
Chapter 7
Source Camera Model Identification

Sara Mandelli, Nicolò Bonettini, and Paolo Bestagini

Every camera model acquires images in a slightly different way. This may be due
to differences in lenses and sensors. Alternatively, it may be due to the way each
vendor applies characteristic image processing operations, from white balancing to
compression. For this reason, images captured with the same camera model present
a common series of artifacts that enable to distinguish them from other images. In
this chapter, we focus on source camera model identification through pixel analysis.
Solving the source cameramodel identification problem consists in identifyingwhich
camera model has been used to shoot the picture under analysis. More specifically,
assuming that the picture has been digitally acquired with a camera, the goal is to
identify the brand and model of the device used at acquisition time without the need
to rely on metadata. Being able to attribute an image to the generating camera model
may help forensic investigators to pinpoint the original creator of images distributed
online, as well as to solve copyright infringement cases. For this reason, the forensics
community has developed a wide series of methodologies to solve this problem.

7.1 Introduction

Given a digital image under analysis, we may ask ourselves a wide series of different
questions about its origin. We may be interested in knowing whether the picture has
been downloaded from a certain website. We may want to know which technology is
used to digitalize the image (e.g., if it comes from a camera equipped with a rolling
shutter or a scanner relying on a linear sensor).Wemay be curious about themodel of
camera used to shot the picture.Alternatively,wemay need very specific details about
the precise device instance that was used at image inception time. Despite all of these
questions are related to source image attribution, they are very different in nature.
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Therefore, answering all of them is far from being an easy task. For this reason, the
multimedia forensics community typically tackles one of these problems at a time.

In this chapter, we are interested in detecting the camera model that is used to
acquire an image under analysis. Identifying the camera model which is used to
acquire a photograph is possible thanks to the many peculiar traces left on the image
at shooting time. To better understand which are the traces we are referring to, in
this section we provide the reader with some background on the standard image
acquisition pipeline. Finally, we provide the formal definition of the camera model
identification problem considered in this chapter.

7.1.1 Image Acquisition Pipeline

We are used to shoot photographs everyday with our smartphones and cameras in a
glimpse of an eye. Fractions of seconds pass from the moment we trigger the shutter
to the moment we visualize the shot that we took. However, in this tiny amount of
time, the camera performs a huge amount of operations.

The digital image acquisition pipeline is not unique, and may differ depending on
the vendor, the device model and the available on-board technologies. However, it
is reasonable to assume that a typical digital image acquisition pipeline is composed
of a series of common steps (Ramanath et al. 2005), as shown in Fig. 7.1.

Light rays pass through a lens that focus themon the sensor. The sensor is typically
a Charge-Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor
(CMOS), and can be imagined as a matrix of small elements geometrically organized
on a plane. Each element represents a pixel, and returns a different voltage depending
on the intensity of the light that hits it. Therefore, the higher the amount of captured
light, the higher the output voltage, and the brighter the pixel value.

As these sensors react to light intensity, different strategies to capture color infor-
mation may be applied. If multiple CCD or CMOS sensors are available, prisms can
be used to split the light into different color components (typically red, green, and
blue) that are directed to the different sensors. In this way, each sensor captures the
intensity of a given color component, thus a color image can be readily obtained com-
bining the output of each sensor. However, multiple sensors are typically available
only on high-end devices, making this pipeline quite uncommon.

A more customary way of capturing color images consists in making use of a
Color Filter Array (CFA) (or Bayer filter). This is a thin array of color filters placed

Fig. 7.1 Typical steps of a common image acquisition pipeline
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on top of the sensor. Due to these filters, each sensor’s element is hit only by light
in a narrow wavelength band corresponding to a specific color (typically red, green
or blue). This means that the sensor returns the intensity of green light for certain
pixels, the intensity of blue light for other pixels, and the intensity of red light for
the remaining pixels. Which pixels capture which color depends on the shape of
the CFA, which is a vendor choice. At this point, the output of the sensor consists
of three partially sampled color layers in which only one color value is recorded
at each pixel location. Missing color information, like the blue and red compo-
nents for pixels that only acquired green light, are retrieved via interpolation from
neighboring cells with the available color components. This procedure is known as
debayering or demosaicing, and can be implemented using proprietary interpolation
techniques.

