
Chapter 8
GAN Fingerprints in Face Image
Synthesis

João C. Neves, Ruben Tolosana, Ruben Vera-Rodriguez, Vasco Lopes,
Hugo Proença, and Julian Fierrez

The availability of large-scale facial databases, together with the remarkable pro-
gresses of deep learning technologies, in particular Generative Adversarial Networks
(GANs), have led to the generation of extremely realistic fake facial content, raising
obvious concerns about the potential for misuse. Such concerns have fostered the
research on manipulation detection methods that, contrary to humans, have already
achieved astonishing results in various scenarios. This chapter is focused on the anal-
ysis of GAN fingerprints in face image synthesis. In particular, it covers an in-depth
literature analysis of state-of-the-art detection approaches for the entire face synthe-

1The present chapter is an adaptation from the following article: Neves et al. (2020). DOI: http://
dx.doi.org/10.1109/JSTSP.2020.3007250.
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sis manipulation. It also describes a recent approach to spoof fake detectors based
on a GAN-fingerprint Removal autoencoder (GANprintR). A thorough experimental
framework is included in the chapter, highlighting (i) the potential of GANprintR
to spoof fake detectors, and (ii) the poor generalisation capability of current fake
detectors.

8.1 Introduction

Images1 and videos containing fake facial information obtained by digital manipula-
tion have recently become a great public concern (Cellan-Jones 2019). Up until the
advent of DeepFakes a few years ago, the number and realism of digitally manip-
ulated fake facial contents were very limited by the lack of sophisticated editing
tools, the high domain of expertise required, and the complex and time-consuming
process involved to generate realistic fakes. The scientific communities of biometrics
and security in the past decade paid some attention in understanding and protecting
against those limited threats around face biometrics (Hadid et al. 2015), with special
attention to presentation attacks conducted physically against the face sensor (cam-
era) using various kinds of face spoofs (e.g. 2D or 3D printed, displayed,mask-based,
etc.) (Hernandez-Ortega et al. 2019; Galbally et al. 2014).

However, nowadays it is becoming increasingly easy to automatically synthesise
non-existent faces or even to manipulate the face of a real person in an image/video,
thanks to the free access to large public databases and also to the advances on deep
learning techniques that eliminate the requirements of manual editing. As a result,
accessible open software and mobile applications such as ZAO and FaceApp have
led to large amounts of synthetically generated fake content (ZAO 2019; FaceApp
2017).

The current methods to generate digital fake face content can be categorised into
four different groups, regarding the level of manipulation (Tolosana et al. 2020c;
Verdoliva 2020): (i) entire face synthesis, (ii) face identity swap, (iii) facial attribute
manipulation and (iv) facial expression manipulation.

In this chapter, we focus on the entire face synthesis manipulation, where
a machine learning model, typically based on Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014), learns the distribution of the human face data,
allowing to generate non-existent faces by sampling this distribution. This type of
facial manipulation provides astonishing results and is able to generate extremely
realistic fakes. Nevertheless, contrary to humans, most state-of-the-art detection sys-
tems provide very good results against this type of facial manipulation, remarking
how easy it is to detect the GAN “fingerprints” present in the synthetic images.

This chapter covers the following aspects in the topic of GAN Fingerprints:

• An in-depth literature analysis of the state-of-the-art detection approaches for
the entire face synthesis manipulation, including the key aspects of the detection
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Fig. 8.1 Architecture of the GAN-fingerprint removal approach. In general, the state-of-the-
art face manipulation detectors can easily distinguish between real and synthetic fake images. This
usually happens due to the existence and exploitation by those detectors of GAN “fingerprints”
produced during the generation of synthetic images. The GANprintR approach proposed in (Neves
et al. 2020) aims to remove the GAN fingerprints from the synthetic images and spoof the facial
manipulation detection systems, while keeping the visual quality of the resulting images

systems, the databases used for developing and evaluating these systems, and the
main results achieved by them.

• An approach to spoof state-of-the-art facial manipulation detection systems, while
keeping the visual quality of the resulting images. Figure8.1 graphically sum-
marises the approach presented in Neves et al. (2020) based on a GAN-fingerprint
Removal autoencoder (GANprintR).

• A thorough experimental assessment of this type of facial manipulation consider-
ing fake detection (based on holistic deep networks, steganalysis, and local arti-
facts) and realistic GAN-generated fakes (with and without the proposed GAN-
printR) over different experimental conditions, i.e. controlled and in-the-wild sce-
narios.

• A recent database named iFakeFaceDB,2 resulting from the application of the
GANprintR approach to already very realistic synthetic images.

2 https://github.com/socialabubi/iFakeFaceDB.

https://github.com/socialabubi/iFakeFaceDB
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The remainder of the chapter is organised as follows. Section8.2 summarises
the state of the art on the exploitation of GAN fingerprints for the detection of
entire face synthesismanipulation. Section8.3 explains theGAN-fingerprint removal
approach (GANprintR) presented in Neves et al. (2020). Section8.4 summarises the
key features of the real and fake databases considered in the experimental assessment
of this type of facial manipulation. Sections8.5 and 8.6 describe the experimental
setup and results achieved, respectively. Finally, Sect. 8.7 draws the final conclusions
and points out some lines for future work.

