
Chapter 4
Simulation Platform for Fault Diagnosis

The previous chapters have described the mathematical principles and algorithms
of multivariate statistical methods, as well as the monitoring processes when used
for fault diagnosis. In order to validate the effectiveness of data-driven multivariate
statistical analysismethods in the field of fault diagnosis, it is necessary to conduct the
corresponding fault monitoring experiments. Therefore this chapter introduces two
kinds of simulation platform,TennesseeEastman (TE) process simulation systemand
fed-batch Penicillin Fermentation Process simulation system. They are widely used
as test platforms for the process monitoring, fault classification, and identification of
industrial process. The related experiments based on PCA, CCA, PLS, and FDA are
completed on the TE simulation platforms.

4.1 Tennessee Eastman Process

The original TE industrial process control problem was developed by Downs and
Vogel in 1993. It is used for the open and challenging control-related topics including
multi-variable controller design, optimization, adaptive and predictive control, non-
linear control, estimation and identification, process monitoring and diagnosis, and
education. TE process model is established according to the actual chemical process.
It has been widely used as a benchmark for control and monitoring research process.
Figure4.1 shows the flow diagram of TE process with five major units: reactor,
condenser, compressor, vaporliquid separator, and stripper. Four kinds of gaseous
material A, C, D, and E are input for reaction. In addition, a small amount of
inert gas B is contained besides the above feeds. The final products are three liquid
including G, H , and F , where F is the by-product.
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Fig. 4.1 Tennessee Eastman process

A(g) + C(g) + D(g) → G(liq), product G

A(g) + C(g) + E(g) → H(liq), product H

A(g) + E(g) → F(liq), by-product

3D(g) → 2F(liq), by-product

Briefly, TE process consists of two data modules: XMV module containing 12
manipulated variables (XMV(1)-XMV(12):x23 − x34) and XMEASmodule consist-
ing of 22 process measured variables (XMEAS(1)-XMEAS(22):x1 − x22) and 19
component measured variables (XMEAS(23)-XMEAS(41):x35 − x53), as listed in
Tables4.1 and 4.2.

In this book, the code provided is available on the website online at http://depts.
washington.edu/control/LARRY/TE/download.html. Also, the code and data sets
can be downloaded. The Simulink simulator allows an easy setting and generation
of the operation modes, measurement noises, sampling time, and magnitudes of
the faults. It is thus very helpful for the data-driven process monitoring study. 21
artificially disturbances (considered as faulty operations for fault diagnosis problem)
in the TE process are shown in Table4.3. In general, the entire TE data consists of
training set and testing set, and each set includes 22 kinds of data under different
simulation operations. Each kind of data has sampled measurements on 53 observed
variables.

In the data set given in the web link above, d00.dat to d21.dat are training sets, and
d00_te.dat to d21_te.dat are testing sets. d00.dat and d00_te.dat are samples under

http://depts.washington.edu/control/LARRY/TE/download.html
http://depts.washington.edu/control/LARRY/TE/download.html
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Table 4.1 Monitoring variables in the TE process(x1 − x34)

No. Variable name Units No. Variable name Units

x1 A feed (stream 1) kscmh x18 Stripper temperature ◦C
x2 D feed (stream 2) kgh−1 x19 Stripper steam flow kgh−1

x3 E feed (stream 3) kgh−1 x20 Compress work KW

x4 A and C feed (steam 4) kscmh x21 Reactor cooling water
outlet temperature

◦C

x5 Recycle flow (stream 8) kscmh x22 Condenser cooling water
outlet temperature

◦C

x6 Reactor feed rate (stream 6) kscmh x23 D feed flow valve (stream
2)

%

x7 Reactor pressure kPa gauge x24 E feed flow valve (stream
3)

%

x8 Reactor level % x25 A feed flow valve (stream
1)

%

x9 Reactor temperature ◦C x26 A and C feed flow valve
(stream 4)