After this raw version of a color image is obtained, a list of additional operations
are in order. For instance, as lenses may introduce some kinds of optical distortion,
most notably barrel distortion, pincushion distortion or combinations of them, it is
common to apply some digital correction that may introduce forensic traces. Addi-
tionally, white balancing and color correction are other operations that are often
applied and may be vendor-specific. Finally, lossy image compression is typically
applied by means of JPEG standard, which again may vary with respect to compres-
sion quality and vendor-specific implementation choices.

Since a few years ago, these processing steps were the main sources of camera
model artifacts. However, with the rapid proliferation of computational photography
techniques, modern devices implement additional custom functionalities. This is the
case of bokeh images (also known as portrait images) synthetically obtained through
processing. These are pictures in which the background is digitally blurred with
respect to the foreground object to obtain an artistic effect. Moreover, many devices
implement the possibility of shooting High Dynamic Range (HDR) images, which
are obtained by combiningmultiple exposures into a single one. Additionally, several
smartphones are equipped with multiple cameras and produce pictures by mixing
their outputs. Finally,manyvendors introduce the possibility of shooting photographs
with special filter effects that may enhance the picture in different artistic ways. All
of these operations are custom and add traces to the pool of artifacts that can be
exploited as a powerful asset for forensic analysis.

7.1.2 Problem Formulation

The problem of source camera model identification consists in detecting the model
of the device used to capture an image. Although the definition of this problem
seems pretty straightforward, depending on the working hypothesis and constraints,
the problem may be cast in different ways. For instance, the analyst may only have
access to a finite set of possible camera models. Alternatively, the forensic investiga-
tor may want to avoid using metadata. In the following, we provide the two camera
model identification problem formulations that we consider in the rest of the chapter.
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Fig. 7.2 Representation of closed-set (a) and open-set (b) camera model identification problem

In both formulations, we only focus on pixel-based analysis, i.e., we do not consider
the possibility of relying on metadata information.

Closed-set Identification
Closed-set camera model identification refers to the problem of detecting which is
the camera model used to shoot a picture within a set of known devices, as shown in
Fig. 7.2a. In this scenario, the investigator assumes that the image under analysis has
been taken with a device within a family of devices she/he is aware of. If the image
does not come from any of those devices, the investigator will wrongly attribute the
image to one of those known devices, no matter what.

Formally, let us define the set of labels of known camera models as Tk . Moreover,
let us define I as a color image acquired by the device characterized with label t ∈ Tk .
The goal of closed-set camera model identification is to provide an estimate t̂ of t
given the image I and the set Tk . Notice that t̂ ∈ Tk by construction. Therefore, if the
hypothesis that t ∈ Tk does not hold in practice, this approach is not applicable, as
the condition t̂ ∈ Tk would imply that t̂ �= t .

Open-set Identification
In many scenarios, it is not realistic to assume that the analyst has full control over
the complete set of devices that may have been used to acquire the digital image
under analysis. In this case, it is better to resort to the open-set problem formulation.
The goal of open-set camera model identification is twofold, as shown in Fig. 7.2b.
Given an image under analysis, the analyst aims

• To detect if the image comes from the set of known camera models or not.
• To detect the specific camera model, if the image comes from a known model.

This is basically a generalization of the closed-set formulation that accommodates
for the analysis of images coming from unknown devices.

Formally, let us define the set of labels of knownmodels as Tk , and the set of labels
of unknownmodels (i.e., all the other existing cameramodels) as Tu . Moreover, let us
define I as a color image acquired by the device characterized with label t ∈ Tk

⋃
Tu .

The goal of open-set camera model identification is
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• To estimate whether t ∈ Tk or t ∈ Tu .
• To provide an estimate t̂ of t in case t ∈ Tk . In this case also t̂ ∈ Tk .
Despite this problem formulation looks more realistic than its closed-set counterpart,
the vast majority of camera model literature only copes with the closed-set problem.
This is mainly due to the difficulty in well modeling the unknown set of models.

7.2 Model-Based Approaches

Asmentioned in Sect. 7.1.1, multiple operations performed during image acquisition
may be characteristic of a specific camera brand and model. This section provides an
overviewof cameramodel identificationmethods thatwork by specifically leveraging
those traces. These methods are known as model-based methods, as they assume that
each artifact can be modeled, and this model can be exploited to reverse engineer the
used device. Methods that model each step of the acquisition chain are historically
the first ones being developed in the literature (Swaminathan et al. 2009).

