
Chapter 12
New Robust Projection to Latent
Structure

In many actual nonlinear systems, especially near the equilibrium point, linearity is
the primary feature and nonlinearity is the secondary feature. For the system that
deviates from the equilibrium point, the secondary nonlinearity or local structure
feature can also be regarded as the small uncertainty part, just as the nonlinearity can
be used to represent the uncertainty of a system (Wang et al. 2019). So this chapter
also focuses on how to deal with the nonlinearity in PLS series method, but starts
from an different view, i.e., robust PLS. Here the system nonlinearity is considered
as uncertainty and a new robust L1-PLS is proposed.

The traditional PLS and its nonlinear improvement methods are usually to maxi-
mize the covariance between the input and output data, i.e., the square of L2 norm.
L2 norm has the feature of clear physical meaning and convenient calculation, and its
solution are unique unbiased and dense. While it is powerless for systems with rich
local features such as nonlinear systems or uncertain systems. The proposed robust
L1-PLS aims at the robustness of the feature extraction and the regression coeffi-
cients. This method maintains the signal relative size during the feature extraction.
Moreover, it guarantees the features are robust to outliers in the global statistical
view and sensitive to the local structure information.

12.1 Motivation of Robust L1-PLS

Many robust PLS methods have been developed to increase the robustness of tradi-
tional PLSmethod recently.Branden (2004) andHubert (2008) replaced the empirical
variance-covariance matrix in PLS by a robust covariance estimator, and used the
minimumcovariance determinant (MCD) estimator and the reweightedMCDestima-
tor (RMCD) for low-dimensional data sets. Turkmen (2013) proposed the influence
function analysis for the robust PLS estimator. Currently, the existing robust PLS
methods use robust covariance estimation techniques with the identification of mul-
tivariate outliers to maintain robustness (Fortuna et al. 2007; Filzmoser 2016). These
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methods actually perform with a potential assumption that the signal is subject to
Gaussian distribution, which is not satisfied for many industrial processes. Usually
the industrial data are full of lots of outliers and follow either heavy-tailed distribu-
tion (Doman’ski 2019) or multipeak distribution (Wang 2000). In other words, the
statistical properties of this kind of data cannot be described by the robust covariance
matrix estimation. Furthermore, outliers may contain very important information, so
the outliers cannot be simply deleted or replaced (Liu et al. 2018). The data also have
some nondominant local structure features besides the outliers. Robust covariance
estimation methods also do not handle the small uncertainty correctly.

Recently, a robust PCA (RPCA) (Kwak 2008) and a robust sparse PCA (RSPCA)
(Meng et al. 2012) were proposed, which the two methods maximized the L1 norm
rather than the square of L2 norm of the input data. Experiments showed that they
are efficient and robust for the data with inherent uncertainty and outliers. However,
the two improved RPCA methods do not obtain any useful information from the
output quality variables, so it is difficult to directly apply them to quality-relevant
process monitoring and fault diagnosis (Zhou et al. 2018). The monitoring system
will automatically alarm if a fault is detected whether it affects the product quality
or not. Many alarms do not make sense for the final production quality.

It is known that the least absolute deviation (LAD) regression is often better than
the least squares (LS) regression for non-Gaussian signals, especially those with a
heavy-tailed distribution. While LAD regression is immune to outliers. Moreover,
the solution of LAD regression is not unique, and it is necessary to introduce the
optimal technique to obtain an optimal solution. So the LAD regression of high-
dimensional system is a time-consuming task. To improve the efficiency of the LAD
algorithm, the idea of partial least squares (PLS) regression is used to extend the
conventional LAD regression to partial LAD regression. The PLS-based monitoring
method decomposes the process space through the correlation between the quality
and the process variables, which can reflect the quality-relevant product changes in
the process variables (Wang et al. 2017; Zhou et al. 2018).

In order to enhance the robustness of the PLS method in a new way, this chapter
proposes a novel dual robustness projection to latent structure regression method
based on the L1 norm, L1-PLS. The optimization objective during the principle
components extraction in the PLS method is a square of L2 norm, i.e., the least
squares regression problem. L1-PLS use the L1 norm maximization to replace the
square of the L2 norm maximization in the traditional PLS methods. The L1 norm
penalty terms are added to the direction vectors in the latent structure construction.
Moreover, the partial LAD regression is used to obtain the regression coefficients.
Therefore, the L1-PLS regression method achieves dual robust capabilities including
robust principle components and regression coefficients. On the other hand, the L1

norm optimization target also has the certain capability of local structural feature
retention, compared with the L2 norm optimization goal.

L1-PLS is distinguished from other existing robust PLS methods in several
respects:
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(1) The noises, outliers, and local structure features generally enter the system
through the direction vectors, and the L1 norm can maintain the relative size
of the original signal; its direction vectors are robust to outliers and contain
more local structure features even if there is no preprocessing of outliers. This
facilitates the L1 norm to obtain the global and local features of the system at
the same time without destroying the integrity of the samples;

(2) The L1-PLS method with the L1 norm penalty term to the direction vectors can
obtain the sparse principle components, and filter out the disturbance variables
or those sparse PCs that are robust to disturbance variables;

(3) The regression coefficients are obtained by the partial LAD regression. The
corresponding regression model is also robust to outliers or uncertainties, and
the model has better predictive performance.