%

x10 Purge rate (stream 9) kscmh x27 Compressor recycle valve %

x11 Product separator
temperature

◦C x28 Purge valve (stream 9) %

x12 Product separator level % x29 Separator pot liquid flow
valve (stream 10)

%

x13 Product separator pressure kPa gauge x30 Stripper liquid product
flow valve (stream 11)

%

x14 Product separator
underflow (stream 10)

m3h−1 x31 Stripper steam valve %

x15 Stripper level % x32 Reactor cooling water flow
valve

%

x16 Stripper pressure kPa gauge x33 Condenser cooling water
flow valve

%

x17 Stripper underflow (stream
11)

m3h−1 x34 Agitator speed

the normal operation conditions. The training samples of d00.dat are sampled under
25h running simulation. The total number of observations is 500. The d00_te.dat
test samples are obtained under 48h running simulation, and the total number of
observation data is 960. d01.dat–d21.dat (for training) and d01_te.dat–d21_te.dat
(for testing) are sampled with different faults, in which the numerical label of the
data set are corresponding to the fault type.

All the testing data set are obtained under 48h running simulation with the faults
introduced at 8h. A total of 960 observations are collected, in which the first 160
observations are in the normal operation. It is worth to point out that the data sets
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Table 4.2 Monitoring variables in the TE process(x35 − x53)

No. Variable name Stream No. Variable name Stream

x35 Composition A 6 x45 Composition E 9

x36 Composition B 6 x46 Composition F 9

x37 Composition C 6 x47 Composition G 9

x38 Composition D 6 x48 Composition H 9

x39 Composition E 6 x49 Composition D 11

x40 Composition F 6 x50 Composition E 11

x41 Composition A 9 x51 Composition F 11

x42 Composition B 9 x52 Composition G 11

x43 Composition C 9 x53 Composition H 11

x44 Composition D 9

Table 4.3 Disturbances for the TE process

IDV Process variable Tape

1 A/C feed ratio, B composition constant (stream 4) Step

2 B composition, A/C feed ratio constant (stream 4) Step

3 D feed temperature (stream 2) Step

4 Reactor cooling water inlet temperature Step

5 Condenser cooling water inlet temperature Step

6 A feed loss (stream 1) Step

7 C header pressure loss−reduced availability (stream 4) Step

8 A, B, C feed composition (stream 4) Random

9 D feed temperature (stream 2) Random

10 C feed temperature (stream 4) Random

11 Reactor cooling water inlet temperature Random

12 Condenser cooling water inlet temperature Random

13 Reaction kinetics Slow drift

14 Reactor cooling water valve Sticking

15 Condenser cooling water valve Sticking

16 Unknown Unknown

17 Unknown Unknown

18 Unknown Unknown

19 Unknown Unknown

20 Unknown Unknown

21 Valve position (stream 4) Constant
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once generated by Leoand et al. (2001) is widely accepted for process monitoring
and fault diagnosis research. The data sets are smoothed, filtered, and normalized.
The monitored variables are variables x1 − x53.

4.2 Fed-Batch Penicillin Fermentation Process

Fed-batch fermentation processes are widely used in the pharmaceutical industry.
The yield maximization is usually considered as the main goal in the batch fermen-
tation processes. The different characteristics of batch operation from the continu-
ous operation include strong nonlinearity, non-stationary conditions, batch-to-batch
variability, and strong time-varying conditions. These features result that the yield
is difficult to predict. Therefore, the fault detection, classification, and identification
of batch/fed-batch processes shows more difficulties compared with the continuous
TE process.

The model of fed-batch penicillin fermentation process is described by Birol et al.
(2002)

X = f (X, S,CL , H, T )

S = f (X, S,CL , H, T )

CL = f (X, S,CL , H, T )

P = f (X, S,CL , H, T, P)

CO2 = f (X, H, T )

H = f (X, H, T ),

where X, S, CL , P, CO2, H and T are biomass concentration, substrate concen-
tration, dissolved oxygen concentration, penicillin concentration, carbon dioxide
concentration, hydrogen ion concentration for pH

([
H+])

, and temperature, respec-
tively. The corresponding detailed mathematical model is given in Birol et al. (2002).