7.2.1 Color Filter Array (CFA)

As CCD/CMOS sensor elements of digital cameras are sensitive to the received light
intensity and not to specific colors, the CFA is usually introduced in order to split the
incoming light into three corresponding color components. Then, a three-channel
color image can be obtained by interpolating the pixel information associated with
the color components filtered by the CFA. There are several works in the literature
that exploit specific characteristics associated with the CFA configuration, i.e., the
specific arrangement of color filters in the sensor plane and the CFA interpolation
algorithm to retrieve information about the source camera model.

CFA Configuration
Even without investigating the artifacts introduced by demosaicing, we can exploit
information from the Bayer configuration to infer some model-specific features. For
example, Takamatsu et al. (2010) developed a method to automatically identify CFA
patterns from the distribution of image noise variances. In Kirchner (2010), the Bayer
configuration was estimated by restoring the raw image (i.e., prior to demosaicing)
from the output interpolated image. Authors of Cho et al. (2011) showed how to
estimate the CFA pattern from a single image by extracting pixel statistics on 2 × 2
image blocks.

CFA Interpolation
In an image acquisition pipeline, the demosaicing step inevitably injects some inter-
pixel correlations into the interpolated image. Existing demosaicing algorithms differ
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in the size of their support region, in the way they select the pixel neighborhood, and
in their assumptions about the image content and adaptability to this Gunturk et al.
(2005), Menon and Calvagno (2011). Over the years, the forensics community has
largely exploited these interpolation traces to discriminate among different camera
models.

The first solution dates back to 2005 (Popescu and Farid 2005). The authors esti-
mated the inter-pixel correlation weights from a small neighborhood around a given
pixel, treating each color channel independently. They also observed that different
interpolation algorithms present different correlation weights. Similarly, authors of
Bayram et al. (2005) exploited the correlationweights estimated as shown in Popescu
and Farid (2005) and combined them with frequency domain features. In Bayram
et al. (2006), the authors improved upon their previous results by treating smooth
and textured image regions differently. Their choice was motivated by the different
treatment of distinct demosaicing implementations on high-contrast regions.

In 2007, Swaminathan et al. (2007) estimated the demosaicing weights only on
interpolated pixels, i.e., without accounting for pixelswhich are relatively invariant to
the CFA interpolation process. Authors found the CFA pattern by fitting linear filter-
ing models and selecting the one which minimized the interpolation error. As done in
Bayram et al. (2006), they considered three diverse estimations according to the local
texture of the images. Interestingly, the authors’ results pointed out some similarity
in interpolation patterns among camera models from the same manufacturer.

For the first time, Cao and Kot (2009) did not explore each color channel indepen-
dently, but instead exposed cross-channel pixel correlations caused by demosaicing.
Authors reported that many state-of-the-art algorithms often employ color difference
or hue domains for demosaicing, and this inevitably injects a strong correlation across
image channels. In this vein, authors extended thework by Swaminathan et al. (2007)
by estimating the CFA interpolation algorithm using a partial second-order derivative
model to detect both intra-channel and cross-channel demosaicing correlations. They
estimated these correlations by grouping pixels into 16 categories based on their CFA
positions. In 2010, the same authors tackled the camera model identification problem
on mobile phone devices, showing how CFA interpolation artifacts enable to achieve
excellent classification results on dissimilar models, while confusing cameras of the
same or very similar models (Cao and Kot 2010).

In line with Cao and Kot (2009), also Ho et al. (2010) exploited cross-channel
interpolation traces. The authors measured the inter-channel differences of red and
blue colors with respect to the green channel, and converted these into the frequency
domain to estimate pixel correlations. They were motivated by the fact that many
demosaicing algorithms interpolate color differences instead of color channels (Gun-
turk et al. 2005). Similarly, Gao et al. (2011) worked with variances of cross-channel
differences.

Differently from previous solutions, in 2015, Chen and Stamm (2015) proposed a
new framework to deal with camera model identification, inspired to the rich models
proposed by Fridrich and Kodovský (2012) for steganalysis. Authors pointed out
that previous solutions were limited by their essential use of linear or local linear
parametric models, while modern demosaicing algorithms are both non-linear and
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adaptive (Chen and Stamm 2015). The authors proposed to build a rich model of
demosaicing by grouping together a set of non-parametric submodels, each capturing
specific partial information on the interpolation algorithm. The resulting rich model
could return a much more comprehensive representation of demosaicing compared
to previous strategies.

Authors of Zhao and Stamm (2016) focused on controlling the computation cost
associated with the solution proposed in Swaminathan et al. (2007), which relied on
least squares estimation and could become impractical when a consistent number
of pixels was employed. The authors proposed an algorithm to find the pixel set
that yields the best estimate of the parametric model, still keeping the computational
complexity feasible. Results showed that the proposed method could achieve higher
camera model classification accuracy than Swaminathan et al. (2007), at a fixed
computational cost.

