the normal model.

Step 2: Apply KFES analysis to the fault data and construct a fault envelope for
each type of fault separately. Find the optimal discriminant weight matrix Wα, the
mean mean1(k), mean2(k), and maximum max (k) of the eigenvalue vectors.

Step 3: Store T2
lim and SPElim, the discriminant weight matrix Wα for each fault

type, the mean mean1(k), mean2(k), and the maximum max (k) of the eigenvalues.

B. Online Monitoring
Step 1: Normalize the new batch of data xnew,k (J × 1) at the kth sampling

moment.
Step 2: Calculate the value of statistics T2 and SPE and determine if they are over

the limit, if not, back to the first step. Otherwise proceed to the next step.
Step 3: The known fault envelope surface model is used for fault identification

at that moment. xnew,k (J × 1) is the sampling data obtained at the first k sampling
moment, normalized and projected onto the discriminant weight matrix Wα of the
kernel Fisher envelope model to obtain the eigenvalues T 1

k and T 2
k . The eigenvalues

are substituted into the index, P1(k) < 1, P2(k) < 1, and no T (k) = 0, and the fault
is in this fault type.

Step 4: If a fault has been detected based on step 2, but it does not belong to
any known fault type obtained from step 3, this indicates that a new fault may have
occurred. When that unknown fault has occurred several times, the mode type needs
to be updated and the envelope surface model for that fault needs to be augmented
with the accumulated batches of new faults in an offline situation.



108 7 Kernel Fisher Envelope Surface for Pattern Recognition

7.2 Simulation Experiment Based on KFES-PCA

The fed-batch penicillin fermentation simulation platform is used to verify the effec-
tiveness of theKFES-PCAmethod for fault diagnosis here. Eleven variables affecting
the fermentation reaction were selected for modeling, and these variables were air
flow, stirring power, substrate flow acceleration rate, temperature, etc. Three simula-
tion failure types were selected as shown in Table7.1. The total data sets (including
50 batches) were generated from the Pensim 2.0 simulation platform with 1h sam-
pling interval, consisting of 20 batches of normal operation, 10 batches of bottom
flow acceleration rate drop failure, 10 batches of agitation power drop failure, and 10
batches of air flow drop failure. The normal operation data are obtained at different
product cycles, one batch with 95h, two batches with 96h, two batches with 97h,
three batches with 98h, five batches with 99h, and seven batches with 100h. Simi-
larly, change the reaction duration of each batch, and change the time and amplitude
of the failure occurrence. The failure batch data are collected.

Figure7.3a–d gives the envelope surface of the kernel Fisher discriminant enve-
lope model under the normal operation and three known fault operations offline
trained, respectively. Here the x-axis and y-axis represent the direction of the opti-
mal and suboptimal discriminant vector, and the z-axis represents time.

The traditional monitoring methods, such asMPCA andMFDA, require the mod-
eling batches to be of equal length. However, the duration of the different batches
tends to change in practice. Therefore, the data of different batches must be pre-
processed with equal length when using these methods. The proposed KFES-PCA
method unfolds the data in the batch direction during the preprocessing, which can
simply cope with the unequal batches of data and therefore easily performed in
practice.

The following experiments are designed to perform the online detection with the
known fault and new unknown fault data, respectively. The two batches of test data
are not included in the training data in order to obtain a valid validation. In addition,
a comparative validation using the conventional contribution map method and the
improved MFDA method is also carried out (Jiang et al. 2003).

