Skip to main content

Vascular Diseases

  • Chapter
  • First Online:
Pediatric Neuroimaging

Abstract

Cerebrovascular diseases, such as intracranial hemorrhage (ICH), Aorto-Arteritis, vein of Galen malformation, developmental venous anomaly, cavernous malformation, arteriovenous malformation (AVM), and so on, act as the major causes that lead to disability and death of children. Although the incidence of cerebrovascular diseases in children is lower than that in adults, it does great harm. Due to the young age of children, cerebrovascular diseases may directly affect the children’s life if they are not diagnosed and treated on time. In recent years, the understanding of cerebrovascular diseases in children has become more and more thorough. There are obvious differences between the clinical manifestations of cerebrovascular diseases in children and adults. For example, some children have transient ischemic attacks, but the lesion of cerebral infarction is not that apparent in imaging examination. Some children with venous sinus thrombosis only present with headache or epilepsy; Children with “stroke-like episodes,” on the other hand, may have migraine or metabolic disease without obvious vascular anomalies. The types of cerebrovascular diseases in children change with age, and the risk factors for stroke in children are more complex compared with adults. As adults, stroke is mainly related to atherosclerosis, hypertension, hyperlipidemia, diabetes, alcoholism, smoking, and so on, but these risk factors are relatively rare in pediatric patients. The clinical diagnosis of stroke in children is more difficult as well. Therefore, how to diagnose cerebrovascular diseases effectively and quickly in children and provide targeted treatment in time is really an important issue in clinical practice. With the development of imaging technology, especially the wide application of magnetic resonance imaging (MRI), different types of cerebrovascular diseases can be detected and distinguished accurately, and the detection rate of cerebrovascular diseases in children has been improved. The developing imaging technologies can aid in the early detection and diagnosis of cerebrovascular diseases and are beneficial to their treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kobayashi Y, Yahikozawa H, Takamatsu R, et al. Left upper lung lobectomy is an embolic risk factor for cerebral infarction. J Stroke Cerebrovasc Dis. 2017;26(9):e177–9.

    PubMed  Google Scholar 

  2. Arboix A, Alioc J. Cardioembolic stroke: clinical features, specific cardiac disorders and prognosis. Curr Cardiol Rev. 2010;6(3):150–61.

    PubMed  PubMed Central  Google Scholar 

  3. May AA, de Elizabeth KV, Irving RJ, et al. Atrial standstill presenting as cerebral infarction in a 7-year-old girl. Sage Open Med Case Rep. 2019;7:2050313X19827735.

    Google Scholar 

  4. Fang Y, Junliang H. Imaging features of cardiogenic cerebral infarction. Chin J Stroke. 2014;9(7):596–9.

    Google Scholar 

  5. Pauley R, Mercier E, Kumar A, Trescher W, Mainali G. Infant stroke associated with left atrial thrombus and supraventricular tachycardia. Child Neurol Open. 2021;8:2329048X21995296.

    PubMed  PubMed Central  Google Scholar 

  6. Wintermark M, Hills N, DeVeber G, Barkovich A, Bernard T, Friedman N, Mackay M, Kirton A, Zhu G, Leiva-Salinas C, et al. Clinical and imaging characteristics of arteriopathy subtypes in children with arterial ischemic stroke: results of the VIPS study. AJNR Am J Neuroradiol. 2017;38(11):2172–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaseka M, Slim M, Muthusami P, Dirks P, Westmacott R, Kassner A, Bhathal I, Williams S, Shroff M, Logan W, et al. Distinct clinical and radiographic phenotypes in pediatric patients with moyamoya. Pediatr Neurol. 2021;120:18–26.

    PubMed  Google Scholar 

  8. Boulouis G, Hak J, Kerleroux B, Benichi S, Stricker S, Gariel F, Alias Q, Bourgeois M, Meyer P, Kossorotoff M, et al. Hemorrhage expansion after pediatric intracerebral hemorrhage. Stroke. 2021;52(2):588–94.

    CAS  PubMed  Google Scholar 

  9. Bavle A, Srinivasan A, Choudhry F, Anderson M, Confer M, Simpson H, Gavula T, Thompson J, Clifton S, Gross N, et al. Systematic review of the incidence and risk factors for cerebral vasculopathy and stroke after cranial proton and photon radiation for childhood brain tumors. Neurooncol Pract. 2021;8(1):31–9.