7.2.2 Lens Effects

Every digital camera includes a sophisticated optical system to project the acquired
light intensity on small CCD or CMOS sensors. Projection from the lens on to the
sensor inevitably injects some distortions in the acquired image, usually known as
optical aberrations. Among them, the most common optical aberrations are radial
lens distortion, chromatic aberration, and vignetting. The interesting point from a
forensics perspective is that different camera models use different optical systems,
thus they reasonably introduce different distortions during image acquisition. For this
reason, the forensics literature has widely exploited optical aberration as a model-
based trace.

Radial Lens Distortion
Radial lens distortion is due to the fact that lenses in consumer cameras usually
cannot magnify all the acquired regions with a constant magnification factor. Thus,
different focal lengths and magnifications appear in different areas. This lens imper-
fection causes radial lens distortion which is a non-linear optical aberration that
renders straight lines in the real image as curved lines on the sensor. Barrel distortion
and pincushion distortion are the two main distortion forms we usually find in digital
images. In San Choi et al. (2006), the authors measured the level of distortion of an
image and used the distortion parameters as a feature to discriminate among different
source camera models. Additionally, they investigated the impact of optical zoom on
the reliability of the method, noticing that a classification beyond mid-range focal
lengths can be problematic, due to the vanishing of distortion artifacts.

Chromatic Aberration
Chromatic aberration stems from wavelength-dependent variations of the refractive
index of a lens. This phenomenon causes a spread of the color components over the
sensor plane. The consequence of chromatic aberration is that color fringes appear
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in high-contrast regions. We can identify axial chromatic aberration and lateral chro-
matic aberration. The former accounts for the variations of the focal point along the
optical axis; the latter indicates the relative displacement of different light compo-
nents along the sensor plane.

In 2007,Lanh et al. (2007) applied themodel proposed in Johnson andFarid (2006)
to estimate the lateral chromatic aberration using small patches extracted from the
image center. Then, they fed the estimated parameters to a Support Vector Machine
(SVM) classifier for identifying the source camera model. Later, Gloe et al. (2010)
proposed to reduce the computational cost of the previous solution by locally estimat-
ing the chromatic aberration. The authors also pointed out some issues due to non-
linear phenomena occurring in modern lenses. Other studies were carried on in Yu
et al. (2011), where authors pointed out a previously overlooked interaction between
chromatic aberration and focal distance of lenses. Authors were able to obtain a
stable chromatic aberration pattern distinguishing different copies of the same lens.

Vignetting
Vignetting is the phenomenon of light intensity fall-off around the corners of an
image with respect to the image center. Usually, wide-aperture lenses are more prone
to vignetting, because fewer light rays reach the sensor’s edges.

The authors of Lyu (2010) estimated the vignetting pattern from images adopt-
ing a generalization of the vignetting model proposed in Kang and Weiss (2000).
They exploited statistical properties of natural images in the derivative domain to
perform a maximum likelihood estimation. The proposed method was tested among
synthetically generated and real vignetting, showing far better results for lens model
identification on synthetic data. The lower accuracy on real scenarios can be due to
difficulties in correctly estimating the vignetting pattern whenever highly textured
images are considered.

7.2.3 Other Processing and Defects

The traces left by the CFA configuration, the demosaicing algorithm, and the optical
aberrations due to lens defects are only a few of the footprints that forensic ana-
lysts can exploit to infer camera model-related features. We report here some other
model-based processing operations and defects that carry information about the cam-
era model.

Sensor Dust
In 2008, Dirik et al. (2008) exploited the traces left by dust particles on the sensor
of digital single-lens reflex cameras to perform source camera identification. The
authors estimated the dust pattern (i.e., its location and shape) from the camera or
from a number of images shot by the camera. The proposed methodology was robust
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to both JPEG compression and downsizing operations. However, the authors pointed
out some issues in correctly estimating the dust pattern for complex and non-smooth
images, especially for low focal length values.

Noise Model
Modeling the noise pattern of acquired images can represent a valuable feature to
distinguish among cameras of the same or different models.

