Chapter 13 ®)
Bayesian Causal Network for Discrete i
Variables

Ensuring the safety of industrial systems requires not only detecting the faults, but
also locating them so that they can be eliminated. The previous chapters have dis-
cussed the fault detection and identification methods. Fault traceability is also an
important issue in industrial system. This chapter and Chap. 14 aim at the fault
inference and root tracking based on the probabilistic graphical model. This model
explores the internal linkages of system variables quantitatively and qualitatively, so
it avoids the bottleneck of multivariate statistical model without clear mechanism.
The exacted features or principle components of multivariate statistical model are
linear or nonlinear combinations of system variables and have not any physical mean-
ing. So the multivariate statistical model is good at fault detection and identification,
but not at fault root tracking.

Bayesian network (BN) can estimate and predict the potentially harmful factors
of the general system, but its structure learning has some deficiencies when it is
applied to the complex system, such as complex training mechanism and variable
causalities. In order to simplify the network structure, lots of assumptions should
be presupposed and it inevitably causes the loss of generality. Usually, a generative
model (linear or nonlinear) is built to explain the data generating process, i.e., the
causalities. A variety of causal discovery methods have been proposed recently to
find the causalities (Hyvérinen et al. 2010; Hong et al. 2017). The most classical
method is the linear non-gaussian acyclic model (LINGAM) (Shimizu et al. 2010),
in which the full structure of BN is identifiable without pre-specifying a causal order
of the variables. The improved LINGAM method is proposed to estimate the causal
order of variables without any prior structure knowledge and provide better statistical
performance (Shimizu et al. 2011). The nonlinear causality of a pair of variables is
discovered in Johnson and Bhattacharyya (2015), where the proposed method shows
a limitation when dealing with the multivariate variables.

The above approaches exploit the complexity of the marginal and conditional
probability distributions in one way or the other. Despite the large number of meth-
ods for bivariate causal discovery have been proposed over the last few years, their
practical performance has not been studied systematically. These methods have yet
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to be applied to the actual industrial systems which usually do not meet the linear
and bivariate assumptions. To address the above issues, this chapter proposes a more
generalized multivariate post-nonlinear acyclic causal model for the complex indus-
trial process. The proposed multivariate post-nonlinear acyclic causal model, named
as Bayesian Causal Network (BCN), can easily find the multi-variables causality. It
shows more compact structure and consistency with mechanism, compared with the
traditional BN structure. In addition, it avoids the complex learning mechanism of
traditional BN, so is easier to implement without compromising accuracy.

13.1 Construction of Bayesian Causal Network

Itis known that there are many ways to describe the system characteristic according to
the observational data and expert knowledge, such as graph model (Hipel et al. 2011),
neural network model (Li et al. 2016), fuzzy model (Jiang et al. 2015). The graph
model is composed of points and lines to describe the system structure and the causal
relationships among variables. It provides an effective method for studying various
systems, especially the complex systems. Bayesian network, a typical graph model,
is the main method to deal with the knowledge representations and uncertainties
based on the probability theory. It builds the causality and probability within the
process components and the system variables from the prior knowledge and process
data. BN consists of the structure learning and the parameter learning, in which the
structure learning aims at determining the causalities within system variables and the
parameter learning aims at revealing the quantitative relationship of these causalities.
Bayesian network has been applied to fault diagnosis, financial analysis, automatic
target recognition, military, and many other areas (Zhu et al. 2017).

13.1.1 Description of Bayesian Network

Bayesian network, also known as Belief Network or directed acyclic graphical model,
is a probabilistic graphical model. It first proposed by Judea Pearl in 1985 (Pearl
1986). It is an uncertainty processing model that simulates the causal relationship
in the human reasoning process, and its network topology is a directed acyclic
graph (DAG). The nodes in the directed acyclic graph represent the random vari-
ables, including the observable variables, hidden variables, unknown parameters,
etc. Variables or propositions that are believed to have a causal relationship (or
non-conditional independence) are connected by arrows (in other words, the arrow
connecting two nodes represents whether the two random variables have a causal
relationship or are not conditionally independent). If two nodes are connected by a
single arrow, it means that one of the nodes is “cause” and the other is “effect”, a
conditional probability value is used to describe the causality degree quantitatively.
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Fig. 13.1 Bayesian network
example a

For example, assume that node A directly affects node B, then A — B. The
arrow from A to B is used to establish a directed arc (A, B) from node A to node B,
and the weight (its connection strength) is determined by the conditional probability
P(B|A). In short, a BN is formed by drawing the random variables in a directed
graph according to whether they are conditionally independent. It usually uses circle
to represent the random variables (nodes) and arrow to represent the conditional
dependencies. Figure 13.1 gives a simple Bayesian network (Ishak et al. 2011).