    PubMed  Google Scholar 

  10. Sirachainan N, et al. Incidences, risk factors and outcomes of neonatal thromboembolism. J Matern Fetal Neonatal Med. 2018;31(3):347–51.

    PubMed  Google Scholar 

  11. Saracco P, Bagna R, Gentilomo C, et al. Clinical data of neonatal systemic thrombosis. J Pediatr. 2016;171:60–66.e1.

    PubMed  Google Scholar 

  12. Kalita J, et al. Predictors and outcome of status epilepticus in cerebral venous thrombosis. J Neurol. 2018;266(2):417–25.

    PubMed  Google Scholar 

  13. Fan Y, et al. Chinese Stroke Association guidelines for clinical management of cerebrovascular disorders: executive summary and 2019 update of clinical management of cerebral venous sinus thrombosis. Stroke Vasc Neurol. 2020;5(2):152–8.

    PubMed  PubMed Central  Google Scholar 

  14. Dlamini N, Muthusami P, Amlie-Lefond C. Childhood moyamoya: looking back to the future. Pediatr Neurol. 2019;91:11–9. https://doi.org/10.1016/j.pediatrneurol.2018.10.006.

    Article  PubMed  Google Scholar 

  15. Shang S, Zhou D, Ya J, et al. Progress in moyamoya disease. Neurosurg Rev. 2018; https://doi.org/10.1007/s10143-018-0994-5.

  16. Piao J, Wu W, Yang Z, et al. Research progress of moyamoya disease in children. Int J Med Sci. 2015;12(7):566–75. https://doi.org/10.7150/ijms.11719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang H, Zheng L, Feng L. Epidemiology, diagnosis and treatment of moyamoya disease. Exp Ther Med. 2019;17(3):1977–84. https://doi.org/10.3892/etm.2019.7198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mathew AJ, Goel R, Kumar S, et al. Childhood-onset Takayasu arteritis: an update. Int J Rheum Dis. 2016;19(2):16–26.

    Google Scholar 

  19. Dejaco C, Ramiro S, Duftner C, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018;77(5):636–43.

    PubMed  Google Scholar 

  20. Society for Maternal-Fetal Medicine, Monteagudo A. Vein of galen aneurysmal malformation. Am J Obstet Gynecol. 2020;223(6):B27–9.

    Google Scholar 

  21. Karl K, Heling KS, Chaoui R. Ultrasound of the fetal veins part 3: the fetal intracerebral venous system. Ultraschall Med. 2016;37:6–26.

    CAS  PubMed  Google Scholar 

  22. Alvarez H, et al. Vein of galen aneurysmal malformations. Neuroimaging Clin N Am. 2007;17(2):189–206.

    CAS  PubMed  Google Scholar 

  23. Recinos PF, Rahmathulla G, Pearl M, et al. Vein of Galen malformations:epidemiology, clinical presentations, management. Neurosurg Clin N Am. 2012;23:165–77.

    PubMed  Google Scholar 

  24. Gailloud P, et al. Diagnosis and management of vein of galen aneurysmal malformations. J Perinatol. 2005;25(8):542–51.

    PubMed  Google Scholar 

  25. Aoki R, Srivatanakul K. Developmental venous anomaly: benign or not benign. Neurol Med Chir (Tokyo). 2016;56:534–43.

    Google Scholar 

  26. Marzouk O, Marzouk S, Liyanage SH, Grunwald IQ. Cerebellar developmental venous anomaly with associated cavernoma causing a hemorrhage—a rare occurrence. Radiol Case Rep. 2021;16:1463–8.

    PubMed  PubMed Central  Google Scholar 

  27. Mooney MA, Zabramski JM. Developmental venous anomalies. Handb Clin Neurol. 2017;143:279–82.

    PubMed  Google Scholar 

  28. Brzegowy K, Kowalska N, Solewski B, Musial A, Kasprzycki T, Herman-Sucharska I, Walocha JA. Prevalence and anatomical characteristics of developmental venous anomalies: an MRI study. Neuroradiology. 2020;63(7):1001–8.

    PubMed  Google Scholar 

  29. Idiculla PS, Gurala D, Philipose J, Rajdev K, Patibandla P. Cerebral cavernous malformations, developmental venous anomaly, and its coexistence: a review. Eur Neurol. 2020;83:360–8.

    PubMed  Google Scholar 

  30. Idiculla PS, Gurala D, Philipose J, et al. Cerebral cavernous malformations, developmental venous anomaly, and its coexistence: a review. Eur Neurol. 2020;83(4):360–8.