Here, Photo Response Non Uniformity (PRNU) is arguably one of the most influ-
ential contributions to multimedia forensics. PRNU is a multiplicative noise pattern
that occurs in any sensor-recorded digital image, due to imperfections in the sensor
manufacturing process. In Lukás et al. (2006), Chen et al. (2008) the authors pro-
vided a complete modeling of the digital image at the sensor output as a function
of the incoming light intensity and noise components. They discovered the PRNU
noise to represent a powerful and robust device-related fingerprint, able to uniquely
identify different devices of the same model. Since this chapter deals with model-
level identification granularity, we do not further analyze the potential of PRNU for
device identification.

Contrarily to PRNU-based methods, which model only the multiplicative noise
term due to sensor imperfections, other methods focused on modeling the entire
noise corrupting the digital image and exploited this noise to tackle the cameramodel
identification task. For instance, Thai et al. (2014) worked with raw images at the
sensor output. The authors modeled the complete noise contribution of natural raw
images (known as the heteroscedastic noise Foi et al. 2009)with only two parameters,
and used it as a fingerprint to discriminate cameramodels. Contrarily to PRNUnoise,
heteroscedastic noise could not separate different devices of the same camera model,
thus it is more appropriate for model-level identification granularity.

The heteroscedastic noise consists of a Poisson-distributed component which
accounts for the photon shot noise and dark current, and a Gaussian-distributed term
which addresses other stationary noise sources like read-out noise (Foi et al. 2009).
The proposed approach in Thai et al. (2014) involved the estimation of the two
characteristic noise parameters per camera model considering 50 images shot by
the same model. However, the method presented some limitations: first, it requires
raw image format without post-processing or compression operations; second, non-
linear processes like gamma correction modify the heteroscedastic noise model;
finally, changes in ISO sensitivity and demosaicing operations worsen the detector
performances.

In 2016, the authors improved upon their previous solution, solving the cam-
era model identification from TIFF and JPEG compressed images and taking into
account the non-linear effect of gamma correction (Thai et al. 2016). They proposed a
generalized noise model starting from the previously exploited heteroscedastic noise
but including also the effects of subsequent processing and compression steps. This
way, each camera model could be described by three parameters. The authors tested
their methodology over 18 camera models.
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7.3 Data-Driven Approaches

Contrarily to model-based methods presented in Sect. 7.2, in the last few years we
have seen the widespread adoption of data-driven approaches to camera model iden-
tification. All solutions that extract knowledge and insights from data without explic-
itly modeling the data behavior using statistical models fall into this category. These
data-driven approaches have greatly outperformed multiple model-based solutions
proposed in the past. While model-based solutions usually focus on a specific com-
ponent of the image acquisition pipeline, data-driven approaches can capture model
traces left by the interplay among multiple components. For instance, image noise
characteristics do not only originate from sensor properties and imperfections, but
are the result of CFA interpolation and other internal processing operations (Kirchner
and Gloe 2015).

We can further divide data-driven approaches into two broad categories:

1. Methods based on hand-crafted features, which derive properties of data by
extracting suitable data descriptors like repeated image patterns, texture, and gra-
dient orientations.

2. Methods based on learned features, which directly exploit raw data, i.e., without
extracting any descriptor, to learn distinguishable data properties and to solve the
specific task.

7.3.1 Hand-Crafted Features

Over the years, the multimedia forensics community has often imported image
descriptors from other research domains to solve the camera model identification
problem. For instance, descriptors developed for steganalysis and image classifica-
tion have been widely used to infer forensic traces on images. The reason behind
their application in the forensics field is that, in general, these descriptors enable an
effective representation of images and contain relevant information to distinguish
among different image sources.

Surprisingly, the very first proposed solution to solve the cameramodel identifica-
tion problem in a blind setup exploited hand-crafted features (Kharrazi et al. 2004).
The authors extracted descriptors about color channel distributions, wavelet statistics
and image quality metrics, then they fed these to an SVM classifier to distinguish
among few camera models.

In the following, we illustrate the existing solutions based on hand-crafted feature
extraction.

Local Binary Patterns
Local binary patterns (Ojala et al. 2002) represent a good example of a general
image descriptor that can capture various image characteristics. In a nutshell, local
binary patterns can be computed as the difference between a central pixel and its
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local neighborhood, binary quantized and coded to produce an histogram carrying
information about the local inter-pixel relations.

In 2012, the authors of Xu and Shi (2012) were inspired by the idea that the entire
image acquisition pipeline could generate localized artifacts in the final image, and
these characteristics could be captured by the uniformgrayscale invariant local binary
patterns (Ojala et al. 2002). The authors extracted features for red and green color
channel in the spatial and wavelet domains, resulting in a 354-dimension feature per
image. As commonly done in the majority of works previous to the wide adoption
of neural networks, the authors fed these features to an SVM classifier to classify
image sources among 18 camera models.