8.2 Related Work

Contrary to popular belief, image manipulation dates back to the dawn of photog-
raphy. Nevertheless, image manipulation only became particularly important after
the rise of digital photography, due to the use of image processing techniques or
low-cost image editing software. As a consequence, in the last decades the research
community devised several strategies for assuring authenticity of digital data. In
addition, digital image tampering still required some level of expertise to deceive the
humans’ eye, and both factors helped reducing significantly the use of manipulated
content for malicious purposes. However, after the proposal of Generative Adversar-
ial Networks (Goodfellow et al. 2014), the possibility of synthesising realistic digital
content became possible. Among the four possible levels of face manipulation, this
chapter focuses on the entire face synthesismanipulation, particularly on the problem
of distinguishing between real and fake facial images.

Typically, synthetic face detection methods rely on the “fingerprints” caused by
the generation process. According to the type of fingerprints used, each approach
can be broadly divided into three categories: (i) methods based on visual artifacts;
(ii) methods based on frequency analysis; and (iii) learning-based approaches for
automatic fingerprint estimation. Table8.1 provides a comparison of the state-of-
the-art synthetic face detection methods.

The following sections describe the state-of-the-art techniques for synthetic data
generation and review the state-of-the-art methods capable of detecting synthetic
face imagery according to the taxonomy described above.

8.2.1 Generative Adversarial Networks

Proposed by Goodfellow et al. (2014), GANs are a novel generative concept, com-
posed of two neural networks contesting each other in the form of a competition. A
generator learns to generate instances that resemble the training data, while a dis-
criminator learns to distinguish between the real and the generated images, while
serving the goal of penalising the generator. The goal is to have a generator that
can learn how to generate plausible images that can fool the discriminator. While
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at the beginning, GANs were only capable of producing low-resolution images of
faces with some notorious visual artifacts, in the last years several techniques have
emerged for synthesising highly realistic content (including BigGAN Brock et al.
2019, CycleGAN Zhu et al. 2017, GauGAN Park et al. 2019, ProGAN Karras et al.
2018, StarGAN Choi et al. 2018, StyleGAN Karras et al. 2019, and StyleGAN2
Karras et al. 2020) that even humans cannot distinguish from the real ones. Next, we
review the state-of-the-art approaches specifically devised for detecting a entire face
synthesis manipulation.

8.2.2 GAN Detection Techniques

As denoted before, the images generated by the initial versions of GANs exhibited
several visual artifacts, including distinct eye colour, holes in the face, deformed
teeth, among others. For this reason, several approaches attempted to leverage these
traits for detecting face manipulations (Matern et al. 2019; Yang et al. 2019; Hu et al.
2020). Matern et al. (2019) extracted several geometric facial features which were
then fed to a Support Vector Machine (SVM) classifier to distinguish between real
and synthetic face images. Yang et al. (2019) exploited the weakness of GANs in
generating consistent head poses and trained a SVM to distinguish between real and
synthetic faces based on the estimation of the 3Dhead pose.As the remaining artifacts
became less noticeable, researchers focused on more subtle features of the face, as
in Hu et al. (2020), where synthetic face detection was performed by analysing the
difference between the two corneal specular highlights. Other visual artifact typically
exploited is the probability distribution of colour channels. McCloskey and Albright
(McCloskey and Albright 2018) hypothesised that the colour is markedly different
between real camera images and fake synthesis images, and proposed a detection
system based on the colour histogram and a linear SVM. He et al. (2019) exploited
different colour channels (YCbCr, HSV and Lab) to extract from a CNN different
deep representations, which were subsequently fed to a Random Forest classifier
for distinguishing between real and synthetic data. Li et al. (2020) observed that it
is easier to spot the differences between real and GAN-generated data in non-RGB
colour spaces, since GANs are trained for producing content in RGB channels.