Table 7.1 Types of faults in penicillin fermentation processes

Fault number Fault type

1 Base flow rate down (step)

2 Agitator power down (step)

3 Air flow down (step)
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(a) normal envelope surface (b) fault 1 envelope surface

(c) fault 2 envelope surface (d) fault 3 envelope surface

Fig. 7.3 Envelope surface for normal and three fault operations

7.2.1 Diagnostic Effect on Existing Fault Types

Experiment 1: Step Drop Fault at Stirring Power
A fault batch data is regenerated for testing with the stirring power drop fault. The
fault occurs at 50h with a step disturbance of −12% in magnitude until the process
ends. The sampled data is first monitored based on T2 and SPE statistics, as shown
in Fig. 7.4. It can be seen that T2 and SPE continues to exceed the limit from 50h to
process end. A failure can be detected when it occurs at 50h. Table7.2 records the
indicators when it is diagnosed using the envelope surface model of fault 2. It shows
that there are P1(k) < 1, P2(k) < 1, and no T (k) = 0 with time through from 50h to
100h. So it is concluded that this fault of testing batch belongs to fault 2. Figure7.5
shows the diagnosis results based on each envelope surface model. It can also be
seen that the fault matches with the second type of fault, a mixing power drop fault.

The contribution plot is used to analyze the testing data at 50h, as shown inFig. 7.6.
It is found that the second variable contributes significantly to both the statistics T2

and SPE. This also diagnoses that the fault belongs to fault 2. Therefore, the envelope
surface model is equally successful in diagnosing the fault type when compared with
the contribution plot method.
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(a) T
2

(b) SPE

Fig. 7.4 Monitoring statistics of KFES-PCA method: experiment 1

Table 7.2 The indicators detected in fault 2 envelope surface: experiment 1

k 50 51 52 53 54 55 56 57 · · · 100

T 1
k 0.044 0.025 0.028 −0.011 0.032 0.062 0.110 0.083 · · · −0.005

T 2
k −0.159 −0.145 −0.233 −0.141 −0.173 −0.205 −0.271 −0.202 · · · −0.241

P1 (k) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 · · · < 1

P2 (k) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 · · · < 1

The comparison experiment is finished based on the improved MFDAmethod, as
shown in Fig. 7.7. The horizontal coordinate is time. The vertical coordinate is fault
type, where 0 represents the normal operation, and 1, 2, 3, and 4 correspond to fault
1, fault 2, fault 3, and unknown fault, respectively. It can be seen that the improved
MFDA has a relatively high rate of misdiagnosis and its diagnosis result is not ideal.

Experiment 2: Step Drop Fault at Air Flow
The testing fault is air flow drop failure and testing data is regenerated with the failure
which occurred in 58h, and its amplitude is −10% step disturbance until the process
ends. The monitoring statistics T2 and SPE are given in Fig. 7.8. The T2 and SPE
continue to exceed the control limits from 58h to the end, so a fault is detected at
58h in real time.

Figure7.9 is the monitoring result using the proposed envelope surface model.
Table7.3 records the indicators when using the envelope surface model of fault 3.
It can be seen that there are P1(k) < 1, P2(k) < 1, and no T (k) = 0 between 58h
and 100h, so it is judged that the fault which occurred in this testing batch belongs
to fault 3. Figure7.9 shows all the diagnosis results with different envelope surface
models. It can also be seen that this fault matches with the model of fault 3, i.e., the
air flow drop fault.
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(a) fault 1 envelope surface

(b) fault 2 envelope surface (c) fault 3 envelope surface

Fig. 7.5 Fault diagnosis based on envelope surfaces: experiment 1

(a) T 2 contribution (b) SPE contribution

Fig. 7.6 Contribution plot to statistics T2 and SPE at 50h

The contribution plot of the sampling data at 58h is shown in Fig. 7.10, where
variables 1, 4, 6, and 8 contribute more to the statistic T2. The variable 3 contributed
more to the statistic SPE. The diagnosis result is not significant. Therefore, the
envelope surface method can successfully diagnose faults that are not diagnosed by
the contribution plot.
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Fig. 7.7 Fault diagnosis based on improved MFDA: experiment 1

(a) T2 (b) SPE

Fig. 7.8 Monitoring statistics of KFES-PCA method: experiment 2

The comparison results of the improved MFDA method are given in Fig. 7.11.
It shows a relatively higher rate of misdiagnosis and its diagnosis result is not very
satisfactory, compared with the proposed KFES-PCA.
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(a) fault 1 envelope surface