DCT Domain Features
Since the vast majority of cameras automatically stores the acquired images in JPEG
format, many forensics works approach camera model identification by exploiting
some JPEG-related features. In particular, many researches focused on extracting
model-related features in the Discrete Cosine Transform (DCT) domain.

In 2009, Xu et al. (2009) extracted the absolute value of the quantized 8 × 8
DCT coefficient blocks, then computed the difference between the element blocks
along four directions to look for inter-coefficient correlations. They fed these to
Markov transitionprobabilitymatrices to identify statistical differences inside images
of distinct camera models. The elements of transition probability matrices were
thresholded and fed as hand-crafted features to an SVM classifier.

DCT domain features have been exploited also in Wahab et al. (2012), where
the authors extracted some conditional probability features from the absolute values
of three 8 × 8 DCT coefficient blocks. From these blocks, they only used the 4 ×
4 upper left frequencies which demonstrated to be most significant for the model
identification task. The authors fed an SVM classifier to distinguish among 4 camera
models.

More recently, the authors of Bonettini et al. (2018) have shown that JPEG eigen-
algorithm features can be used for cameramodel identification aswell. These features
capture the differences among DCT coefficients obtained after multiple JPEG com-
pression steps. A standard random forest classifier is used for the task.

Color Features
Camera model identification can be faced also by looking at some model-specific
image color features. Such artifacts can be found according to the specific properties
of the used CFA and color correction algorithms.

As previously reported, in 2004, Kharrazi et al. (2004) assumed that certain traits
and patterns should exist between the RGB bands of an image, regardless of the
scene content depicted. Therefore, they extracted 21 image features which aimed at
capturing cross-channel correlations and energy ratios together with intra-channel
average value, pixel neighbor distributions and Wavelet statistics. In 2009, this set
of features was enlarged with 6 additional color features by Gloe et al. (2009),
which included the dependencies between the average values of the color channels.
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Specifically, the authors extended the feature set by computing the norms of the dif-
ference between the original and the white-point corrected image.

Image Quality Metrics Features
In 2002, Avcibas et al. (2002) proposed to extract some image quality metrics to infer
statistical properties from images. This feature set included measures based on pixel
differences, correlations, edges, spectral content, context, and human visual system.
The authors proposed to exploit these features for steganalysis applications.

In 2004, Kharrazi et al. (2004) employed a subset of these metrics to deal with the
camera model identification task. The authors motivated their choice by noticing that
different cameras produce images of different quality, in terms of sharpness, light
intensity and color quality. They computed 13 image quality metrics, dividing them
into three main categories: those based on pixel differences, those based on correla-
tions and those based on spectral distances. While Kharrazi et al. (2004) averaged
these metrics over the three color channels, Çeliktutan et al. (2008) evaluated each
color band separately resulting in 40 features.

Wavelet Domain Features
Wavelet-domain features are known to be effective to analyze the information content
of images and noise components, enabling to capture interesting insights on their
statistical properties for what concerns different resolutions, orientations, and spatial
positions (Mallat 1989).

These features have been exploited as well to solve the camera model identi-
fication task. For instance, Kharrazi et al. (2004) exploited 9 Wavelet-based color
features. Later on, Çeliktutan et al. (2008) added 72 more features by evaluating the
four moments of theWavelet coefficients over multiple sub-bands, and by predicting
sub-band coefficients from their neighborhood.

Binary Similarity Features
Like image quality metrics, also binary similarity features were first proposed to
tackle steganalysis problems and then adopted in forensics applications. For instance,
Avcibas et al. (2005) investigated statistical features extracted from different bit
planes of digital images, measuring their correlations and their binary texture char-
acteristics.

Binary similarities were exploited in 2008 by Çeliktutan et al. (2008), which con-
sidered the characteristics of the neighborhood bit patterns among the less significant
bit planes. The authors investigated histograms of local binary patterns by account-
ing for occurrences within a single bit plane, across different bit planes and across
different color channels. They resulted in a feature vector of 480 elements.

Co-occurrence Based Local Features
Together with binary similarity features and image quality metrics, also rich models,
or co-occurrence-based local features (Fridrich and Kodovský 2012), were imported
from steganalysis to forensics. Three main steps compose the extraction of co-
occurrences of local features (Fridrich and Kodovský 2012): (i) the computation
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of image residuals via high-pass filtering operations; (ii) the quantization and trun-
cation of residuals; (iii) the computation of the histogram of co-occurrences.