12.2 Introduction to RSPCA Method

Consider the input data X= [x(1), · · · x(n)] ∈ Rm×n , where x = [xi , · · · xm]; m and
n are the dimensionality of the input data and the size of the input matrix. The
traditional PCAmethod aims to find the d(d < m) dimensional linear subspace with
the largest input data variance. The objective function is as follows:

W∗ = argmax
∥
∥WTX

∥
∥
2

2 , s.t.WTW = Id , (12.1)

where W = [

wT
1 , . . . ,w

T
d

]T ∈ Rm×d is weight matrix. ‖.‖2 represents the L2 norm
of a matrix or vector.

However, the principal components based on the PCA are usually a linear com-
bination of the original variables usually with the non-zero weights. The non-zero
weight results in that many irrelevant variables are included in the final model and
cause unnecessary interference. Therefore, the spare PCA (SPCA) method was pro-
posed to achieve the sparse expression of the principal components as much as
possible (Liu 2014). Its objective function is

W∗ = argmax
∥
∥WTX

∥
∥
2

2 , s.t. WTW = Id , ‖W‖1 < s, (12.2)

where ‖.‖1 is the L1 normof amatrix or vector. It is introduced as constraint or penalty
term to enhance the sparsity of the principal components. s is the number of non-zero
weights. The L1 norm penalty term (‖W‖1 < s) realizes the sparse expression of the
direction vector.

Figure12.1 shows the amplifying effect curve of L1 norm and L2 norm on noise.
The blue dotted line is the square of the L2 norm (for one-dimensional data, it is
equivalent to the L2 norm), and the red line is the L1 norm. Obviously, the L2 norm
has an inhibitory effect on the data in |x | ≤ 1 and has an enlarged effect on the data
in |x | > 1. The L1 norm maintains the relative size of the original data and has a
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Fig. 12.1 The expanding
effects of the L1 norm and
L2 norm curve

relatively small expansion effect on all data. In order to further improve the robustness
of SPCA, the RSPCA method is proposed to reduce the sensitivity of the principal
components to outliers. The L2 norm in the objective function is substituted by L1

norm (Zou et al. 2006). The optimization function of RSPCA is given as follows:

w∗ = argmax
∥
∥XTw

∥
∥
1, s.t. wTw = 1, ‖w‖1 < s. (12.3)

Here the optimization problem is a form of L1 norm maximization with an L1

norm penalty term simultaneously. In order to obtain the principal components of
the RSPCA method, the optimal direction vector w∗ is calculated by Algorithm 3.

The convergence of Algorithm 3 and the rationality of the obtained sparse direc-
tion vectors have been theoretically verified (Zou et al. 2006). However, Algorithm
3 indicates that the sparseness of the data needs to be given in prior during the cal-
culation of the sparse direction vector. Generally speaking, the sparsity of input data
is unknown and it contains uncertainty. More importantly, the RSPCA method can-
not be directly applied to quality-related process monitoring. Therefore, this chapter
introduces the L1 norm into the PLS method.

12.3 Basic Principle of L1-PLS

Thedouble robust projection to latent structure (L1-PLS)method is given based on the
L1 norm, aiming at improving the robustness of the traditional PLSmethod. The PLS
method extracts principal components from the input space and output space, and the
principal components should satisfy the following conditions: carry the maximum
variation information (representation) of their respective variable spaces as much as
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Algorithm 3 RSPCA algorithm for one sparse PC
Input:

Data matrix X , sparsity s.
Output:

The s sparse PC w∗.
1: Initialization w(0) ∈ R1×m , set w(0) = w(0)

‖w(0)‖2 , and k = 0.

2: Let v = (v1, . . . , vm)T = ∑n
i=1 pi (t)X i , where pi (k) =

{

1, wT(k)X i ≥ 0

− 1, wT(k)X i < 0
and X i is the

i th column of the matrix X . Let γ be the (s + 1) largest element in |v| .
3: Let β = (β1, . . . ,βm)T, where βi = sgn(vi )(|vi | − γ)+, i = 1, . . . ,m, and (z)+ =

{

z, x > 0

0, x ≤ 0
, sgn(z) =

⎧

⎪⎨

⎪⎩

1; z > 0

0; z = 0

− 1; z < 0

. Make w(k + 1) = β
‖β‖2 , and k = k + 1.

4: If w(k) �= w(k + 1), return to Step 2; otherwise continue to Step 5.

5: If there is i such that wT(k)X i = 0 and sgn
(
∑m

j=1

∣
∣w(k) j X j,i

∣
∣

)

�= 0, then let wT(k)+�w

‖wT(k)+�w‖2
and return to Step 2; otherwise continue to Step 6; �w is a small non-zero random vector.