13.1.2 Establishing Multivariate Causal Structure

Model-based causal discovery assumes a generative model to explain the data gener-
ating process. When the existing knowledge about the data model is unavailable, the
assumed model should be sufficiently general so that it can be adapted to approximate
the real data generation process. Furthermore, the model should be identified such
that it could distinguish the causes from the effects. A nonlinear and multivariable
system always possesses the following three characteristics (Chen et al. 2018):

1. The multivariate causalities are usually nonlinear.

2. The final target variable is affected by its cause variables and some noise who is
independent from the causes.

3. Sensors or measurements may introduce nonlinear distortions into the observed
value of the variables.

To discover the causality of multivariable in complex industrial systems, a more gen-
eralized multivariate post-nonlinear acyclic causal model with inner additive noise is
proposed. The model is in the form of graph theory and Bayesian network structure.
Assume that there is a DAG to represent the relationship among multiple observed
variables. Mathematically, the generating process of X; is

Xi = fi2(fir(PA) + ), (13.1)

where the observed variables X;,i = {1,2,...,n} are arranged in a causal order,
such that no later variable causes any earlier variable. P A; is the direct cause of
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X;. fi1 denotes the nonlinear effect of this cause, and f; , denotes the invertible
post-nonlinear distortion in variable X;. e; is the independent disturbance which is
a continuous-valued random variable with non-gaussian distributions of non-zero
variances. Model (13.1) satisfies the aforementioned three characteristics: function
fi.1 accounts for the nonlinear effect of the causes P A;; e; is the noise effect during the
transmission from P A; to X;; invertible function f; , reflects the nonlinear distortion
caused by the sensor or measurement.

Randomly select a pair of variables X; and X ;,i,j = {1,2, ..., n}. Assume that
the pair (X;, X ;) has the causal relation X; — X ;. It’s data generating process can
be described in a generated model,

X; = fia(fin(Xy) +e)), (13.2)

where e; is independent from X;. Define s; e fii(X)),s; £ e;, and s; is indepen-
dent from s ;.
Rewrite the generating process X; — X ; as follows:

—1
X; —ijl(Sl), (13.3)
Xj=fia(si+5)).

X; and X ; in (13.3) are post-nonlinear (PNL) mixtures of independent sources s;
and s ;. The PNL mixing model can be seen as a special case of the general nonlinear
independent component analysis (ICA) model. Here we use nonlinear ICA method
to solve this problem (13.3).

Generally there are two possibility to describe the causal relation between any
two random variables X; and X ;, (X; — X; or X; — X;). We should identify the
correct relation by judging which one satisfies the assumed model (13.2). If the causal
relation is X; — X (i.e., X; and X; satisfy the model (13.2)), we can invert the
data generating process (13.2) to recover the disturbance e, which is expected to be
independent from X;. Two steps are used to examine the possible causal relationships
between variables.

In the first step, recover the disturbance e; corresponding to the assumed causal
relation X; — X ; based on the constrained nonlinear ICA. If this causal relation
holds, there exist nonlinear functions f ]*21 and f; such that

e; = fle (X;) — fia(Xp), (13.4)

where e; is independent from X;. Thus perform nonlinear ICA using the structure
in Fig. 13.2 and the outputs of system are

Y, =X,

(13.5)
Yi=e;=g;(X;)— g(X)).
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Fig. 13.2 Constrained X X;
nonlinear ICA system used
to verify if the causal relation l l
X i > X j holds
gi gj
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The nonlinearities g; and g; is modeled by Multi-layer perceptrons (MLP’s), and
the parameters in g; and g; are learned by making Y; and Y ; as independent as
possible, i.e., minimizing the mutual information between Y; and Y,

1Y, Y))=HX)+HY;)—H®Y), (13.6)
where H (Y) is the joint entropy of ¥ = (Y, Yj)T,

H(Y) = —E[log py(Y)]
= —E[log py(X) — log|J|] (13.7)
= H(X)+E[log|J|].

The joint density of ¥ = (Y, Yj)T is py(Y) = px(X)/|J|. J is the Jacobian
matrix of the transformation from (X;, X;) to (¥;,Y ), i.e.,

J— oY, Y))
CO0Xi, X))’

(13.8)

IlJ| = 10 :|g"|

8 & i

Substitute (13.7) and (13.8) into (13.6), we have

1(Y;,Y;)=HY,;)+ H(Y,;)—E[log|J|] — H(X) (13.9)
= —E [log py,(Y:)] — E [log py, (Y )] — E [log |¢}|] = H(X),

(13.10)

where H (X) does not depend on the parameters in g; and g; and can be considered as
constant. The minimization problem (13.10) is solved by gradient-descent methods,
and the details of the optimization are skipped.

In the second step, verify if the estimated disturbance Y ; is independent from
the assume cause Y; based on the statistical independence test. The kernel-based
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statistical test is adopted with the significance level = 0.01 (Giga 2014). Denote the
test statistic as test;_, ;. If test;_,; > test;_,;, it indicates that Y; and Y ; are not
independent, that is X; — X ; does not hold. Repeat the above procedure with X;
and X ; exchanged to verify if X; — X; holds. If test,_,; < test;_,;, it concludes
that X; causes X ;. g; and g; provide an estimate of f; and f 1721, respectively.

For a complex system, there are n process variables. Following a test sequence,
X — X2, X1 — Xs,...,X,—-1 = X, the N group statistics should be tested,

_ nn—1)

N=n+n-1D)+n-2)+---+1 7

(13.11)

The total computation is in direct proportion to 2 x N. As the number of variables
increases, the amount of computation will increase as well. The measured statistics
in the positive order (or in the reverse order) are stored as

A= [leStX]*)XZ, restx, —xys -+ IeSl‘X%]*)X”], (13.12)
B = [leSleHXl,testx_z‘)X],...,l‘eSlX”‘,Xn_l]. ’

Comparing the corresponding elements of the vectors A and B, the causal direc-
tion of this pair of variables is determined according to the smaller statistic. Once the
causality of all variables is found based on the above cyclic search, integrate them
into a DAG.

13.1.3 Network Parameter Learning

The multivariate causality model gives a framework similar to the Bayesian net-
work to find the internal structure of the complex systems. Its graphical structure
expresses the causal interactions and direct/indirect relations as probabilistic net-
works. Its parameter represents the intensity of the complex inter-relationships among
the cause-effect variables.

Consider a finite set U = {X, ..., X,,} of discrete random variables where each
variable X; may take on several discrete status from a finite set. A Bayesian network is
an annotated directed acyclic graph that encodes a joint probability distribution over
a set of random variables U. Formally, the Bayesian network for U is constructed as
apair B =< G, © >. G is adirected acyclic graph whose vertices is correspond to
the random variables Xy, ..., X,. @ is the parameters set that quantifies the network
with 0, = p(x¥)|pa] and Y, 6;jx = 1, where x| is the discrete status of X; and
paij is one of components in the complete parent set P A; of X; in G. Every variable
X; is conditionally independent of its non-descendants given its parents (Markov
condition). The joint probability distribution over set U is
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Pp(Xyq,...,X,) = HPB(Xi|PAi) = HgXi|l_[PA,- (13.13)

i=l i=1

The parameters of the causality Bayesian network are mainly learned from the
statistics analysis of sample data. The maximum likelihood estimation method (MLE)
is one of the most classical and effective algorithms in parameter learning.

Give a data set D = {Dy, ..., Dy} of all Bayesian network nodes. The goal of
parameter learning is to find the most probable values for @. These values best explain
the data set D, which can be quantified by the log likelihood function logp(D|6),
denoted L p(#). Assume that all samples are drawn independently from the underly-
ing distribution. According to the conditional independence assumptions, we have

n g I

Lp(0) =1og]_[]_[]_[9;';;j, (13.14)

i=1 j=1k=1

where ¢; is the number of combinations of the parent nodes pa;i , ; is the number
of the node X; status. n;;; indicates how many elements of D contain both xf‘ and
pa; . If the data set D is complete, MLE method can be described as a constrained
optimization problem,

max Lp(0),
i 13.15
st.gij (@)=Y Oj—1=0Vi=1...nVj=1...q. ( )
k=1
Its global optimum solution is
Nijk
Oijx = —2=, (13.16)
I’l,'j

------

13.2 BCN-Based Fault Detection and Inference

The complete monitoring model is established via combining the multivariate causal
structure and the Bayesian parameters learning. The qualitative and quantitative
relationships among the process variables are revealed to the greatest extent. Then
this model is forward used to accurately predict the operation status and detect faults
of the critical process variables (i.e., forward inference). Similarly, it also can be
inversely used to find the source of the faults (i.e., backward inference). The overall
block diagram of the proposed method is shown in Fig. 13.3.

Causality network prediction or inference is to calculate the probability of the
hypothesis variables at certain status according to the network topology and con-
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ditional probability distribution of the evidence variable. An inference or query
P(Q = q|E = ¢p) is to calculate the posterior probability of a query variable Q
being at its specific value ¢ in the condition of given evidence ¢ for node E.

There are many existing network inference algorithms, such as variable elimina-
tion algorithm and junction tree algorithm (JT). These algorithms utilize the hypoth-
esis variables and specific independence relations induced by the evidence in BN
to simplify the updating task. JT implements the inference procedure in four steps
(Borsotto et al. 2006),

1. Cluster the nodes into several cliques;

2. Connect the cliques to form a junction tree;
3. Propagate information in the network;

4. Answer a query.

The inference starts from a root clique. The core step of message propagation
consists of a message collection phase and a distribution phase. The cliques of the
junction tree are connected by separators such that the so-called junction tree prop-
erty holds. When a message is passed from one clique X to another clique Y, it is
mediated by the separate set S between the two cliques. Every conditional probabil-
ity distribution of the original BN is associated with a clique such that the domain of
the distribution is a subset of the clique domain (we use the notation dom (¢) to refer
to the domain of a potential ¢). The set of distributions ¢y associated with a clique
X are in standard junction tree architectures combined to form the initial clique X.

ox=[]¢ (13.17)
¢7f¢x

For a clique, a potential or a message is a mapping from the value assignments of
the nodes to the set [0, 1.0]. A message pass from X to Y occurs with two procedures:
projection and absorption based on the Hugin architecture (architecture is proposed
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by Jensen et al. 1990). The projection procedure saves the current potential and
assigns a new one to S:

5! (_¢Svand¢s(_Z¢X' (13.18)

X\S

The absorption procedure assigns a new potential to ¥ using both the old and the
new tables of S,
bs

Py < Oy, (13.19)
N

where ¢ is the current separator potential, ¢‘§ld is the old separator potential, ¢y is
the clique potential for X, ¢y is the clique potential for Y.

The query answering step has two procedures. First, the marginalization proce-
dure calculates the joint probabilityof Qand E = ey : P(Q, E = ¢j) = ZX{Q} oy.
Second, the normalization procedure calculates the inference result,

P(qu’EZeO)

1"(Q=‘1|E=€0)=Z PO.E=cp)
0 E =

(13.20)

The fault of operational variables is an intervention that has various effects on the
production process. The main task in fault detection is to predict the system output
and detect whether a fault occurs. The object of causal inference is to find the real
root cause under the faulty intervention.

13.3 Case Study

In order to evaluate the performance of the proposed method, the experiment results
are reported from three aspects: the causal direction identification of multi-variables,
network parameter learning, and probability inference.