In this vein, Chen and Stamm (2015) built a rich model of a camera demosaicing
algorithm inspired by Fridrich and Kodovský (2012) to perform camera model iden-
tification. The authors generated a set of diverse submodels so that every submodel
conveyed different aspects of the demosaicing information. Every submodelwas built
using a particular baseline demosaicing algorithm and computing co-occurrences
over a particular geometric structure. By merging all submodels together, the authors
obtained a feature vector of 1,372 elements to feed an ensemble classifier.

In 2017, Marra et al. (2017) extracted a feature vector of 625 co-occurrences
from each color channel and concatenated the three color bands, resulting in 1,875
elements. The authors investigated a wide range of scenarios that might occur in
real-world forensic applications, considering both the closed-set and the open-set
camera model identification problems.

Methods with Several Features
In many state-of-the-art works, several different kinds of features were extracted
from images instead of just one. The motivation lied in the fact that merging multiple
features could better help finding model-related characteristics, thus improving the
source identification performance.

For example, (as already reported) Kharrazi et al. (2004) combined color-related
features with Wavelet statistics and image quality metrics, ending with 34-element
features. Similarly, Gloe (2012) used the same kinds of features but extended the
set up to 82 elements. On the other hand, Çeliktutan et al. (2008) exploited image
quality metrics, Wavelet statistics, and binary similarity measures, resulting in a total
of 592 features.

Later on, in 2018, Sameer and Naskar (2018) investigated the dependency of
source classification performance with respect to illumination conditions. To infer
model-specific traces, they extracted image quality metrics and Wavelet features
from images.

Hand-crafted Features in Open-set Problems
The open-set identification problem started to be investigated in 2012 byGloe (2012),
which proposed two preliminary solutions based on the extraction of 82-element
hand-crafted features from images. The first approach was based on a one-class
SVM, trained for each available camera model. The second proposal trained a binary
SVM in one-versus-one fashion, for all pairs of known camera models. However,
the achieved results were unconvincing and revealed practical difficulties to han-
dle unknown models. Nonetheless, this represented a very first attempt to handle
unknown source models and highlighted the need of further investigations on the
topic.

Later in 2017, Marra et al. (2017) explored the open-set scenario considering
two case studies: (i) the limited knowledge situation, in which only images from one
camera model were available; (ii) the zero knowledge situation, in which authors had
no clue on the model used to collect images. In the former case, the authors aimed at
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detecting whether images came from the known model or from an unknown one; in
the latter case, the goal was to retrieve a similarity among images shot by the same
model.

To solve the first issue, the authors followed a similar approach to Gloe (2012) by
training a one-class SVM on the co-occurrence based local features extracted from
known images. They solve the second task by looking for K nearest neighbor features
in the testing image dataset using a kd-tree-based search algorithm. The performed
experiments reported acceptable results but definitively underlined the urgency of
new strategies to handle realistic open-set scenarios.

7.3.2 Learned Features

We have recently assisted in the rapid rise of solutions based on learned forensic
features which have quickly replaced hand-crafted forensic feature extraction. For
instance, considering the camera model identification task, we can directly feed
digital images to a deep learning paradigm in order to learn model-related features to
associate images with their original source. Actually, we can differentiate between
two kinds of learning frameworks:

1. Two-step sequential learning frameworks, which first learn significant features
from data and successively learn how to classify data according to the extracted
features.

2. End-to-end learning frameworks, which directly classify data by learning some
features in the process.

Among deep learning frameworks, Convolutional Neural Networks (CNNs) are
now the widespread solution to face several multimedia forensics tasks. In the fol-
lowing, we report state-of-the-art solutions based on learned features which tackle
the camera model identification task.

Two-step Sequential Learning Frameworks
One of the first contributions to camera model identification with learned features
was proposed in 2017 by Bondi et al. (2017a). The authors proposed a data-driven
approachbasedonCNNs to learnmodel-specificdata features. Theproposedmethod-
ology was based on two steps: first, training a CNN with image color patches of
64 × 64 pixels to learn a feature vector of 128 elements per patch; second, training
an SVM classifier to distinguish among 18 camera models from the Dresden Image
Database (Gloe and Böhme 2010). In their experimental setup, the authors outper-
formed state-of-the-art methods based on hand-crafted features (Marra et al. 2017;
Chen and Stamm 2015).