6: Set w∗ = w(k) and stop iteration.
7: return w∗;

possible, and the degree of correlation between different variable spaces is as large
as possible (correlation). Take the extraction of the first principal component as an
example. The PLS method is expressed as follows:

ET
0 F0FT

0 E0w1 = θ2w1

FT
0 E0ET

0 F0c1 = θ2c1,
(12.4)

where w1 and c1 are the direction vector of the principle components t1 and u1. The
optimization problem (12.4) is transformed into finding the unit direction vectors
w1 and c1 corresponding to the maximum eigenvalue θ2 of matrices ET

0 F0FT
0 E0

and FT
0 E0ET

0 F0, respectively. It can be seen that the solution of (12.4) satisfies the
requirements about the representation and correlation in PLS method.

Then, multiply both sides of the equation (12.4) by wT
1 and cT

1
, respectively, and

obtain
wT

1 E
T
0 F0FT

0 E0w1 = θ2, s.t.wT
1w1 = 1

cT1 F
T
0 E0ET

0 F0c1 = θ2, s.t.cT1 c1 = 1.
(12.5)

To simplify further, we can get

w∗
1 = argmax

∥
∥wT

1 E
T
0 F0

∥
∥
2

2 , s.t. wT
1w1 = 1

c∗
1 = argmax

∥
∥cT1 F

T
0 E0

∥
∥
2

2 , s.t. cT1 c1 = 1.
(12.6)

The optimal problem of the traditional PLS (12.4) is expressed as L2 norm optimiza-
tion in (12.6). w∗

1 and c∗
1
are the optimal direction vectors.
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It is known that the noise is flowed into the regression model through the direction
vector ( w1 and c1 ) in most cases, which affects the estimation of the regression
parameters in the PLS method. Similar as the idea of equation (12.3), we replace the
maximization of the L2 norm in the objective function (12.6) with the maximization
of L1 norm. Moreover, the L1 norm penalty term is added to the direction vector.
Therefore, the objective function of the L1-PLS method based on the L1 norm is
given as follows:

w∗
1 = argmax

∥
∥wT

1 E
T
0 F0

∥
∥
1 , s.t. wT

1w1 = 1, ‖w1‖1 < s1

c∗
1 = argmax

∥
∥cT1 F

T
0 E0

∥
∥
1 , s.t. cT1 c1 = 1, ‖c1‖1 < s2,

(12.7)

where s1 and s2 are the sparsity of input spatial data and output spatial data, respec-
tively.

According to the above analysis, although the direction vectors (w1 and c1) in
(12.4) contains the correlation between the input data E0 and the output data F0,
fortunately, they can be solved separately in (12.7). Therefore, Algorithm 3 also is
suitable for the solution of (12.7) by replacing the corresponding input data matrix
X with ET

0 F0 and FT
0 E0, respectively. It is noted that the solution of w1 and c1 are

independent but not jointed by Algorithm 3.
Once the optimal direction vectors w1 and c1 are obtained, the score vectors in

the latent space, i.e., the first principle component pair, t1 and u1 can be calculated

t1 = E0w1, u1 = F0c1. (12.8)

Next, the regression coefficients (loading vectors) of F0 and E0 to t1 will be
established. In the traditional PLS model, the regression coefficients p1 and q1 are
estimated by least squares, namely,

p1 = ET
0 t1/‖t1‖2

q1 = FT
0 t1/‖t1‖2. (12.9)

Similarly, least squares estimation is also susceptible to outliers, and the least
absolute deviation (LAD) method is introduced to deal with this problem. Therefore,
in order to further improve the robustness, LAD regression is used to solve the
regression coefficients in the L1-PLS algorithm, namely,

p∗
1

= argmin
∥
∥E0 − t1 pT1

∥
∥
1

q∗
1

= argmin
∥
∥F0 − t1qT

1

∥
∥
1,

(12.10)

where p∗
1 and q∗

1
are the optimal loading vectors of (12.10).

Obviously, the essence of (12.10) is also the form of L1 norm.When there are few
outliers, it is not necessary to use the norm to solve the regression coefficient. Due
to the direction vector has been solved by maximizing the L1 norm, the influence of
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the outlier has been reduced, and as can be seen from Fig. 12.1. When the outlier is
small, the L2 norm and the L1 norm have the same effect.

Calculate the residual matrix E1 and F1:

E1 = E0 − t1 pT1 , F1 = F0 − t1qT
1 (12.11)

Similar as the extraction of the first principal components pair, the other prin-
cipal components are calculated iteratively by decomposing the residuals Ei and
Fi (i = 1, . . . , d − 1). The extraction of principal components is stopped until the
model determined by the extracted principal components satisfies the desired require-
ments.

The dual robustness of the L1-PLS algorithm is reflected in the following two
aspects:

1. Different from the PLS algorithm, Algorithm 3 is used to calculate the direction
vector each time. By maximizing the L1 norm in the objective function, and
adding the L1 norm penalty term to the direction vector, the robustness of the L1-
PLS algorithm is improved. This achieves the robustness of principal component
extraction.

2. In the case of many outliers, the regression coefficients can be calculated using
least absolute estimation, which can overcome the shortcomings of least squares
estimation that is easily affected by outliers, and further enhance the robustness
of the L1-PLS algorithm.