13.3.1 Public Data Sets Experiment

Four published data sets proposed by Mooij and Janzing (Leoand et al. 2001) are
used to test the effectiveness of the nonlinear multivariate causal model. The cause-
effect pairs are available at http://webdav.tuebingen.mpg.de/cause-effect/, which is
considered as the benchmark for testing causal detection algorithms. The four data
sets are (1) the ground altitude and temperature sampled at 349 stations, US; (2)
census income data set which contains weighted census data extracted from the
1994 and 1995 current population surveys conducted by the U.S. Census Bureau.


http://webdav.tuebingen.mpg.de/cause-effect/

242

M,

Bayesian Causal Network for Discrete Variables

(a) data set 1

(b) data set 2

(c) data set 3

(d) data set 4

Fig. 13.4 Scatter plots of four data sets, a—d corresponding to data sets (1)—(4), respectively

Table 13.1 Independence test statistics under different assumption of causal directions

Causal assumption x—y y—>x

#1 1.7 x 1073 6.5 x 1073

#2 1.2 x 107 6.7 x 107

#3 3.5x 1073 8.1 x 1073

#4 22 x 1073 5.7 %1073

Table 13.2 Causal results of the public data sets

Data sets #1 #2 #3 #4

Data information | x: altitude X: age Xx: age x: population

y: temperature y: wage per hour | y: heart rate y: infant

mortality rate

Real direction xX—>y x—y x>y x—y

Test results xX—>y x—y x—y xX—>y

True or false True True True True

The variables include age and wage per hour; (3) the attribute information (age and
heart rate) from Cardiac Arrhythmia database; (4) the population with sustainable
access to improved drinking water sources (%) total, and the infant mortality rate (per
1000 live births) both sexes, 2006. Each data set consists of two random variables
which their cause-effect relationship is known. The four data sets have different
attributes, which is sufficient to show the general and comprehensive nature of the
data.

Figure 13.4 gives the scatter plots of the selected data sets (1)—(4). Table 13.1
shows the statistics of independence test on x and y for data sets (1)—(4) under
different assumption of causal directions. The statistics are calculated separately
based on these different assumptions. Comparing the test statistics under two different
assumption in Table 13.1, the causal direction of each set all are determined as x —
y. Table 13.2 summarizes the causal results obtained by the multivariate causality
model. It is found that the test results are consistent to the real causal relationship.
We can conclude that the proposed method can correctly identify the causal direction
regardless the diversity of data.
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Fig. 13.5 The network g [f Xs
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13.3.2 TE Process Experiment

In order to illustrate the applicability of the proposed method in the actual complex
industrial process, the network topology of TE process is established and used to
predict the alarm variables. TE platform simulates an actual chemical process, a
detailed description of the TE process is given in Chap. 4.

Experiment 1: Build Causal Structure

In this experiment, eight important process variables are selected to calculate their
causality in order to facilitate the result visualization. From the mechanism analysis
of TE process, it is known that when the reactor feed X, increases, the material is
first entered into the reactor, so the reactor level X4 must increase. So the reactor
feed X, directly affects the reactor level X,4. The temperature of cooling water X
and the reactor feed X, are the main factors of affecting the reactor temperature
Xs. The reactor pressure X3 changes synchronized with the reactor temperature X5
according to the general physical principle. In addition, once the chemical reaction in
the reactor is more intense, the compressor module power X7 will be synchronized
to strengthen due to the sequential loop. At the same time, the reactor pressure X3
also has an obvious influence on the recovered flow X; and the material level X
in the separator. Now the initial structure of the causality network is built based
on the mechanism analysis (including the expert prior knowledge and the intuitive
correlation analysis of process variable), named as BnetO shown in Fig. 13.5.

The pre-defined fault is random variations in A, B, C compositions in stream 4.
The corresponding data of eight variables are collected from the simulation platform.
The reaction length is 700h to ensure that the data is sufficient to reflect the system
process. 500 sampling data are obtained after the equal time decimating. The causal
direction of the paired variables is shown in Table 13.3. Three different causality
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Table 13.3 Causal direction of TE variables

Variables information Statistic (positive/reverse) Causal direction
X»: Reactor feed rate 5.7 x 10_6/8,2 x 1070 X, = X5