The research group with the Illinois Institute of Technology has developed a
dynamic simulation of penicillin production based on an unstructured model, Pen-
SimV2.0. Thismodel has been used as a benchmark for statistical processmonitoring
studies of batch/fed-batch reaction process. The flow chart of the fermentation pro-
cess is depicted in Fig. 4.2. The fermentation unit consists of a fermentation reactor
and a coil-based heat exchange unit. The pH and temperature are automatically con-
trolled by two PID controllers by adjusting the flow rates of acid/base and cold/hot
water. The glucose substrate is fed continuously into the fermentation reactor in
open-loop operation in the fed-batch operation mode.

Fourteen variables are considered in PenSim V2.0 model, shown in Table4.4: 5
input variables (1–4, 14) and 9 process variables (5–13). Since variables 11–13 are
not measured online in industry, only 11 variables are monitored here.
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Fig. 4.2 Flow chart of the penicillin fermentation process

Table 4.4 Variables in penicillin fermentation process

No. Variable

1 Aeration rate (L/h)

2 Agitator power input (W)

3 Substrate feed rate (L/h)

4 Substrate feed temperature (K)

5 Dissolved oxygen concentration (% saturation)

6 Culture volume (L)

7 Carbon dioxide concentration (mmol/L)

8 pH

9 Temperature in the bioreactor (K)

10 Generated heat (kcal/h)

11 Cooling water flow rate (L/h)

12 Penicillin concentration

13 Biomass concentration

14 Substrate concentration

4.3 Fault Detection Based on PCA, CCA, and PLS

This section tests the effectiveness of various multivariate statistical methods for the
TE process. Faults in the standard TE data set are introduced at the 160 sampling.
For comparison purposes, the normal operation data d00_te is chosen as to train the
statistical model and faulty operation data d01_te-d21_te is used to test model and
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detect fault. In the experiments for the PCA and PLS methods, the process variable
matrix X consists of process variables (XMEAS (1–22)) and manipulated variables
(XMV (1–11)). XMEAS (35) is used as the quality variable matrix Y for PLS. In the
CCA experiment, the process variables (XMEAS (1–22)) are used as one data set,
and the manipulated variables (XMV (1–11)) as another data set.

The fault detection rate (FDR) and false alarm rate (FAR) are defined as follows:

FDR = No.of samples(J > Jth | f �= 0)

total samples( f �= 0)
× 100

FAR = No.of samples(J > Jth | f = 0)

total samples( f = 0)
× 100.

(4.1)

Experiment and model parameters are determined as follows. The principal com-
ponents of PCA are determined by the cumulative contribution of 90%. The number
of principal components of PLS is selected as 6. T2 and Q statistics are used to
monitor process faults. It should be noted that in the monitoring of CCA, (3.18) and
(3.19) are used as monitoring indices and the corresponding monitoring results are
slightly different. For 21 fault types, the FDR for PCA, CCA, and PLS based on the
control limit with 99% confidence level are shown in Table4.5. It can be seen that
the multivariate statistical methods listed in this section (including PCA, CCA, and
PLS) can accurately detect the significant process faults.

Figures4.3, 4.4, and 4.5 show the different monitoring results base on PCA, CCA,
and PLS model for typical faults IDV(1), IDV(16), and IDV(20), respectively. Here,
the black line is the statistic calculated from the real-time data and the red line is the
normal statistic threshold from the offline model calculation.

It is easy to find thatCCAhas better detection for certain fault types fromTable4.5,
such as faults IDV(10), IDV(16), IDV(19), and IDV(20). The monitoring results for
faults IDV(16) and IDV(20) are shown in Figs. 4.4 and 4.5. Why does CCA show
better detection capabilities than the other two methods in certain faults? Let’s check
the setting of process variable X for three methods. In contrast to PCA and PLS,
CCA splits its X-space directly into two parts and extracts the latent variables by
examining the correlation between these two parts, i.e., the latent variables extracted
by CCA can better characterise the changes in the process.