As the quality and realism of synthetic data improved, visual artifacts started to
become ineffectual, which in turn fostered researchers to explore digital forensic
techniques for the problem of synthetic data detection. Each camera sensor leaves
a unique and stable mark on each acquired photo, denoted as the photo-response
non-uniformity (PRNU) pattern (Lukás et al. 2006). This mark is usually denoted as
the camera fingerprint, which inspired researchers to detect the presence of similar
patterns in images synthesised by GANs. These approaches usually define the GAN
fingerprint as a high-frequency signal available in the image. Marra et al. (2019a)
defined GANfingerprint as the high-level image information obtained by subtracting
the image from its corresponding denoised version. Yu et al. (2018) improved (Marra
et al. 2019a) by subtracting from the original image the corresponding reconstructed
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version obtained from an autoencoder, whichwas tuned based on the discriminability
of the fingerprints inferred by this process. They learned a model fingerprint for each
source (each GAN instance plus the real world), such that the correlation index
between one image fingerprint and each model fingerprint gives the probability of
the image being produced by a specific model. Their proposed approach was tested
using real faces from CelebA database (Liu et al. 2015) and synthetic faces created
through different GAN approaches (PGGAN Karras et al. 2018, SNGAN Miyato
et al. 2018, CramerGAN Bellemare et al. 2017, and MMDGAN Binkowski et al.
2018), achieving a final accuracy of 99.50% for the best performance. Later, they
extended their approach (Yu et al. 2020b) by proposing a novel strategy for the
training of the generative model such that the fingerprints can be controlled by the
user, and easily decoded from a synthetic image, allowing to solve the problem of
source attribution, i.e. identifying the model that generated the image. In (Albright
and McCloskey 2019), the authors proposed an alternative to (Yu et al. 2018) by
replacing the autoencoder by an inverted GAN capable of reconstructing an image
based on the attributes inferred from the original image. Zhang et al. (2019) proposed
the use of the up-sampling artifact in the frequency domain as a discriminative feature
for distinguishing veridical and synthetic data. Frank et al. (2020) reported similar
conclusions regarding the discriminability of the frequency space of GAN-generated
images. They relied on the Discrete Cosine Transform (DCT) for extracting features
fromeither real and fake images, in order to train a linear classifier.Durall et al. (2020)
found out that upconvolution or transposed convolution layers of GAN architectures
are not capable of reproducing the spectral distribution of natural images. Based
on this finding, they showed that generated face images can be easily identified
by training a SVM with the features extracted with the Discrete Fourier Transform
(DFT). Guarnera et al. (2020) used pixel correlation as a GAN fingerprint, since they
noticed that the correlation of pixels in synthetic images are exclusively dependent
on the operations performed by all the layers present in the GAN which generate it.
Their proposed approach was tested using fake images generated by several GAN
architectures (AttGAN, GDWCT, StarGAN, StyleGAN and StyleGAN2).

A distinct family of methods adopts a data-driven strategy for the problem of
detecting GAN-generated imagery. In this strategy, a standard image classifier, typ-
ically a Convolutional Neural Network (CNN), is trained directly with raw images
or through a modified version of them (Barni et al. 2020; Hsu et al. 2020). Marra
et al. (2018) carried out a study about the classification accuracy of different CNN
architectureswhen fedwith raw images. Itwas observed that, in spite almost ideal per-
formance was obtained, the performance decreased significantly when compressed
images were used in the test set. Later, the authors proposed a strategy based on
incremental learning for addressing this problem and the generalisation to unseen
datasets (Marra et al. 2019c). Inspired by the forensic analysis of imagemanipulation
(Cozzolino et al. 2014), Nataraj et al. (2019a) proposed a detection system based on
a combination of pixel co-occurrence matrices and CNNs. Their proposed approach
was initially tested in a database of various objects and scenes created through Cycle-
GAN (Zhu et al. 2017). Besides, the authors performed an interesting analysis to see
the robustness of the proposed approach against fake images created through differ-
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ent GAN architectures (CycleGAN vs. StarGAN), with good generalisation results.
This idea was later improved in (Goebel et al. 2020) and (Barni et al. 2020).

The above studies show that a simple CNN is able to easily distinguish between
real and synthetic data generated from specific GAN architectures, but is not capable
of maintaining the same performance in data originated from GAN architectures not
seen during training or even in data altered by image filtering operations. For this
reason, Xuan et al. (2019) used an image pre-processing step in the training stage
to remove artifacts of a specific GAN architecture. The same idea was exploited
in (Hulzebosch et al. 2020) to improve the accuracy in real-world scenarios, where
the particularities of the data (e.g. image compression) and the generator architecture
are not known. Liu et al. (2020) observed that the texture of fake faces is substantially
different from the real ones. Based on this observation, the authors devised a novel
block to be added to the backbone of a CNN, the Gram-Block, which is capable of
extracting global image texture features and improve the generalisation of the model
against data generated by GAN architectures not used during training. Similarly,
Yu et al. (2020a) introduced a novel convolution operator intended for separately
processing the low- and high-frequency information of the image, improving the
capability to detect the patterns of synthetic data available in the high-frequency
band of the images. Finally, Wang et al. (2020a) studied the topic of generalisation to
unseen datasets. For this, they collected a dataset consisting of fake images generated
by 11 different CNN-based image generator models and concluded that the correct
combination of pre-processing and data augmentation techniques allows a standard
image classifier to generalise to unseen dataset even when trained with data obtained
from a single GAN architecture.

To summarise this section, we conclude that state-of-the-art automatic detection
systems against face synthesis manipulation have excellent performance, mostly
because they are able to learn the GAN fingerprints present in the images. However,
it is also clear that the dependence on the model fingerprint affects the generability
and the reliability of the model, e.g. when presented with adversarial attacks (Gandhi
and Jain 2020).