12.4 L1-PLS-Based Process Monitoring

It is found that only the calculation process of the direction vector w1 and c1 (12.7)
or the regression coefficient p1 and q1 (12.10) is improved in the L1-PLS method,
and other steps are not affected. Therefore, the monitoring process based on the L1-
PLS method is the same as the PLS method. In the process monitoring based on the
L1-PLS method, the T2 and T2

e statistics are still used to monitor the principal com-
ponent subspace and the remaining subspace. Then, the L1-PLS-based monitoring is
described in detail in Algorithm 4 (offline process training) and Algorithm 5 (online
process monitoring). The corresponding flowchart is shown in Fig. 12.2.

In Algorithms 4 and 5, Λ and Λe represent the sample covariance matrix. The
non-parametric kernel density estimation (KDE) method (1.33) is used to estimate
the corresponding control limits of T2 and T2

e .
There is still a key problem in the implementation of Algorithm 4: the sparsity

degree s1 and s2 need to be given in prior. There are two common strategies to deter-
mine s1 and s2. (1) The first one is the variable importance in prediction (VIP)method
(Farrés et al. 2015). It judges whether the variable is an irrelevant variable based on
theVIP score of the j th predicted value of the response variable. Usually, the “greater
than ε” criterion is used as the selection criterion. More precisely, the threshold ε
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Algorithm 4 L1-PLS method for Offline process training
Input:
Normal data sets X = [x1, . . . , xm ] ∈ Rn×m ,Y = [y1, . . . , yl ] ∈ Rn×l , sparsity s1 and s2.

Output:
The control limits T2

lim and T2
e,lim.

(1) Normalized X and Y as E0 and F0,
(2) For i = 1, . . . , d (d is obtained by cross-validation):
(2.1) Apply Algorithm 3 to the projected matrices ET

i−1Fi−1 and FT
i−1Ei−1

to get the direction vectors wi and ci , respectively.
(2.2) Calculate the score vectors: t i = Ei−1wi , ui = Fi−1ci .
(2.3) Calculate the load vectors:

p1 = ET
0 t1/‖t1‖2

q1 = FT
0 t1/‖t1‖2

or
p∗
1 = argmin

∥
∥E0 − t1 pT1

∥
∥
1

q∗
1 = argmin

∥
∥F0 − t1qT1

∥
∥
1

(2.4) Calculate the Residual matrix: Ei = Ei−1 − t i pTi , Fi = Fi−1 − ui qTi .
(3) Describe t i with the original matrix E0: T = E0R,

R = [r1, . . . , rd ] , in which r i =
i−1∏

j=1
(In − w j p j

T)wi .

Ê = T PT = E0RPT

Ē = E0 − Ê = E0(In − RPT)

(4) For a normalized data sample x, calculate its estimate, residual and the corresponding PC
value.

x̂ = RPTx

t = Rx

e = x − x̂ =
(

I − RPT
)

x

(5) Calculate the statistics T2 and T2
e :

T2 := tΛ−1 tT = t(
1

n − 1
TTT )−1 tT

T2
e := eΛ−1

e eT = e(
1

n − 1
Ē
T
Ē)−1eT

return T2
lim and T2

e,lim;

should be adjusted based on the distribution of the overall data in different situations.
(2) The second strategy is the selectivity ratio method (Branden and Hubert 2004).
The variable selection ratio is calculated according to the ratio of the interpretation of
the X variable on the Y target projection component to the residual variance. Then F
test is performed to define the boundary between important variables and irrelevant
variables. Since the VIP method is simple and easy to implement, the VIP method
is selected to determine the sparsity s1 and s2 here.
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Algorithm 5 L1-PLS method for Online process monitoring
Input:
New normalized data sets xnew and ynew .

Output:
Online process monitoring results.
(1) Calculate the new score vectors: tnew = xnewR.
(2) Calculate the new prediction matrix and new residual:

x̃new = tnew PT = xnewRPT

enew = xnew − x̃new = xnew(In − RPT).

(3) Calculate the new statistics T 2
new and T 2

e,new:

T 2
new = tnewΛ−1 tTnew = tnew

{
1

n − 1
TTT

}−1

tTnew

T2
e,new := enewΛ−1

e eTnew = enew

{
1

n − 1
Ē
T
Ē

}−1

eTnew

(4) Compare T 2
new and T 2

e,new with the corresponding control limits T2
lim and

T2
e,lim.

return Online process monitoring results.

It is worth noting that the role of sparsity is to achieve variable selection. If the
established system model contains many irrelevant variables, giving the sparsity is
helpful to limit the number of irrelevant variables, so as to realize L1-sparse-PLS.
However, if the sparsity of the input data is uncertain, the sparsity degree s1 and s2
can be set equal to the variable number in the input and output space, respectively,
to eliminate the uncertainty caused by the sparsification. In this view, the proposed
L1-PLS method is uniformly called as L1-(S)PLS method based on the different
sparsity.