X'5: Reactor temperature

Xs: Reactor temperature 7.1 x 10_6/2.9 x 1070 Xg — X5

X3g: Reactor cooling water
outlet temperature

X»: Reactor feed rate 3.4 x 10_4/8.5 x 1074 X, —> X4
X4: Reactor level

X5: Reactor temperature 7.3 x 10_4/9.2 x 1074 X5 — X7
X7: Compress work

X3: Reactor pressure 7.6 x 10*5/4.5 x 1073 X5 —> X3
X5: Reactor temperature

X3: Reactor pressure 2.9x1079/3.9 x 107° X3 — Xg
X¢: Product separator level

X1: Recycle flow 6.6 x 10*6/2.7 x 1070 X3 —> X,

X3: Reactor pressure

(a) Bnetl (b) Bnet2

Fig. 13.6 The network compare: a Bnetl, b Bnet2, ¢ Bnet3

models are compared, including (1) Bnetl, the proposed multivariate post-nonlinear
acyclic causal model, shown in Fig. 13.6a; (2) Bnet2, an alternative network obtained
from the traditional BN structure learning method-K2 algorithm which needs to set
the node order, shown in Fig. 13.6b; (3) Bnet3, the network structure learned with
the expectation maximization (EM) algorithm, shown in Fig. 13.6c.

Comparing the process analysis structure BnetOQ and Bnetl determined by the
proposed Bayesian Causal Network, it is found that Bnetl is exactly consistent to
Bnet0. The structure determined using the proposed method exactly matches the
mechanism and expert knowledge, which indicates that the causal structure is credible
and accurate. However, Bnet2 and Bnet3 learned from the traditional BN methods
are not consistent with the mechanism. They show a big gap from the actual physical
relationship. It demonstrates that the general BN learning method fails when it is
applied to the complex nonlinear systems, while the proposed multivariate causality
model proves its superiority.
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Table 13.4 Threshold setting for alarm status in different variables

Alarm Xl X2 X3 X4 X5 X6 X7 Xg
status (km3/h) | (km3/h) | (kPa) (%) °0) (%) (KW) [(0)
1 <31 <46 <2789 | <625 |<122.7 |<45 <268 |<
102.25
2 31-32  |46-47 |2789- |62.5- 122.7— | 45-47.2 | 268- 102.25-
2796 63.8 122.87 272.3 102.41
3 32-33  |47-483 [2796—- |63.8-66 |122.87— |472- |2723- |102.41-
2802 12293 522 274 102.55
4 33-34  |483-  |2804- |66-66.8 |122.93— |52.2-53 |274-280 |102.55-
49.5 2809 123.2 102.7
5 > 34 >495 |>2809 |>66.8 |>1232 |>53 >280 |>102.7

Experiment 2: Parameter Learning Once the TE network structure is deter-
mined, the alarm prediction model can be obtained by parameter learning of this
causality structure network. In general, the process alarm event can be divided into
five-alarm levels, namely, high-high alarm (HH), high alarm(H), normal(N), low
alarm(L) and low-low alarm(LL), corresponding to the number 1,2,3,4,5. The first
step is to discretize the continuous variables into five-alarm levels by setting different
thresholds, shown in Table 13.4.

Here the MLE algorithm is adopted to learn the network parameters and get a
complete probability table. Suppose that the initial probability of the alarm level in
the normal condition is theoretically divided equally. Then the conditional proba-
bility values for all variables are calculated based on the BN parameter learning.
Considering two root nodes X, and Xg, their corresponding probabilities for five
status are 0.0843, 0.2211, 0.4704, 0.2026 and 0.0217, respectively. The probability
of other descendant variables as shown in Fig. 13.7. Hot plot is used to show the
probability since the precise value has nothing meaning for the alarm prediction and
inference. The color represents the probability range between 0 and 1.

It should be concerned with the probability value of close to 1. These are the key
points in determining the inference results. When the probability is less than 0.5, the
result situation will not likely appear in the actual inference. Figure 13.7a shows the
probability of X s under the combined action of X, and X. The abscissa is the status
condition of Xg and X, and the ordinate is the probability value for five-alarm status
of X5 displayed in corresponding color. P(Xs = 1|Xs=1,2and X, = 1)~ 1 in
the lower left corner of Fig. 13.7a. It means that X5 occurs the low-low alarm with
the probability close to 1 when X, and Xg are in the low-low alarm status. P (X5 =
5|Xs =4,5 and X, = 5) = 1 in the upper right corner of Fig. 13.7a. It means that
X5 occurs the high-high alarm with the probability close to 1 when X, and Xg are
in the high-high alarm status. These inference results are consistent with the actual
mechanism.