8.3 GAN Fingerprint Removal: GANprintR

GANprintR was originally presented in (Neves et al. 2020) and aims at transform-
ing synthetic face images, such that their visual appearance is unaltered but the
GAN fingerprints (the discriminative information that permits the distinction from
real imagery) are removed. Considering that the fingerprints are high-frequency sig-
nals (Marra et al. 2019a), we hypothesised that their removal could be performed by
an autoencoder, which acts as a non-linear low-pass filter. We claimed that by using
this strategy, the detection capability of state-of-the-art facial manipulation detection
methods significantly decreases, while at the same time humans still are not capable
of perceiving that images were transformed.



8 GAN Fingerprints in Face Image Synthesis 185

Fig. 8.2 GAN-fingerprint Removal module (GANprintR) based on a convolutional AutoEn-
coder (AE). The AE is trained using only real face images from the development dataset. In the
evaluation stage, once the autoencoder is trained, we can pass synthetic face images through it to
provide them with additional naturalness, in this way removing the GAN-fingerprint information
that may be present in the initial fakes

In general, an autoencoder comprises two distinct networks, encoder ψ and
decoder γ :

ψ : X �→ l

γ : l �→ X ′,
(8.1)

where X denotes the input image to the network, l is the latent feature representation
of the input image after passing through the encoder ψ , and X ′ is the reconstructed
image generated from l, after passing through the decoder γ . The networks ψ and
γ can be learned by minimising the reconstruction loss Lψ,γ (X, X ′) = ||X − X ′||2
over a development dataset following an iterative learning strategy.

As result, when L is nearly 0, ψ is able to discard all redundant information
from X and code it properly into l. However, for a reduced size of the latent feature
representation vector, L will increase and ψ will be forced to encode in l only the
most representative information of X . We claimed that this kind of autoencoder acts
as a GAN-fingerprint removal system.

Figure8.2 describes theGANprintRarchitecture basedona convolutionalAutoEn-
coder (AE) composed of a sequence of 3×3 convolutional filters, coupledwith ReLU
activation functions. After each convolutional layer, a 2×2max-pooling layer is used
to progressively decrease the size of the activation map to 28×28×8, which repre-
sents the bottleneck of the reconstruction model.

The AE is trained with images from a public dataset that comprises face imagery
from real persons. In the evaluation phase, the AE is used to generate improved fakes
from input fake faces where GAN “fingerprints”, if present in the initial fakes, will
be reduced. The main rationale of this strategy is that by training with real images
the AE can learn the core structure of this type of natural data, which can then be
exploited to improve existing fakes.
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CASIA-WebFace (Real)

VGGFace2 (Real)

TPDNE (Synthetic)

100K-Faces (Synthetic)

PGGAN (Synthetic)

Fig. 8.3 Examples of the databases considered in the experiments of this chapter after applying
the pre-processing stage described in Sect. 8.5.1
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8.4 Databases

Four different public databases and one generated are considered in the experimental
framework of this chapter. Figure8.3 shows some examples of each database. We
now summarise the most important features.

8.4.1 Real Face Images

• CASIA-WebFace: this database contains 494,414 face images from 10,575 actors
and actresses of IMDb. Face images comprise random pose variations, illumina-
tion, facial expression and resolution.

• VGGFace2: this database contains 3,31 million images from 9,131 different sub-
jects, with an average of 363 images per subject. Images were downloaded from
the Internet and contain large variations in pose, age, illumination, ethnicity and
profession (e.g. actors, athletes, and politicians).

8.4.2 Synthetic Face Images

• TPDNE: this database comprises 150,000 unique faces, collected from the web-
site.3 Synthetic images are based on the recent StyleGAN approach (Karras et al.
2019) trained with FFHQ database (Flickr-Faces-HQ 2019).

• 100K-Faces: this database contains 100,000 synthetic images generated using
StyleGAN (Karras et al. 2019). In this database the StyleGANnetworkwas trained
using around 29,000 photos of 69 different models, producing face images with a
flat background.

• PGGAN: this database comprises 80,000 synthetic face images generated using the
PGGAN network. In particular, we consider the publicly available model trained
using the CelebA-HQ database.

8.5 Experimental Setup

This section describes the details of the experimental setup followed in the experi-
mental framework of this chapter.

3 https://thispersondoesnotexist.com.

https://thispersondoesnotexist.com
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8.5.1 Pre-processing

In order to ensure fairness in our experimental validation,we created a curated version
of all the datasets where the confounding variables were removed. Two different
factors were considered in this chapter:

• Background: this is a clearly distinctive aspect among real and synthetic face
images as different acquisition conditions are considered in each database.

• Head pose: images generated by GANs hardly ever produce high variation from
the frontal pose (Dang et al. 2020), contrasting with most popular real face
databases such as CASIA-WebFace and VGGFace2. Therefore, this factor may
falsely improve the performance of the detection systems since non-frontal images
are more likely to be real faces.