12.5 TE Simulation Analysis

In this simulation, the input variable X is composed of 31 variables [XMEAS(1:22)]
and [XMV(1:11) (except XMV(5) and XMV(9))]. The output variable Y consists
of the quality components G (XMEAS(35)) and H (XMEAS(36)). Two simulation
examples are used to verify the effectiveness of theL1-PLSmethod for fault detection.
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Fig. 12.2 The Flow chart of Algorithms 4 and 5

12.5.1 Robustness of Principal Components

The robustness of the L1-PLS method is mainly implemented on the direction vec-
tors, which directly reflects the robustness of the PCs. The variation of the PC struc-
ture caused by outliers therefore is the focus of robustness analysis. Here results
of PLS and RPLS methods are given for comparison. The input and output data
(X ∈ R960×31,Y =∈ R960×2) are sampled from the TE process under the normal
operation for training data. In order to test further the proposed L1-PLS, the outliers
are added in the input space in the following form:

X(k) = X∗(k) + Ξ j (k), (12.12)

where X∗(k) is the kth normal sample (k = 1, 2, . . . , 960) Ξ j is the j-th randomly
generated outlier that obey Gaussian distribution Ξ j ∼ N (0, 2000). For ease of ver-
ification, three kinds of repeatable outliers that are generated using a specific random
seed are added to the training set,
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Fig. 12.3 The relative change rates of t1 using PLS and L1-PLS

Ξ 1(12) = [−71.294, 4.929, 35.199,−0.100]T for x14:17
Ξ 2(140) = [4.164,−16.912,−66.307]T for x29:31
Ξ 3(200) = [−1.960, 42.969, 77.737,−19.239,−72.776, 7.439]T for x1:6.

Outlier Ξ1(12) means that only the 14, 15, 16, and 17th variables at the 12th
sample time X (12) are abnormal, and the other variables at other sample times are
still normal. The other two outliers have similar meanings.

The sparsity s1 and s2 in theL1-PLSmethodare set to 31 and2.The sparsity is equal
to the variable number of input and output space, respective. In other words, the L1-
PLS method can reflect the changes in all variables. The components numbers d are
determined using cross-validation. They are 6, 6, and 2 for PLS, RPLS, and L1-PLS
methods, respectively. The principle components are ti = ∑n

j=1 wi j x j , i = 1, . . . , d,
in which wi j is the j th element of ri . The coefficients wi j are used to reflect whether
the outliers affect the principle components. The relative rates of change (RRC)
indices are defined as follows:

RRC1,i = max{|wi j,normal − wi j,outliers |}
RRC2,i = ||wi,normal − wi,outliers ||1, (12.13)

where wi,normal = [wi j ]normal and wi,outliers = [wi j ]outliers are the normalized coef-
ficient vectors with normal samples and adding outliers samples for the ith PC,
respectively.

RRC1 represents the maximum absolute deviation of the two coefficient sets,
which indicates the worst changes of the normalized wi j . RRC2 represents the sum
of the absolute deviations of the two coefficient sets, which indicates the overall
change of the normalized wi j .

The normalized coefficient wi j values of the first two PCs (t1 and t2) of the PLS,
RPLS and L1-PLS methods are shown in Figs. 12.3 and 12.4. The corresponding
indices RRCi , i = 1, 2 are given in Table12.1 (a smaller value is better).
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Fig. 12.4 The relative change rates of t2 using PLS and L1-PLS

Table 12.1 RRCi of t1 and t2 of the PLS, L1-PLS and L1-SPLS methods

PLS RPLS L1-PLS

t1 t2 t1 t2 t1 t2

RRC1 0.919 0.349 0.005 0.040 0.110 0.121

RRC2 7.093 1.247 0.016 0.130 0.368 0.329

It can be seen from Figs. 12.3–12.4 and Table12.1 that no matter which method
is used, the outliers will always affect the structure of the PCs to some extent. In
general, the outliers have a large adverse effect on the PCs extraction of the PLS
method, and thus results in the largest change in its PC structures. With the robust
covariance estimation method, the outliers have little effect on the PCs extraction
of the RPLS method. L1-PLS method only uses the L1 norm to be insensitive to
outliers, without any outliers processing. Outliers that cause changes in the structure
of its two PCs are nearly identical and within an acceptable range, whether in the
RRC1 or RRC2. The samples considered to be outliers may be a true reflection of
the system state when the data set follows a heavy-tailed distribution (Doman’ski
2019). It is more important to retain all the samples to extract the PCs, although the
outliers have a certain influence on the direction vectors.

By further analyzing the structure of t1 and t2, it can be easily found that the
extracted PCs by those methods are quite different. In order to better explain the
structural differences of t1 and t2 in differentmethods, IDV(14) is taken as an example
for in-depth analysis. The typical process variable monitoring results of IDV(14) are
given in Fig. 12.5, in which, x9, x21 and x30 have similar monitoring results. Among
the t1 and t2, the sum of the absolute weights for x9, x21 and x30 of the PLS method
(0.062) is more than twice that of the L1-PLS method (0.025).