4.4 Fault Classification Based on FDA

To further test the effectiveness of fault classification, samples from the 161th to the
700th of the 21 fault data sets and the normal data sets are used for training FDA
model. The corresponding data from the 701th to the 960th samples are used to test
FDA model and its classification ability. FDA in Sect. 2.2 is a classical method to
validate the classification effect and identify the fault types. The following distance
metric index is introduced to further quantify the difference between different faults:
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Table 4.5 FDRs of PCA, CCA and PLS

PCA CCA PLS

IDV T2 SPE T2
1 T2

2 T2 SPE

1 99.13 99.88 99.38 99.63 99.75 99.38

2 98.38 95.13 95.63 96.13 98.63 97.75

3 1.00 3.00 0.25 0.50 3.75 1.88

4 50.88 99.88 100.00 97.38 40.63 96.88

5 23.75 23.88 100.00 100.00 25.50 25.88

6 99.00 100.00 100.00 100.00 99.25 100.00

7 100.00 100.00 100.00 83.00 99.13 100.00

8 97.00 86.25 87.00 92.25 96.88 96.75

9 1.50 2.00 0.13 0.13 2.13 2.25

10 27.88 36.13 78.75 79.38 57.00 31.25

11 52.50 61.63 77.00 56.88 41.88 65.75

12 98.38 90.25 97.00 99.00 99.00 96.75

13 93.75 95.13 94.38 94.25 95.50 94.25

14 99.88 98.88 100.00 99.88 99.88 100.00

15 1.25 2.00 0.63 0.75 4.50 1.13

16 12.13 36.25 85.00 86.63 29.75 19.25

17 79.50 95.88 91.38 95.25 80.13 89.75

18 89.13 90.50 89.50 89.50 89.50 89.50

19 11.63 16.50 84.38 84.25 1.63 13.38

20 31.13 52.75 70.38 75.50 41.75 45.38

21 41.25 48.75 26.63 36.88 56.38 43.00

D2 = ∥∥ FDAi − FDA j

∥∥ ,

where FDAi denotes the FDA feature vector of the i th fault.
The simulation results are shown in Fig. 4.6. The 22 kinds of data (including the

normal operation and 21 faulty operation) can be roughly divided into two major
categories: the first category is the faults that are significantly different from other
faults, which contains faults IDV(2) (line with ♦), IDV(6) (line with ∗), and IDV(18)
(line with ◦); the other category is the set of faults whose characteristics are relatively
close to each other.

The faults IDV(1), IDV(2), IDV(6), and IDV(20) are further analyzed. The FDA
results for fault classification are shown in Fig. 4.7. The D2 indices for these faults
vary considerably, as the classification results clearly illustrated. Conversely, certain
faults have very small differences inD2 indices. For example, faults IDV(4), IDV(11),
and IDV(14) have the similar FDA D2 indices, shown in Fig. 4.8. These faults are
difficult to classify accurately based on FDA model, as shown in Fig. 4.9.
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Fig. 4.3 PCA, CCA, and
PLS monitoring results for
IDV(1)
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Fig. 4.4 PCA, CCA, and
PLS monitoring results for
IDV(16)
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Fig. 4.5 PCA, CCA, and
PLS monitoring results for
IDV(20)
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4.5 Conclusions

Two kinds of simulation platforms are introduced for verifying the statistical moni-
toringmethods and several experiments based on the traditional methods, PCA, PLS,
CCA, and FDA, are finished. These basic experiments illustrate the characteristics of
several methods and their fault detection effects. Actually, there are lots of improved
methods to overcome the shortcomings and deficiencies of the original multivari-
ate statistical analysis methods. Each method has its own conditions and scope of
application. No one method completely outperforms the others in terms of perfor-
mance. Furthermore, data-based fault detection methods need to be combined with
the actual monitoring objects, and existing methods need to be improved accord-
ing to its knowledge and characteristics. So this book focus on the fault detection
(discrimination) strategies for batch processes and strong nonlinear systems.
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