To remove these factors from both the real and synthetic images, we extracted 68
face landmarks, using the method described in (Kazemi and Sullivan 2014). Given
the landmarks of the eyes, an affine transformation was determined such that the
location of the eyes appears in all images at the same distance from the borders. This
step allowed to remove all the background information of the images while keeping
themaximum amount of the facial regions. Regarding the head pose, landmarks were
used to estimate the pose (frontal vs. non-frontal). In the experimental framework of
this chapter, we kept only the frontal face images, in order to avoid biased results.
After this pre-processing stage, we were able to provide images of constant size
(224×224 pixels) as input to the systems. Figure8.3 shows examples of the crop-
out faces of each database after applying the pre-processing steps. The synthetic
images obtained by this pre-processing stage are the ones used to create the database
iFakeFaceDB after being processed by the GANprintR approach.

8.5.2 Facial Manipulation Detection Systems

Three different state-of-the-art manipulation detection approaches are considered in
this chapter.

(1) XceptionNet (Chollet 2017): this network was selected, essentially because it
provides the best detection results in the most recently published studies (Dang et al.
2020; Rössler et al. 2019; Dolhansky et al. 2019). We followed the same training
approach considered in (Rössler et al. 2019): (i) the model was initialised with the
weights obtained after training with the ImageNet dataset (Deng et al. 2009), (ii) we
changed the last fully-connected layer of the ImageNet model by a new one (two
classes, real or synthetic image), (iii) we fixed all weights up to the final layers and
pre-trained the network for few epochs, and finally (iv) we trained the network for
20 more epochs and chose the best performing model based on validation accuracy.

(2) Steganalysis (Nataraj et al. 2019b): the method by Nataraj et al. was selected
for providing an approach based on steganalysis, rather than directly extracting fea-
tures from the images, as in the XceptionNet approach. In particular, this approach



8 GAN Fingerprints in Face Image Synthesis 189

calculates the co-occurrence matrices directly from the image pixels on each chan-
nel (red, green and blue), and passes this information through a custom CNN, which
allows the network to extract non-linear robust features. Considering that the source
code is not available from the authors, we replicated this technique to perform our
experiments.

(3) Local Artifacts (Matern et al. 2019): we have chosen the method of Matern et
al., because it provides an approach based on the direct analysis of the visual facial
artifacts, in opposition to the remaining approaches that follow holistic strategies. In
particular, the authors of that work claim that some parts of the face (e.g. eyes, teeth,
facial contours) provide useful information about the authenticity of the image, and
thus train a classifier to distinguish between real and synthetic face images using
features extracted from these facial regions.

All our experiments were implemented under a PyTorch framework, with a
NVIDIA Titan X GPU. The training of the Xception network was performed using
the Adam optimiser with a learning rate of 10−3, dropout for model regularisation
with a rate of 0.5, and a binary cross-entropy loss function. Regarding the steganal-
ysis approach, we reused the parameters adopted for Xception network, since the
authors of (Nataraj et al. 2019b) did not detail the training strategy adopted. Regard-
ing the local artifacts approach, we adopted the strategy for detecting “generated
faces”, where a k-nearest neighbour classifier was used to distinguish between real
and synthetic face images based on eye colour features.

8.5.3 Protocol

The experimental protocol designed in this chapter aims at performing an exhaus-
tive analysis of the state-of-the-art facial manipulation detection systems. As such,
three different experiments were considered: (i) controlled scenarios, (ii) in-the-wild
scenarios, and (iii) GAN-fingerprint removal.

Each database was divided into two disjoint datasets, one for the development of
the systems (70%) and the other one for evaluation purposes (30%). Additionally,
the development dataset was divided into two disjoint subsets, training (75%) and
validation (25%). The same number of real and synthetic images were considered
in the experimental framework. In addition, for real face images, different users
were considered in the development and evaluation datasets, in order to avoid biased
results.

The GANprintR approach was trained during 100 epochs, using the Adam opti-
mizer with a learning rate of 10−3, and a mean square error (MSE) to obtain the
reconstruction loss. To ensure an unbiased evaluation, GANprintR was trained with
images from the MS-Celeb dataset (Guo et al. 2016), since it is disjoint from the
datasets used in the development and evaluation of all the fake detection systems
used in our experiments.
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8.6 Experimental Results

This section describes the results achieved in the experimental framework of this
chapter.

8.6.1 Controlled Scenarios

In this section, we report the results of the detection of entire face synthesis in
controlled scenarios, i.e. when samples from the same databases were considered for
both development and final evaluation of the detection systems. This is the strategy
commonly used in most studies, typically resulting in very good performance (see
Sect. 8.2).

A total of six experiments were carried out: A.1 to A.6. Table8.2 describes the
development and evaluation databases considered in each experiment together with
the corresponding final evaluation results in terms of EER.Additionally, we represent
in Fig. 8.4 the evolution of the loss/accuracy of the XceptionNet and Steganalysis
detection systems for Exp. A.1.