These weight differences do not significantly affect the output prediction and the
monitoring performance in the normal operation. But these differences are amplified
in the fault modes. For example, consider the monitoring under the fault modes
IDV(14) and IDV(17). The role of x21 and x30 (especially x30) in the PLS method is
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Fig. 12.5 Typical process variable monitoring results of IDV(14)

exaggerated, leading to incorrect predictions and quality-relevant monitoring results
(see Figs. 12.6 and 12.7). Correspondingly, the L1 norm can better maintain the
relative size of those variables, therefore, the role of x21 and x30 in the extracted PCs
is not exaggerated. In other words, the extracted PCs by the L1 norm better capture
the relationship between the input space and output space.

12.5.2 Robustness of Prediction and Monitoring Performance

The robustness of the principal components of the L1-PLS method is discussed in
the previous section. But the number of principal components of the three methods
is different, which only reflects one aspect of the robustness. Now, the robustness of
prediction performance and monitoring is analyzed further, especially the prediction
performance directly reflects the quality of the model. There are 21 types of faults in
the TE process. The fault IDV(21) is a fault that the output drifts slowly, caused by the
constant change of the steam valve position. So it does not reflect the robustness of
themodel. Therefore, the first 20 faults are analyzed in this simulation experiment. In
this simulation, the sparsity in the L1-SPLS model is determined by the VIP method:
input space s1 = 14, output space s2 = 2.

Experiment 1: Prediction Performance Analysis

In this experiment, the L1-PLS model shows good output prediction results for the
20 fault data sets. L1-PLS(outliers) and PLS(outliers) mean that the two models
are trained by the normal operation data with adding outliers, described in previous
Sect. 12.5.1. In order to illustrate the above conclusions more clearly, four faults
IDV(7), IDV(14), IDV(17), and IDV(18) are selected to compare the prediction per-
formance of the PLS model and the L1-PLS model. The output prediction results are
good for all fault modes, but the four faults come from four different fault types, and
the results of the L1-PLS model and the PLS model are quite different. Figures12.6
and 12.7 give the output prediction results of the fault IDV(7), IDV(14), IDV(17),
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Fig. 12.6 Output predicted values for IDV(7), IDV(14), IDV(17), and IDV(18) using PLS(outliers)

and IDV(18). The horizontal axis represents data samples, and the vertical axis rep-
resents output values. The blue dashed line is the actual output value, and the green
is the predicted output value.

In these prediction and monitoring diagrams, the first 160 samples are normal
data, and the last 800 samples are data under different fault modes. The output pre-
diction of fault IDV(7) shows a consistent conclusion under the step-change fault.
The feedback controller or cascade controller reduces the impact of faults and abnor-
mal values on product quality. For the other three types of fault IDV(14), IDV(17),
and IDV(18), there are some differences in their output prediction results. When
the system is under the normal operation, the PLS and L1-PLS models have the
same good prediction results. However, after adding outliers, the PLS method can-
not accurately predict the output (Fig. 12.6), while the L1-PLS method still quickly
detects the output changes and makes correct predictions (Fig. 12.7). In particular,
for faults IDV(17) and IDV(18), the PLS method gives a serious wrong predictions.
Experiments show that the prediction performance of the L1-PLS method is better
than PLS. Even if the data is contaminated by outliers, L1-PLS can still predict the
output accurately. In other words, the L1-PLS model has stronger robust prediction
performance.
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Fig. 12.7 Output predicted values for IDV(7), IDV(14), IDV(17), and IDV(18) using L1-
PLS(outliers)

Experiment 2: Monitoring Performance Analysis

The robustness of monitoring performance is mainly verified by the accuracy of
fault detection. The detection indices are FDR and FAR (4.1), the control limit is
calculated with the confidence level 99.75% for both PLS and L1-PLS methods. The
FAR results of the two models are basically same, this indicates that the proposed
L1-PLS method does not increase the risk of false alarms, so it is not analyzed in this
section. Table12.2 lists the FDR results of the first 20 faults without adding outliers,
corresponding to the models PLS, L1-PLS and L1-SPLS respectively. Table12.3
shows the FDR results of 20 faults after adding outliers, corresponding to the models
PLS (outliers), L1-PLS (outliers), and L1-SPLS (outliers).

For serious quality-related faults IDV(2), IDV(6), IDV(8), IDV(12), IDV(13), and
IDV(18), the six models give consistent results. Therefore, these faults are not ana-
lyzed in this chapter. For other types of faults, their results are very different, including
the quality-irrelevant faults, the quality-recoverable faults, and slight quality-related
faults. The detailed analysis of the three situations is given below. In the monitoring
figures of this section, the blue line represents the value of the statistic, where the
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Table 12.2 FDRs of PLS, L1-PLS, and L1-SPLS

PLS L1-PLS L1-SPLS

IDV T2 T2
e T2 T2

e T2 T2
e

1 99.63 99.75 60.00 99.75 31.38 99.75

2 98.50 98.25 98.25 98.38 98.25 98.38

3 1.00 1.38 0.75 1.75 0.50 1.75

4 19.13 100.00 0.88 100.00 0.00 100.00

5 22.00 100.00 18.38 100.00 17.13 100.00

6 99.25 100.00 98.38 100.00 98.13 100.00

7 100.00 100.00 68.75 100.00 31.38 100.00

8 96.00 97.88 89.00 97.88 88.50 97.88

9 0.50 1.13 0.25 1.38 0.38 1.38

10 26.38 84.25 19.13 85.38 15.63 85.38

11 26.63 76.50 1.13 77.88 0.88 77.88

12 97.50 99.88 84.00 99.88 84.00 99.88

13 94.88 95.13 82.13 95.25 82.25 95.25

14 91.50 100.00 0.38 100.00 0.00 100.00

15 1.25 2.63 1.00 3.75 0.63 3.75

16 20.13 42.75 9.00 46.13 7.00 46.13

17 77.38 96.75 10.00 97.00 1.63 97.00

18 89.38 90.13 88.75 90.13 88.75 90.13

19 0.50 34.50 0.13 37.88 0.00 37.88

20 30.50 90.50 20.75 90.38 19.00 90.38

upper curve is T2, and the lower is T2
e . The system alarms if the blue line exceeds

the red control limit.

Case 1: Quality Irrelevant Fault

It can be found fromTable12.2 that very low alarm values are given for faults IDV(3),
IDV(9), IDV(15), and IDV(19). However, the alarm values of the L1-PLS and L1-
SPLS models are lower, which indicates that fewer false alarms will occur during
the monitoring. It can also be seen from the corresponding Figs. 12.8, 12.9, 12.10,
12.11, and 12.12, the alarm points of the latter two models are much less. For faults
IDV(4), IDV(11), and IDV(14), they are all related to the reactor cooling water and
hardly affect the quality of output products. The PLS model gives a higher alarm
value, which may lead to serious false alarms, while the L1-PLS model effectively
avoids these alarms and reduces the number of false alarms. In addition, the L1-PLS
model eliminates most of the false alarms in the monitoring Figs. 12.8, 12.9, 12.10,
and the L1-SPLS model almost eliminates all false alarms.

When adding outliers, the PLSmodel provides the samewrong results for quality-
irrelevant faults. The specific FDR values are shown in Table12.3. However, the
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Table 12.3 FDRs of PLS(outliers), L1-PLS(outliers), and L1-SPLS(outliers)

PLS(outliers) L1-PLS(outliers) L1-SPLS(outliers)

IDV T2 T2
e T2 T2

e T2 T2
e

1 99.88 99.75 28.38 99.75 36.63 99.75

2 98.63 98.25 98.00 98.25 98.25 98.25

3 3.25 0.88 0.13 1.13 0.63 1.13

4 7.63 100.00 0.25 100.00 0.00 100.00

5 24.88 27.88 14.75 28.38 16.88 28.38

6 99.75 100.00 98.38 100.00 98.25 100.00

7 100.00 100.00 59.88 100.00 29.50 100.00

8 96.50 97.75 84.50 97.88 88.00 97.88

9 0.88 0.88 0.00 1.00 0.38 1.00

10 37.50 77.63 11.00 80.50 15.25 80.50

11 16.00 73.75 0.50 74.75 0.88 74.75

12 95.88 99.25 78.50 99.25 83.63 99.25

13 95.50 95.00 80.25 95.25 82.00 95.25

14 89.75 100.00 0.00 100.00 0.00 100.00

15 4.38 0.50 0.13 0.88 0.75 0.88

16 33.88 28.38 4.50 35.13 6.25 35.13

17 76.88 96.63 6.13 96.63 1.50 96.63

18 90.00 89.88 88.00 89.88 88.63 89.88

19 1.13 28.38 0.00 30.00 0.00 30.00

20 36.50 77.13 15.63 77.75 19.75 77.75
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Fig. 12.8 PLS, L1-PLS and L1-SPLS monitoring results for IDV(4)
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Fig. 12.9 PLS, L1-PLS and L1-SPLS monitoring results for IDV(11)
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Fig. 12.10 PLS, L1-PLS and L1-SPLS monitoring results for IDV(14)
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Fig. 12.11 PLS, L1-PLS and L1-SPLS monitoring results for IDV(15)
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Fig. 12.12 PLS, L1-PLS and L1-SPLS monitoring results for IDV(19)

monitoring effect of the L1-PLS model is still very good, for fault IDV(9), IDV(14),
and IDV(19). The detection rate has been reduced to 0, whichmeans that false alarms
are completely eliminated in these cases. Therefore, the L1-(S)PLS model will not
interfere with the fault monitoring results after adding outliers. It should be noted that
the monitoring performance of the L1-PLS model after adding outliers (Table12.3)
is better than the normal conditions (Table12.2). The possible reason is outliers, and
the total noise in the input data becomes larger. The L1-PLS method can filter out
noise more effectively during themodeling. Therefore, the establishedmodel is more
accurate and the monitoring performance is improved.

Case 2: Quality-Recoverable Fault

Faults IDV(1), IDV(5), and IDV(7) are quality-recoverable faults. The prediction
value should tend to return to normal, but the statistic should be kept at a higher
value. Figure12.13 shows the monitoring results of the three models on the fault
IDV(1). It can be seen that both the L1-PLS and L1-SPLS model methods give the
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Fig. 12.13 PLS, L1-PLS and L1-SPLS monitoring results for IDV(1)
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Fig. 12.14 PLS, L1-PLS and L1-SPLS monitoring results for IDV(5)

0 100 200 300 400 500 600 700 800 900 1000
sample

0

200

400

600

T
2

PLS for IDV(7)

0 100 200 300 400 500 600 700 800 900 1000
sample

0

500

1000

T
e2

0 100 200 300 400 500 600 700 800 900 1000
sample

0

200

400

600

T
2

L1-PLS for IDV(7)

0 100 200 300 400 500 600 700 800 900 1000
sample

0

500

1000

1500

T
e2

0 100 200 300 400 500 600 700 800 900 1000
sample

0

200

400

600
T2

L1-SPLS for IDV(7)

0 100 200 300 400 500 600 700 800 900 1000
sample

0

500

1000

1500

T2 e

Fig. 12.15 PLS, L1-PLS and L1-SPLS monitoring results for IDV(7)

correct alarm results. In the PLS model, the value of the statistic exceeds the control
limit, so a false alarm is generated in the process monitoring. For the fault IDV(5),
it is also a process-related fault. It can be seen from Tables12.2 and 12.3 that the
fault detection rates of the L1-PLS and L1-SPLS models are lower than the PLS
model, which means that the monitoring results are more accurate. Figures12.14
and 12.16, respectively, show the monitoring diagrams of the three models for the
fault IDV(5) in the normal case (without adding outliers) and with adding outliers.
For fault IDV(7), the corresponding monitoring results are shown in Fig. 12.15. The
PLS model gives completely wrong result, while the results of the other two models
are more accurate.

The detection result for fault IDV(1) obtained by the L1-PLS (outliers) model
seems to be better than the L1-PLS model, and the monitoring results are more rea-
sonable. In addition, for the fault IDV (5), although the monitoring results of the
L1-PLS and L1-SPLS (outliers) models may not be ideal, as shown in Fig. 12.14.
The T2

e statistics of the L1-PLS and L1-SPLS models can detect the input space
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Fig. 12.16 PLS(outliers), L1-PLS(outliers) and L1-SPLS(outliers) monitoring results for IDV(5)
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Fig. 12.17 Typical process variable monitoring results of IDV(5)

process-related faults. But the PLS (outliers), L1-PLS (outliers) and L1-SPLS (out-
liers) models gave wrong results (Fig. 12.16).

There are two possible reasons for this phenomenon. Firstly, the outliers were
added directly without being regulated by the dynamic system, so its influence on the
extraction of the principal components cannot be determined directly. Secondly, the
typical process dynamics corresponding to fault IDV(5) is shown in Fig. 12.17. Only
the variable 31 is a step change in all the monitored variables, and the rest gradually
returns to the normal under the action of controller. In terms of the composition of the
principal components, the contribution of variable 31 to the principal components is
small. Therefore, its role is more in the residual space in the normal case (without
adding outliers). After the outlier is added, its contribution to the principal component
increases, which means its role in the residual space is weakened. It in turn causes
the monitoring indicators in the residual space to return back to normal. On the other
hand, the percentage of its contribution to the principal component is still small,
so the monitoring indicators on the principal metric space also do not significantly
reflect its characteristics.

Case 2: Slight Quality Related Fault

Fault IDV (16) and IDV (17) have a slight impact on quality, which means that they
have almost no impact on output quality. Figure12.18 shows themonitoring results of
the three models after adding outliers. The fault monitoring results of PLS (outliers)
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Fig. 12.18 PLS(outliers), L1-PLS(outliers), and L1-SPLS(outliers) monitoring results for IDV(17)

model is very bad, there have beenmany false positives. The L1-PLS (outliers) model
and L1-SPLS (outliers) model effectively reduce these false alarms. It can also be
seen from the corresponding FDR that themonitoring results of the L1-PLS (outliers)
model and the L1-SPLS (outliers) model are more reasonable.

It can be seen from the above comparison results that even if outliers are added
to the input data, the monitoring results of the L1-(S)PLS model have also been
greatly improved. In other words, the L1-(S)PLS model improves the robustness
performance and fault detection performance.

12.6 Conclusions

This chapter proposes a quality-related statisticalmonitoringmethodof double robust
projection to latent structure (L1-PLS), which enhances the robustness of the PLS
algorithm from two aspects. On the one hand, the L1-PLS method replaces the L2

norm in the objective function with the L1 norm, and adds the L1 norm penalty term
to the direction vector; On the other hand, the regression coefficient of the L1-PLS
algorithm can also be obtained by the L1 norm. Therefore, the L1-PLS algorithm
has double robustness. Then a monitoring model based on the L1-PLS method is
established, the robust performance and monitoring performance are verified on the
TE process simulation platform. The results show that the L1-PLS method has better
robustness and better performance in process monitoring and fault diagnosis.
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