(b) fault 2 envelope surface (c) fault 3 envelope surface

Fig. 7.9 Fault diagnosis based on envelope surfaces: experiment 2

Table 7.3 The indicators detected in fault 3 envelope surface: experiment 2

k 58 59 60 61 62 63 64 65 · · · 100

T 1
k −0.110 −0.110 −0.171 −0.133 −0.220 −0.182 −0.100 −0.054 · · · −0.066

T 2
k −0.237 −0.162 −0.259 −0.141 −0.393 −0.378 −0.273 −0.332 · · · −0.295

P1 (k) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 · · · < 1

P2 (k) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 · · · < 1

(a) T2 contribution (b) SPE contribution

Fig. 7.10 Contribution plot to statistics T2 and SPE at 58h: experiment 2
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Fig. 7.11 Fault diagnosis based on improved MFDA: experiment 2

7.2.2 Diagnostic Effect on Unknown Fault Types

Experiment 3: Slope Drop Fault at Air Flow Rate
Here a new fault is used to test the diagnosis ability of the proposed KFES-PCA
method. The slope faults different from the known three fault types are considered.
The test fault is a ramp fault in which the air flow rate drops by−15% at 50h. Firstly,
the T2 and SPE statistics are used to detect this new fault. Figure7.12 shows that the
T2 and SPE statistics both detect this fault in time at 50h.

(a) T2 (b) SPE

Fig. 7.12 Monitoring statistics of KFES-PCA: experiment 3
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Table 7.4 The indicator detected in fault 3 envelope surface: experiment 3

k 50 51 52 53 54 55 56 57 · · · 100

T 1
k 0 0 0 0 0 0 0 0 · · · 0

T 2
k 0 0 0 0 0 0 0 0 · · · 0

T (k) 0 0 0 0 0 0 0 0 · · · 0

(a) fault 1 envelope surface (b) fault 2 envelope surface

(c) fault 3 envelope surface

Fig. 7.13 Fault diagnosis based on different envelope surfaces: experiment 3

The known envelope surface models are used to diagnose this fault. Table7.4
records that all the indicators are zero when the envelope surface model of fault 3 is
used for diagnosis. Itmeans that no fault 3 has occurred. The same indicator results are
obtained from the envelope surface models of other known faults. Figure7.13 gives
the diagnosis result under the different envelope surface models. So this fault does
not belong to the known fault category and is diagnosed as a new fault. Therefore,
the proposed method realizes the real-time diagnosis for unknown faults.

The diagnosis result of improved MFDA method is given in Fig. 7.14. It can be
seen that the improved MFDA does not make a timely and correct diagnosis when
the fault occurs. It gives a wrong diagnosis result, fault type 3. The correct result is
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Fig. 7.14 Fault diagnosis based on improved MFDA: experiment 3

reported until 63h. This fault is diagnosed as a new fault, and there is a 13h delay.
Therefore, the improved MFDA method failed to identify new faults.

7.3 Conclusions

This chapter describes a monitoring method based on KFES-PCA for batch pro-
cesses. The production cycles of batch processes are often unequal, and monitoring
methods for batch processes generally require batch data with consistent production
cycles. Although data preprocessing can result in equal cycles, these methods can
result in the loss of important information about faults. In addition, many existing
monitoring methods often require a complete production trajectory for online mon-
itoring, and filling or estimating unknown values inevitably leads to a decrease in
diagnostic performance. To address the above two problems, the modeling process
of the KFES method is described in detail and an online monitoring flowchart is pre-
sented. Furthermore, a batch fault diagnosis method integrating the KFES and the
improved PCA method is proposed. The method is applied to a penicillin fermenta-
tion simulation platform and compared with the traditional contribution map method
and the improved MFDA method. The results show that the proposed method has
better monitoring performance, and it can diagnose faults early and effectively and
has the ability to identify unknown faults.
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