The analysis of Fig. 8.4 shows that both XceptionNet and Steganalysis approaches
were able to learn discriminative features to detect between real and synthetic face
images. The training process was faster for the XceptionNet detection system com-
pared with Steganalysis, converging to a lower loss value in fewer epochs (close
to zero after 20 epochs). The best validation accuracy achieved in Exp. A.1 for the
XceptionNet and Steganalysis approaches were 99% and 95%, respectively. Similar
trends were observed for the other experiments.

We now analyse the results included in Table8.2 for experiments A.1 to A.6.
Analysing the results obtained by the XceptionNet system, almost ideal performance

(a) XceptionNet [203] (b) Steganalysis [684]

Fig. 8.4 Exp. A.1: Evolution of the loss/accuracy with the number of epochs
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is achievedwithEERvalues less than0.5%.These results are in agreement to previous
studies in the topic (see Sect. 8.2), pointing for the potential of theXceptionNetmodel
in controlled scenarios. Regarding the Steganalysis approach, a higher degradation of
the systemperformance is observed,when comparedwith theXceptionNet approach,
especially for the 100K-Face database, e.g. a 16% EER is obtained in Exp. A.5.
Finally, it can be observed that the approach based on local artifacts was the least
efficient to spot the differences between real and synthetic data, with an average
35.5% EER over all experiments.

In summary, for controlled scenarios XceptionNet has excellent manipulation
detection accuracies, then Steganalysis provides good accuracies, and finally Local
Artifacts have poor accuracy. In the next section we will see the limitations of these
techniques in-the-wild.

8.6.2 In-the-Wild Scenarios

This section evaluates the performance of the facial manipulation detection systems
in more realistic scenarios, i.e. in-the-wild. The following aspects are considered:
(i) different development and evaluation databases, and (ii) different image reso-
lution/blur among the development and evaluation of the models. This last point is
particularly important, as the quality of raw images/videos is usually modified when,
e.g. they are uploaded to social media. The effect of image resolution has been pre-
liminary analysed in previous studies (Rössler et al. 2019; Korshunov and Marcel
2018), but for different facial manipulation groups, i.e. face swapping/identity swap
and facial expression manipulation. The main goal of this section is to analyse the
generalisation capability of state-of-the-art entire face synthesis detection in uncon-
strained scenarios.

First, we focus on the scenario of considering the same real but different syn-
thetic databases in development and evaluation (Exp. B.1, B.2, B.5, B.6, and so on,
provided in Table8.2). In general, the results achieved in the experiments evidence
a high degradation of the detection performance regardless of the facial manipula-
tion detection approach. For the XceptionNet, the average EER is 11.2%, i.e. over
20 times higher than the results achieved in Exp. A.1–A.6 (<0.5% average EER).
Regarding the Steganalysis approach, the average EER is 32.5%, i.e. more than 3
times higher than the results achieved in Exp. A.1–A.6 (9.8% average EER). For
Local Artifacts, the observed average EER was 42.4%, with an average worsening
of 19%. The large degradation of the first two detectors suggests that they might
rely heavily on the GAN fingerprints of the training data. This result confirms the
hypothesis that different GAN models produce different fingerprints, as also men-
tioned in previous studies (Yu et al. 2018). Moreover, these results suggest that these
GAN fingerprints are the information used by the detectors to distinguish between
real and synthetic data.

Table8.2 also considers the case of using different real and synthetic databases
for both development and evaluation (Exp. B.3, B.4, B.7, B.8, etc.). In this scenario,
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an average EERs of 9.3%, 32.3% and 42.3% in fake detection were obtained for
XceptionNet, Steganalysis and Local Artifacts, respectively. When comparing these
results with the EERs of the previous experiments (where only the synthetic evalua-
tion set was changed), no significant gap in performancewas found, which points that
the change of synthetic data might be the main cause for performance degradation.

Finally, we also analyse how different image transformations affect facial manip-
ulation detection systems. In this analysis, we focus only on the XceptionNet model
as it provides much better results when compared with the remaining detection sys-
tems. For each baseline experiment (A.1 to A.6), the evaluation set (both real and
fake images) was transformed by: (i) resolution downsizing (1/3 of the original res-
olution), (ii) a low-pass filter (9× 9 Gaussian kernel, σ = 1.7), and (iii) jpeg image
compression using a quality level of 60. The resulting EER together with the Recall,
PSRN and SSIM values are provided in Table8.3, together with the performance of
the original images. The results suggest a high performance degradation in all exper-
iments, proving the vulnerability of the fake detection system to unseen conditions,
even if they result from simple image transformations.

To further understand the impact of these transformations, we evaluated an
increasing downsize ratio in the performance of the fake detection system. Figure8.5
depicts the detection performance results in terms of EER (%), from lower to higher
modifications of the image resolution. In general, we can observe increasingly higher
degradation of the fake detection performance for decreasing resolution. For exam-
ple, when the image resolution is reduced by 1/4, the average EER increases 6%
when compared with the raw image resolution (raw equals to 1/1). This performance
degradation is even higher when we further reduce the image resolution, with EERs
(%) higher than 15%. These results support the conclusion about a poor generali-
sation capacity of state-of-the-art facial manipulation detection systems to unseen
conditions.

8.6.3 GAN-Fingerprint Removal

This section analyses the results of the strategy for GAN-fingerprint Removal (GAN-
printR). We evaluated to what extent our method is capable of spoofing state-of-the-
art facial manipulation detection systems by improving fake images already obtained
with some of the best and most realistic known methods for entire face synthesis.
For this, the experiments A.1 to A.6 were repeated for the XceptionNet detection
system, but the fake images of the evaluation set were transformed after passing
through GANprintR.

Table8.3 provides the results achieved for both the original fake data and after
GANprintR. The analysis of the results shows that GANprintR obtains higher fake
detection error than the remaining attacks, while maintaining a similar or even better
visual quality. In all the experiments, the EERof themanipulation detection increases
when using GANprintR to transform the synthetic face images. Also, the detection
degradation is higher than other types of attacks for similar PSNR values and slightly
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Table 8.3 Comparison between the GANprintR approach and typical image manipulations.
The detection performance is provided in terms of EER (%) for experiments A.1 to A.6, when using
different versions of the evaluation set. TDE stands for transformation of the evaluation data and
details the technique used to modify the test set before fake detection. Rreal and R f ake denote the
Recall of the real and fake classes, respectively,

Experiment TDE EER (%) Rreal (%) XceptionNet

R f ake (%) PSNR
(db)

SSIM

A.1 Original 0.22 99.77 99.80 – –
Downsize 1.17 98.83 98.87 35.55 0.93

Low-pass filter 0.83 99.17 99.20 34.63 0.92

jpeg compression 1.53 98.47 98.50 36.02 0.96

GANprintR 10.63 89.37 89.40 35.01 0.96

A.2 Original 0.28 99.70 99.73 – –
Downsize 0.87 99.13 99.17 36.24 0.95

Low-pass filter 2.87 97.10 97.13 35.22 0.93

jpeg compression 1.83 98.17 98.20 36.76 0.97

GANprintR 6.37 93.64 93.66 35.59 0.96

A.3 Original 0.02 99.97 100.00 – –
Downsize 3.70 96.27 96.30 34.85 0.91

Low-pass filter 1.53 98.43 98.47 34.10 0.90

jpeg compression 30.93 69.04 69.06 35.85 0.96

GANprintR 17.27 82.71 82.73 34.82 0.95

A.4 Original 0.02 99.97 100.00 – –
Downsize 1.00 98.97 99.00 35.55 0.93

Low-pass filter 0.07 99.90 99.93 34.63 0.92

jpeg compression 2.50 97.47 97.50 36.02 0.96

GANprintR 4.47 95.50 95.53 35.01 0.96

A.5 Original 0.08 99.90 99.93 – –
Downsize 6.27 93.70 93.73 36.24 0.95

Low-pass filter 11.53 88.44 88.46 35.22 0.93

jpeg compression 3.27 96.73 96.77 36.76 0.97

GANprintR 11.47 88.50 88.53 35.59 0.96

A.6 Original 0.05 99.93 99.97 – –
Downsize 7.77 92.24 92.26 34.85 0.91

Low-pass filter 2.10 97.90 97.93 34.10 0.90

jpeg compression 5.37 94.64 94.66 35.85 0.96

GANprintR 8.37 91.64 91.66 34.82 0.95
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Fig. 8.5 Robustness of the fake detection system regarding the image resolution. The Xcep-
tionNet model is trained with the raw image resolution and evaluated with lower image resolutions.
Note how the EER increases significantly while reducing the image resolution

higher values of SSIM. In particular, the average EERwhen considering GANprintR
is 9.8%, i.e. over 20 times higher than the results achieved when using the original
fakes (<0.5% average EER). This suggests that our method is not simply removing
high-frequency information (evidenced by the comparison with the low-pass filter
and downsize) but it is also removing the GAN fingerprints from the fakes improving
their naturalness. It is important to remark that different real face databases were
considered for training the face manipulation detectors and our GANprintR module.

In addition, we provide in Fig. 8.6 an analysis of the impact of the latent feature
representation of the autoencoder in terms of EER and PSNR. In particular, we follow
the experimental protocol considered in Exp. A.3, and calculate the EER of Xcep-
tionNet for detecting fakes improved with various configurations of GANprintR.
Moreover, the PSNR for each set of transformed images is also included in Fig. 8.6
together with a face example of each configuration to visualise the image quality.
The face examples included in Fig. 8.6 show no substantial differences between the
original fake and the resulting fakes after GANprintR for the different latent fea-
ture representation size of the GANprintR, which is confirmed by the tight range of
PSNR values obtained along the different latent feature representations. The EER
values of fake detection significantly increase as the size of latent feature represen-
tations diminish, evidencing that GANprintR is capable of spoofing state-of-the-art
detectors without significantly degrading the visual aspect of the image.
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Fig. 8.6 Robustness of the fake detection system after GAN-fingerprint Removal (GAN-
printR). The latent feature representation size of the AE is varied to analyse the impact on both
system performance and visual aspect of the reconstructed images. Note how the EER increases sig-
nificantly when considering GANprintR spoof approach, while maintaining a high visual similarity
with the original image

Finally, to confirm that GANprintR is actually removing the GAN-fingerprint
information and not just reducing the image resolution of the images, we performed
a final experiment where we trained the XceptionNet for fake detection considering
different levels of image resolution, and then tested it using fakes improved with
GANprintR. Figure8.7 shows the fake detection performance in terms of EER for
different sizes of the latent feature representation ofGANprintR. Five differentGAN-
printR configurations are tested per image resolution. The obtained results point for
the stability of EER values with respect to downsized synthetic images in training,
concluding that GANprintR is actually removing the GAN-fingerprint information.

8.6.4 Impact of GANprintR on Other Fake Detectors

For completeness, we provide in this section a comparative analysis between the
impact of the GANprintR approach on the three state-of-the-art manipulation detec-
tion approaches considered in this chapter. Table8.4 reports the EER and Recall
observed when using the original images and when using the modified version of the
same images.

InSect. 8.6.1 it has been concluded thatXceptionNet stands out as themost reliable
approach at recognising synthetic faces. The analysis of Table8.4 evidences that this
conclusion also holds when using images transformed by GANprintR. Nevertheless,
it is also interesting to analyse the performance degradation caused by theGANprintR
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Fig. 8.7 Robustness of the fake detection system trained with different resolutions and then
tested with fakes improved with GANprintR under various configurations (representation
sizes). Five different GANprintR configurations are tested per image resolution level. The results
observed point for the stability of EER values with respect to using downsized synthetic images in
training. This observation supports the conclusion that GANprintR is actually removing the GAN
fingerprints.

approach. The average number of percentage points that the EER has increased for
XceptionNet, Steganalysis and Local Artifacts is 9.65, 14.68 and 4.91, respectively.
Even though, in this case, the work of Matern et al. (2019) stands out for having
the lowest performance degradation, we believe that this is primarily due to the high
EER achieved in the original set of images.

8.7 Conclusions and Outlook

This chapter has covered the topic of GAN fingerprints in face image synthesis. We
have first provided an in-depth literature analysis of the most popular GAN synthesis
architectures and fake detection techniques, highlighting the good fake detection
results achieved by most approaches due to the “fingerprints” inserted in the GAN
generation process.

In addition, we have reviewed a recent approach to improve the naturalness
of facial fake images and spoof state-of-the-art fake detectors: GAN-fingerprint
Removal (GANprintR). GANprintR was originally presented in Neves et al. (2020)
and is based on a convolutional autoencoder. The autoencoder is trained using only
real face images from the development dataset. In the evaluation stage, once the
autoencoder is trained, we can pass synthetic face images through it to provide them
with additional naturalness, in this way removing the GAN-fingerprint information
that may be present in the initial fakes.

A thorough experimental assessment of this type of facial manipulation has been
carried out considering fake detection (based on holistic deep networks, steganalysis,
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and local artifacts) and realisticGAN-generated fakes (with andwithoutGANprintR)
over different experimental conditions, i.e. controlled and in-the-wild scenarios. We
highlight three major conclusions about the performance of the state-of-the-art fake
detection methods: (i) the existing fake systems attain almost perfect performance
when the evaluation data is derived from the same source used in the training phase,
which suggests that these systems have actually learned the GAN “fingerprints” from
the training fakes generated with GANs; (ii) the observed fake detection performance
decreases substantially (over one order of magnitude) when the fake detection is
exposed to data from unseen databases, and over seven times in case of substantially
reduced image resolution; and (iii) the accuracyof the existing fake detectionmethods
also drops significantly when analysing synthetic data manipulated by GANprintR.

In summary, our experiments suggest that the existing facial fake detection meth-
ods still have a poor generalisation capability and are highly susceptible to—even
simple—image transformation manipulations, such as downsizing, image compres-
sion or others similar to the one proposed in this work. While loss of resolution
may not be particularly concerning in terms of the potential misuse of the data, it
is important to note that approaches such as GANprintR are capable of confound-
ing detection methods, while maintaining a high visual similarity with the original
image.

Having shown some of the limitations of the state-of-the-art in face manipulation
detection, future work should research about strategies to harden such face manipu-
lation detectors by exploiting databases such as iFakeFaceDBiFakeFaceDB.4 Addi-
tionally, further works should study: (i) how improved fakes obtained in similar ways
as GANprintR can jeopardise other kinds of sensitive data (e.g. other popular bio-
metrics like fingerprint (Tolosana et al. 2020a), iris (Proença and Neves 2019), or
behavioural traits (Tolosana et al. 2020b)), (ii) how to improve the security of systems
dealing with other kinds of sensitive data (Hernandez-Ortega et al. 2021), and finally
(iii) best ways to combine multiple manipulation detectors (Tolosana et al. 2021) in
a proper way (Fiérrez et al. 2018) to deal with the growing sophistication of fakes.
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