    PubMed  Google Scholar 

  31. Spiegler S, Rath M, Paperlein C, et al. Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses, and genetic counselling. Mol Syndromol. 2018;9(2):60.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Whitehead MT, Cardenas AM, Corey AS, et al. ACR appropriateness criteria® headache. J Am Coll Radiol. 2019;16(11):S364–77.

    PubMed  Google Scholar 

  33. Zabramski JM, Wascher TM, Spetzler RF, et al. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg. 1994;80(3):422–32.

    CAS  PubMed  Google Scholar 

  34. Rousseau PN, Piana RL, Chai XJ, et al. Brain functional organization and structure in patients with arteriovenous malformations. Neuroradiology. 2019;61(9):1047–54.

    PubMed  Google Scholar 

  35. Hetts SW, Cooke DL, Nelson J, et al. Influence of patient age on angioarchitecture of brain arteriovenous malformations. AJNR Am J Neuroradiol. 2014;35(7):1376–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lawton MT, Rutledge WC, Kim H, et al. Brain arteriovenous malformations. Nat Rev Dis Primers. 2015;1:15008.

    PubMed  Google Scholar 

  37. Jeon HJ, Park KY, Kim SY, et al. Surgical outcomes after classifying Grade III arteriovenous malformations according to Lawton’s modified Spetzler-Martin grading system. Clin Neurol Neurosurg. 2014;124:72–80.

    PubMed  Google Scholar 

  38. Lawton MT. Spetzler-Martin Grade III arteriovenous malformations: surgical results and a modification of the grading scale. Neurosurgery. 2003;52(4):740–8. discussion 748-9

    PubMed  Google Scholar 

  39. Kim M, Lee HS, Lee S, et al. Pediatric intracranial aneurysms: favorable outcomes despite rareness and complexity. World Neurosurg. 2019;125:1203–16.

    Google Scholar 

  40. Garrido E, Metayer T, Borha A, et al. Intracranial aneurysms in pediatric population: a two-center audit. Childs Nerv Syst. 2021;37(8):2567–75.

    PubMed  Google Scholar 

  41. Gemmete JJ, Toma AK, Davagnanam I, et al. Pediatric cerebral aneurysms. Neuroimaging Clin N Am. 2013;23(4):771–9.

    PubMed  Google Scholar 

  42. Chen R, Zhang S, You C, et al. Pediatric intracranial aneurysms: changes from previous studies. Childs Nerv Syst. 2018;34(9):1697–704.

    PubMed  Google Scholar 

  43. Turan N, Heider RA, Roy AK, et al. Current perspectives in imaging modalities for the assessment of unruptured intracranial aneurysms: a comparative analysis and review. World Neurosurg. 2018;113:280–92.

    PubMed  Google Scholar 

  44. Hetts SW, Moftakhar P, Maluste N, Fullerton HJ, Cooke DL, Amans MR, Dowd CF, Higashida RT, Halbach VV. Pediatric intracranial dural arteriovenous fistulas: age-related differences in clinical features, angioarchitecture, and treatment outcomes. J Neurosurg Pediatrics. 2016;18:602–10.

    Google Scholar 

  45. Walcott BP, Smith ER, Michael Scott R, Orbach DB. Dural arteriovenous fistulae in pediatric patients:associated conditions and treatment outcomes. J Neurointerventional Surg. 2013;5:6–9.

    Google Scholar 

  46. Lv X, Jiang C, Wang J. Pediatric intracranial arteriovenous shunts: advances in diagnosis and treatment. Eur J Paediatr Neurol. 2020;25:29–39.

    PubMed  Google Scholar 

  47. Serulle Y, Miller TR, Gandhi D. Dural arteriovenous fistulae: imaging and management. Neuroimaging Clin N Am. 2016;26:247–58.

    PubMed  Google Scholar 

  48. Zhou X, Wang J, Jianghe Kang CT. MRI and DSA imaging characteristics of dural arteriovenous fistula. China For Med Treat. 2020;17:192–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shang, H., Zhao, X., Zhang, X. (2022). Vascular Diseases. In: Liu, H., Zhang, X. (eds) Pediatric Neuroimaging. Springer, Singapore. https://doi.org/10.1007/978-981-16-7928-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7928-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7927-8

  • Online ISBN: 978-981-16-7928-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics