
Chapter 1
Background

1.1 Introduction

Fault detection and diagnosis (FDD) technology is a scientific field emerged in the
middle of the twentieth century with the rapid development of science and data
technology. It manifests itself as the accurate sensing of abnormalities in the man-
ufacturing process, or the health monitoring of equipment, sites, or machinery in a
specific operating site. FDD includes abnormality monitoring, abnormal cause iden-
tification, and root cause location. Through qualitative and quantitative analysis of
field process and historical data, operators andmanagers can detect alarms that affect
product quality or cause major industrial accidents. It is help for cutting off failure
paths and repairing abnormalities in a timely manner.

1.1.1 Process Monitoring Method

In general, FDD technique is divided into several parts: fault detection, fault isolation,
fault identification, and fault diagnosis (Hwang et al. 2010; Zhou andHu 2009). Fault
detection is determining of the appearance of fault. Once a fault (or error) has been
successfully detected, damage assessment needs to be performed, i.e., fault isolation
(Yang et al. 2006). Fault isolation lies in determining the type, location, magnitude,
and time of the fault (i.e., the observed out-of-threshold variables). It should be noted
that fault isolation is not to isolation of specific components of a system with the
purpose of stopping errors from propagating. In a sense, fault identificationmay have
been a better choice. It also has the ability to determine its timely change. Isolation
and identification are commonly used in the FDD process without strict distinction.
Fault diagnosis determines the cause of the observed out-of-threshold variables in
this book, so it is called as fault root tracing. During the process of fault tracing,
efforts are made to locate the source of the fault and find the root cause.

© The Author(s) 2022
J. Wang et al., Data-Driven Fault Detection and Reasoning for Industrial Monitoring,
Intelligent Control and Learning Systems 3,
https://doi.org/10.1007/978-981-16-8044-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8044-1_1&domain=pdf
https://doi.org/10.1007/978-981-16-8044-1_1


2 1 Background

Fig. 1.1 Classification of fault diagnosis methods

FDD involves control theory, probability statistics, signal processing, machine
learning, and many other research areas. Many effective methods have been devel-
oped, and they are usually classified into three categories, knowledge-based, analyt-
ical, and data-driven (Chiang et al. 2001). Figure1.1 shows the classification of fault
diagnosis methods.

(1) Analytical Method
The analytical model of the engineering system is obtained based on the mathemati-
cal and physical mechanism. Analytical model-based method represents to monitor
the process real time according to the mathematical models often constructed from
first principles and physical characteristics. Most analytical measures contain state
estimation (Wang et al. 2020), parameter estimation (Yu 1997), parity space (Ding
2013), and analytical redundancy (Suzuki et al. 1999). The analytical method appears
to be relatively simple and usually is applied to systems with a relatively small num-
ber of inputs, outputs, and states. It is impractical for modern complex system since it
is not easy to establish an accurate mathematical model due to its complex character-
istics such as nonlinearity, strong coupling, uncertainty, and ultra-high-dimensional
input and output.
(2) Knowledge-Based Method
Knowledge-based fault diagnosis does not require an accurate mathematical model.
Its basic idea is to use expert knowledge or qualitative relationship to develop the fault
detection rules. The common approaches mainly include fault tree diagnosis (Hang
et al. 2006), expert system diagnosis (Gath andKulkarn 2014), directed graphs, fuzzy
logic (Miranda and Felipe 2015), etc. The application of knowledge-based models
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strongly relies on the complete process empirical knowledge.Once the information of
the diagnosed object is known from expert experience and historical data, a variety of
rules for appropriate reasoning is constructed. However, the accumulation of process
experience and knowledge are time-consuming and even difficult. Therefore, this
method is not universal and can only be applied to engineering systems which people
are familiar with.
(3) Data-Driven Method
Data-driven method is based on the rise of modern information technology. In fact,
it involves a variety of disciplines and techniques, including statistics, mathematical
analysis, and signal processing. Generally speaking, the industrial data in the field are
collected and stored by intelligent sensors. Data analysis can mine the hidden infor-
mation contained in the data, establish the data model between input and output, help
the operator to monitor the system status in real time, and achieve the purpose of fault
diagnosis. Data-driven fault diagnosis methods are be divided into three categories:
signal processing-based, statistical analysis-based, and artificial intelligence-based
(Zhou et al. 2011; Bersimis et al. 2007). The commonality of these methods is
that high-dimensional variables are projected into the low-dimensional space with
extracting the key features of the system. Data-driven method does not require an
accurate model, so is more universal.

Both analytical techniques and data-drivenmethods have their ownmerits, but also
have certain limitations. Therefore, the fusion-driven approach combining mecha-
nistic knowledge and data could compensate the shortcomings of a single technique.
This book explores the fault detection, fault isolation/identification, and fault root
tracing problems mainly based on the multivariate statistical analysis as a mathemat-
ical foundation.

1.1.2 Statistical Process Monitoring

Fault detection and diagnosis based onmultivariate statistical analysis has developed
rapidly and a large number of results have emerged recently. This class of method,
based on the historical data, uses multivariate projection to decompose the sample
space into a low-dimensional principal element subspace and a residual subspace.
Then the corresponding statistics are constructs to monitor the observation variables.
Thus, this method also is called latent variable projection method.

(1) Fault Detection
The common multivariate statistical fault detection methods include principal com-
ponent analysis (PCA), partial least squares (PLS), canonical correlation analysis
(CCA), canonical variables analysis (CVA), and their extensions. Among them, PCA
and PLS, as the most basic techniques, are usually used for monitoring processes
with Gaussian distributions. These methods usually use Hotelling’s T2 and Squared
Prediction Error (SPE) statistics to detect variation of process information.
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It is worth noting that these techniques extract the process features by max-
imizing the variance or covariance of process variables. They only utilize the
information of first-order statistics (mathematical expectation) and second-order
statistics (variance and covariance) while ignoring the higher order statistics (higher
order moments and higher order cumulants). Actually, there are few processes in
practice that are subject to the Gaussian distribution. The traditional PCA and PLS
are unable to extract effective features from non-Gaussian processes due to omitting
the higher order statistics. It reduces the monitoring efficiency.

Numerous practical production conditions, such as strong nonlinearity, strong
dynamics, and non-Gaussian distribution, make it difficult to directly apply the basic
multivariatemonitoringmethods. To solve these practical problems, various extended
multivariate statistical monitoring methods have flourished. For example, to deal
with the process dynamics, dynamic PCA and dynamic PLS methods have been
developed, which take into account the autocorrelation and cross-correlation among
variables (Li and Gang 2006). To deal with the non-Gaussian distribution, indepen-
dent component analysis (ICA) methods have also been developed (Yoo et al. 2004).
To deal with the process nonlinearity, some extended kernel methods such as kernel
PCA (KPCA), kernel PLS (KPLS), and kernel ICA (KICA) have emerged (Cheng
et al. 2011; Zhang and Chi 2011; Zhang 2009).
(2) Fault Isolation or Identification
Acommonapproach for separating faults is the contributionplot. It is an unsupervised
approach that uses only the process data to find fault variables and does not require
other prior knowledge. Successful separation based on the contribution plot includes
the following properties: (1) each variable has the same mean value of contribution
under the normal operation and (2) the faulty variables have very large contribution
values under the fault conditions, compared with other normal variables. Alcala
and Qin summarized the commonly contribution plot techniques, such as complete
decomposition contributions (CDC), partial decomposition contributions (PDC), and
reconstruction-based contributions (RBC) (Alcala and Qin 2009, 2011).

However, contribution plot usually suffers from the smearing effect, a situation in
which non-faulty variables show larger contribution values, while the contribution
values of the fault variables are smaller.Westerhuis et al. pointed out that one variable
may affect other variables during the execution of PCA, thus creating a smearing
effect (Westerhuis et al. 2000). Kerkhof et al. analyzed the smearing effect in three
types of contribution indices, CDC, PDC, and RBC, respectively (Kerkhof et al.
2013). Itwas pointed that smearing effect is caused by the compression and expansion
operations of variables from the perspective of mathematical decomposition. So it
cannot be avoided during the transformation of data frommeasurement space to latent
variable space. In order to eliminate the smearing effect, several new contribution
indices are given based on dynamically calculating average value of the current and
previous residuals (Wang et al. 2017).

If the historical data collected have been previously categorized into separate
classes where each class pertains to a particular fault, fault isolation or identification
can be transformed into pattern classification problem. The statistical methods, such
as Fisher’s discriminant analysis (FDA) (Chiang et al. 2000), have also been success-
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fully applied in industrial practice to solve this problem. It assigns the data into two or
more classes via three steps: feature extraction, discriminant analysis, and maximum
selection. If the historical data have not been previously categorized, unsupervised
cluster analysis may classify data into separate classes accordingly (Jain et al. 2000),
such as the K-Means algorithm.More recently, neural network and machine learning
techniques imported from statistical analysis theory have been receiving increasing
attention, such as support vector data description (SVDD) covered in this book.
(3) Fault Diagnosis or Root Tracing
Fault root tracing based on Bayesian network (BN) is a typical diagnostic method
that combines the mechanism knowledge and process data. BN, also known as prob-
abilistic network or causal network, is a typical probabilistic graphical model. Since
the end of last century, it has gradually become a research hotspot due to its superior
theoretical properties in describing and reasoning about uncertain knowledge. BN
was first proposed by Pearlj, a professor at the University of California, in 1988, to
solve the problem of uncertain information in artificial intelligence. BN represents
the relationships between the causal variable is the form of directed acyclic graphs.
In the fault diagnosis process of an industrial system, the observed variable is used as
node containing all the information about the equipment, control quantities, and faults
in the system. The causal connection between variables is quantitatively described
as a directed edge with the conditional probability distribution function (Cai et al.
2017). Fault diagnosis procedure with BNs consists of BN structure modeling, BN
parameter modeling, BN forward inference, and BN inverse tracing.

In addition to the probabilistic graphical model such as BN, the development
of other causal graphical model has developed vigorously. These progresses aim at
determining the causal relationship among the operating units of the system based
on hypothesis testing (Zhang and Hyvärinen 2008; Shimizu et al. 2006). The gener-
ative model (linear or nonlinear) is built to explain the data generation process, i.e.,
causality. Then the direction of causality is tested under some certain assumptions.
The most typical one is the linear non-Gaussian acyclic model (LiNGAM) and its
improved version (Shimizu et al. 2006, 2011). It has the advantage of determining
the causal structure of variables without pre-specifying their causal order. All these
results are serving as a driving force for the development of probabilistic graphical
model and playing a more important role in the field of fault diagnosis.

1.2 Fault Detection Index

The effectiveness of data-driven measures often depends on the characterization of
process data changes. Generally, there are two types of changes in process data:
common and special. Common changes are entirely caused by random noise, while
specials refer to all data changes that are not caused by common causes, such as
impulse disturbances. Common process control strategies may be able to remove
most of the data changes with special reasons, but these strategies cannot remove
the common cause changes inherent in the process data. As process data changes
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are inevitable, statistical theory plays an important role in most process monitoring
programs.

By defining faults as abnormal process conditions, it is easy to know that the
application of statistical theory in the monitoring process actually relies on a reason-
able assumption: unless the system fails, the data change characteristics are almost
unchanged. This means that the characteristics of data fluctuations, such as mean and
variance, are repeatable for the same operating conditions, although the actual value
of the data may not be very predictable. The repeatability of statistical attributes
allows automatic determination of thresholds for certain measures, effectively defin-
ing out-of-control conditions. This is an important step to automate the process
monitoring program. Statistical process monitoring (SPM) relies on the use of nor-
mal process data to build process model. Here, we discuss the main points of SPM,
i.e., fault detection index.

In multivariate process monitoring, the variability in the residual subspace (RS)
is represented typically by squared sum of the residual, namely the Q statistic or the
squared prediction error (SPE). The variability in the principle component subspace
(PCS) is represented typically by Hotelling’s T2 statistic. Owing to the complemen-
tary nature of the two indices, combined indices are also proposed for fault detection
and diagnosis. Another statistic that measures the variability in the RS is Hawkins’
statistic (Hawkins 1974). The global Mahalanobis distance can also be used as a
combined measure of variability in the PCS and RS. Individual tests of PCs can also
be conducted (Hawkins 1974), but they are often not preferred in practice, since one
has to monitor many statistics. In this section, we summarize several fault detection
indices and provide a unified representation.

1.2.1 T2 Statistic

Consider the sampled data with m observation variables x = [x1, x2, . . . , xm] and n
observations for each variable. The data are stacked into a matrix X ∈ Rn×m , given
by

X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1m
x21 x22 · · · x2m
...

... · · · ...

xn1 xn2 · · · xnm

⎤
⎥⎥⎥⎦ , (1.1)

firstly, the matrix X is scaled to zero mean, and the sample covariance matrix is equal
to

S = 1

n − 1
XTX . (1.2)

An eigenvalue decomposition of the matrix S,
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S = P̄Λ̄ P̄
T = [P P̃] diag{Λ, Λ̃} [P P̃]T. (1.3)

The correlation structure of the covariancematrix S is revealed,where P is orthog-
onal. (P PT = I , in which, I is the identity matrix) (Qin 2003) and

Λ = 1

n − 1
TTT = diag{λ1, λ2, . . . , λk}

Λ̃ = 1

n − 1
T̃

T
T̃ = diag{λk + 1, λk + 2, . . . , λm}

λ1 ≥ λ2 ≥ · · · ≥ λm,

k∑
i=1

λi >

m∑
j=k+1

λ j

λi = 1

N − 1
tTi t i ≈ var(t i )

when n is very large. The score vector t i is the i-th column of T̄ = [T, T̃ ]. The PCS is
Sp = span{P} and the RS is Sr = span{ P̃}. Therefore, the matrix X is decomposed
into a score matrix T̄ and a loading matrix P̄ = [P, P̃], that is

X = T̄ P̄
T = X̂ + X̃ = T PT + T̃ P̃

T = X P PT + X
(
I − P PT

)
, (1.4)

The sample vector x can be projected on the PCS and RS, respectively:

x = x̂ + x̃ (1.5)

x̂ = P PTx (1.6)

x̃ = P̃ P̃
T
x = (

I − P PT
)
x. (1.7)

Assuming S is invertible and with the definition

z = Λ− 1
2 PTx. (1.8)

The Hotelling’s T2 statistic is given by Chiang et al. (2001)

T2 = zT z = xTPΛ−1PTx. (1.9)

The observation vector x is projected into a set of uncorrelated variables y by
y = PTx. The rotation matrix P directly from the covariance matrix of x guarantees
that y is correspond to x.Λ scales the elements of y to produce a set of variables with
unit variance corresponding to the elements of z. The conversion of the covariance
matrix is demonstrated graphically in Fig. 1.2 for a two-dimensional observation
space (m = 2) (Chiang et al. 2001).

The T2 statistic is a scaled squared 2-norm of an observation vector x from its
mean. An appropriate scalar threshold is used to monitor the variability of the data in



8 1 Background

Fig. 1.2 A graphical illustration of the covariance conversion for the T2 statistic

Fig. 1.3 An elliptical
confidence region for the T 2

statistic

the entirem-dimensional observation space. It is determined based on an appropriate
probability distribution with given significance level α. In general, it is assumed that

• the observations are randomly sampled and subject to a multivariate normal dis-
tribution.

• the mean vector and covariance matrix of observations sampled in the normal
operations are equal to the actual ones, respectively.

Then the T2 statistic follows a χ2 distribution with m degrees of freedom (Chiang
et al. 2001),

T2
α = χ2

α(m). (1.10)

The set T2 ≤ T2
α is an elliptical confidence region in the observation space, as

illustrated in Fig. 1.3 for two process variables. This threshold (1.10) is applied to
monitor the unusual changes. An observation vector projected within the confidence
region indicates process data are in-control status, whereas outside projection indi-
cates that a fault has occurred (Chiang et al. 2001).

When the actual covariance matrix for the normal status is not known but instead
estimated from the sample covariance matrix (1.2), the threshold for fault detection
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is given by

T2
α = m(n − 1)(n + 1)

n(n − m)
Fα(m, n − m), (1.11)

where Fα(m, n − m) is the upper 100α% critical point of the F-distribution with
m and n − m degrees of freedom (Chiang et al. 2001). For the same significance
level α, the upper in-control limit in (1.11) is larger (more conservative) than that in
(1.10). The two limits approach each other when the amount of observation increases
(n → ∞) (Tracy et al. 1992).

1.2.2 Squared Prediction Error

TheSPE indexmeasures the projection of the sample vector on the residual subspace:

SPE := ‖x̃‖2 = ‖(I − P PT)x‖2. (1.12)

The process is considered as normal if

SPE ≤ δ2α, (1.13)

where δ2α denotes the upper control limit of SPE with a significant level of α. Jackson
and Mudholkar gave an expression for δ2α (Jackson and Mudholkar 1979)

δ2α = θ1

⎛
⎝ zα

√
2θ2h20

θ1
+ 1 + θ2h0(h0 − 1)

θ2
1

⎞
⎠

1/h0

, (1.14)

where

θi =
m∑

j=k+1

λi
j , i = 1, 2, 3, (1.15)

h0 = 1 − 2θ1θ3
3θ2

2

, (1.16)

where k is the number of retained principal components and zα is the normal deviation
corresponding to the upper percentile of 1 − α. Note that the above result is obtained
under the following conditions.

• The sample vector x follows a multivariate normal distribution.
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• In deriving the control limits, an approximation is made to this distribution that is
valid when θ1 is very large.

• This result holds regardless of the number of principal components retained in the
model.

When a fault occurs, the fault sample vector x consists of the normal part super-
imposed on the faulty part. The fault causes the SPE to be larger than the threshold
δ2α , which results in the fault being detected.

Nomikos and MacCregor (1995) used the results in Box (1954) to derive an
alternative upper control limit for SPE.

δ2α = gχ2
h;α (1.17)

where

g = θ2/θ1, h = θ2
1 /θ2. (1.18)

The relationship between SPE threshold (1.14) and (1.17) is as follows: Nomikos
and MacCregor (1995)

δ2α
∼= gh

(
1 − 2

9h
+ zα

√
2

9h

)3

1.2.3 Mahalanobis Distance

Define the following Mahalanobis distance which forms the global Hotelling’s T2

test:

D = XTS−1X ∼ m(n2 − 1)

n(n − m)
Fm,n−m, (1.19)

where S is the sample covariance of X . When S is singular with rank(S) = r <

m, Mardia discusses the use of the pseudo-inverse of S, which in turn yields the
Mahalanobis distance of the reduced-rank covariance matrix (Brereton 2015):

Dr = XTS+X ∼ r(n2 − 1)

n(n − r)
Fr,n−r (1.20)

where S+ is the Moore-Penrose pseudo-inverse. It is straightforward to show that

the global Mahalanobis distance is the sum of T2 in PCS and T2
H = xT P̃Λ̃

−1
P̃

T
x

(Hawkins’ statistic Hawkins 1974) in RS:

D = T2 + T2
H . (1.21)
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When the number of observations n is quite large, the globalMahalanobis distance
approximately obeys the χ2 distribution with m degrees of freedom:

D ∼ χ2
m . (1.22)

Similarly, the reduced-rank Mahalanobis distance follows:

Dr ∼ χ2
r . (1.23)

Therefore, faults can be detected using the correspondingly defined control limits
for D and Dr .

1.2.4 Combined Indices

In practice, better monitoring performance can be achieved in some cases by using a
combined index instead of two indices to monitor the process. Yue and Qin proposed
a combined index for fault detection that combines SPE and T2 as follows: Yue and
Qin (2001):

ϕ = SPE(X)

δ2α
+ T2(X)

χ2
l;α

= XTΦX, (1.24)

where

Φ = PΛ−1PT

χ2
l,α

+ I − P PT

δ2α
= PΛ−1PT

χ2
l,α

+ P̃ P̃
T

δ2α
. (1.25)

Notice that Φ is symmetric and positive definite. To use this index for fault detec-
tion, the upper control limit of ϕ is derived from the results of Box (1954), which
provides an approximate distribution with the same first two moments as the exact
distribution. Using the approximate distribution given in Box (1954), the statistical
data ϕ is approximated as follows:

ϕ = XTΦX ∼ gχ2
h , (1.26)

where the coefficient

g = tr(SΦ)2

tr(SΦ)
(1.27)

and the degree of freedom for χ2
h distribution is
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h = [tr(SΦ)]2
tr(SΦ)2

, (1.28)

in which,

tr(SΦ) = l

χ2
l;α

+
∑m

i=l+1 λi

δ2α
(1.29)

tr(SΦ)2 = l

χ4
l;α

+
∑m

i=l+1 λ2
i

δ4α
(1.30)

After computing g and h, for a given significance level α, a control upper limit
for ϕ can be obtained. A fault is detected by ϕ if

ϕ > gχ2
h;α, (1.31)

It is worth noting that Raich and Cinar suggest another combined statistic (Raich
and Cinar 1996),

ϕ = c
SPE(X)

δ2α
+ (1 − c)

T2(X)

χ2
l;α

, (1.32)

where c ∈ (0, 1) is a constant. They further give a rule that the statistic less than 1
is considered normal. However, this may lead to wrong results because even if the
above statistic is less than 1, it is possible that SPE(X) > δ2α or T2(X) > χ2

l;α (Qin
2003).

1.2.5 Control Limits in Non-Gaussian Distribution

Nonlinear characteristics are the hotspot of current process monitoring research.
Many nonlinear methods such as kernel principal component, neural network, and
manifold learning arewidely used in the component extraction of processmonitoring.
The principal component extracted by such methods may be independent of the
Gaussian distribution. Thus, the control limits of the T2 and Q statistical series
are calculated by the probability density function, which can be estimated by the
nonparametric kernel density estimation (KDE) method. The KDE applies to the
T2 and Q statistics because they are univariate although the processes represented
by these statistics are multivariate. Therefore, the control limits for the monitoring
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statistics (T2 and SPE) are calculated from their respective PDF estimates, given by

∫ ThT2 ,α

−∞
g(T2)dT2 = α

∫ ThSPE,α

−∞
g(SPE)dSPE = α,

(1.33)

where

g(z) = 1

lh

l∑
j=1

K

(
z − z j
h

)

K denotes a kernel function and h denotes the bandwidth or smoothing parameter.
Finally, the fault detection logic for the PCS and RS is as follows:

T2 > ThT2,α or TSPE > ThSPE,α, Faults

T2 ≤ ThT2,α and TSPE ≤ ThSPE,α, Fault-free.
(1.34)
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