Figure 13.7b—e reflects the probability relationship between bivariate variables.
Figure 13.7b shows the probability of X4 under the action of X3. P(X4 = 5|X;3 =
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Fig. 13.7 Conditional probability of the descendant variables: a P(Xs|Xs, X2), b P(X4|X3), ¢
P(X3]X5),d P(X7]X5), e P(X1]X3),f P(X6|X3)
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Table 13.5 Alarm level prediction of compress work X7

No. X X Xs X7 X7 Max Prob.
1 1 2 1 2 1 0.4571
2 2 1 2 1 1 0.6501
3 1 2 2 2 2 0.7627
4 2 1 2 2 2 0.6729
5 1 2 2 1 1 0.6896
6 3 3 2 3 1 0.8760
7 3 3 2 3 3 0.6344
8 3 3 3 2 2 0.8563
9 3 3 2 3 2 0.3454
10 2 3 3 3 3 0.5073
11 3 3 3 2 3 0.4432
12 3 2 3 3 3 0.5696
13 4 3 4 4 3 0.3128
14 3 4 4 4 4 0.6284
15 4 5 5 5 5 0.7557
16 4 3 4 4 5 0.3783
17 5 5 4 4 4 0.7947
18 4 5 4 4 4 0.8325
19 5 4 5 4 5 0.6454
20 5 4 4 5 5 0.8113

5) &~ 1 in the upper right corner. It means that the probability of X4 occurs the
high-high alarm with the probability close to 1 when X3 in the high-high alarm
status. However, P(X4 = 1|X3 = 5) = 0 in the lower right corner. It means that X4
occurs the high-high alarm with the probability close to O when X3 in the low-low
alarm statue. P(X4 = 1 and X4 = 2| X3 = 2) & 0.5 in the green area. It means the
probability of X4 occurs the low alarm or low-low alarm almost same when X3 in
the low alarm status. Similarly, the inference results obtained from Fig. 13.7c—e are
consistent with the mechanism.

Experiment 2: Alarm Prediction Alarm prediction is a top-down inference
according to the evidences inference conclusion. The probabilistic analysis calcu-
lates the likelihood of each status for the result variable may occur. The discrete
status corresponding to the maximum probability is the alarm prediction result.

Using the established multivariate causality network model, compress work X7 is
predicted when its parent variables X,, Xg and X5 are known. The prediction results
for model Bnetl are shown in Table 13.5, where X 7 is the prediction value of X7.

The total prediction accuracy for the 20 simulation experiments is 75%. When
the maximum probability of the predicted value is greater than 0.5, the prediction
result is confident. Furthermore, the predictions with a high probability is consistent
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with the true status. When the maximum probability of the predicted value is less
than 0.5, the prediction result is not believable and accurate. The mis-predictions
confuse between the adjacent status, such as the normal status 2 and Low alarm 3 (or
high alarm 2). The simulation results show that the multivariate causality network
can find the intrinsic relationships among various process variables, and give precise
fault or alarm prediction.

13.4 Conclusions

This chapter proposes a multivariate causality model to analyze the causal direction
of multivariable and final determine the network topology. The proposed method
can describe the system structure more accurate than the traditional BN structure
learning method especially when the industrial process is high complex. Combined
with the network parameters learning and evidence inference technique, an accurate
monitoring and alarm prediction can be performed. The validity of the proposed
method is verified via the public data set and TE process. An compact network
structure and confident alarm prediction are obtained for the TE process based on the
causal analysis and probability inference. Both the methodology and the simulation
results show that the proposed multivariate causality model has great value for the
process industry modeling and monitoring.

There are some issues worth further discussion. The computing efficiency of
the proposed multivariate post-nonlinear acyclic causal modeling method should be
considered when solving the large-scale causal analysis problems in the real world.
Developing the efficient algorithm to find the causal relationship of multiple variables
based on the general functional causal models is still an important topic. To improve
the computational efficiency, a feasible solution is to limit the complexity of the
causal structure, such as decreasing the number of direct causes of each variable.
Moreover, a smart optimization procedure instead of the exhaustive search should
be considered further.
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