In the same year, Bayar and Stamm (2017) proposed a CNN-based approach
robust to resampling and recompression artifacts. In their paper, the authors proposed
an end-to-end learning approach (completely based on CNNs) as well as a two-
step learning approach. In the latter scenario, they extracted a set of deep features
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from the penultimate CNN layer and fed an Extremely Randomized Trees (ET)
classifier, purposely trained for camera model identification. The method was tested
on 256 × 256 image patches (retaining only the green color channel) from 26 camera
models of the Dresden Image Database (Gloe and Böhme 2010). To mimic realistic
scenarios, JPEG compression and resampling were applied to the images. The two-
step approach returned slightly better performances than the end-to-end approach.

The same authors also started to investigate open-set camera model identification
using deep learning (Bayar and Stamm 2018). They compared different two-step
approaches based on diverse classifiers, showing that the ET classifier outperformed
the other options.

Meanwhile, Ferreira et al. (2018) proposed a two-step sequential learning approach
in which the feature extraction phase was composed of two parallel CNNs, an
Inception-ResNet (Szegedy et al. 2017) and an Xception (Chollet 2017) architecture.
First, the authors selected 32 patches of 229 × 229 pixels per image according to an
interest criterion. Then, they separately trained the two CNNs returning 256-element
features each. Theymerged these features and passed them through a secondary shal-
low CNN for classification. The proposed method was tested over the IEEE Signal
Processing Cup 2018 dataset (Stamm et al. 2018; IEEE Signal Processing Cup 2018
Database 2021). The authors considered data augmentations as well, including JPEG
compression, resizing, and gamma correction.

In 2019, Rafi et al. (2019) proposed another two-step pipeline. The authors first
trained a 201-layer DenseNet CNN (Huang et al. 2017) with image patches of
256 × 256 pixels. They proposed the DenseNet architecture since dense connec-
tions could help in detecting minute statistical features related to the source camera
model. Moreover, the authors augmented the training set by applying JPEG com-
pression, gamma correction, random rotation, and empirical mode decomposition
(Huang et al. 1998). The trained CNN was used to extract features from image
patches of different sizes; these features were concatenated and employed to train a
second network for classification. The proposed method was trained over the IEEE
Signal Processing Cup 2018 dataset (Stamm et al. 2018; IEEE Signal Processing
Cup 2018 Database 2021) but tested on the Dresden Image Database as well (Gloe
and Böhme 2010).

Following the preliminary analysis performed byBayar and Stamm (2018), Júnior
et al. (2019) proposed an in-depth study on open-set cameramodel identification. The
authors pursued a two-steps learning approach, comparing several feature extraction
algorithms and classifiers. Together with hand-crafted feature extraction methodolo-
gies, the CNN-based approach proposed in Bondi et al. (2017a) was investigated.
Not much surprisingly, this last approach revealed to be the best effective for feature
extraction.

An interesting two-step learning framework was proposed by Guera et al. (2018).
The authors explored a CNN-based solution to estimate the reliability of a given
image patch, i.e., its likelihood to be used for model identification. Indeed, saturated
or dark regions might not contain sufficient information on the source model, thus
could be discarded to improve the attribution accuracy. The authors borrowed the
CNNarchitecture fromBondi et al. (2017a) as feature extractor and built amulti-layer
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network for reliability estimation. They compared an end-to-end learning approach
with two different sequential learning strategies, showing that two-step approaches
largely outperformed the end-to-end solution. The authors suggested the lower per-
formance of the end-to-end approach could be due to the limited amount of training
data, probably not enough to learn all the CNN parameters in end-to-end fashion.
The proposed method was tested on the same Dresden’s models employed in Bondi
et al. (2017a). By discarding unreliable patches from the process, an improvement
on 8% was measured on the identification accuracy.

End-to-end Learning Frameworks
The very first approach to camera model identification with learned features was
proposed in 2016 byTuama et al. (2016).Differently from the above presentedworks,
the authors developed a complete end-to-end learning framework, where feature
extraction and classification were performed in a unified framework exploiting a
singleCNN.The proposedmethodwas quite innovative considering that the literature
was based on feature extraction and classification steps. In their work, the authors
proposed to extract 256 × 256 color patches from images, to compute a residual
through high-pass filtering, and then to feed a shallow CNN architecture which
returned a classification score for each camera model. The method was tested on
26 models from the Dresden Image Database (Gloe and Böhme 2010) and 6 further
camera models from a personal collection.

In 2018, Yao et al. (2018) proposed a similar approach to Bondi et al. (2017a), but
the authors trained a CNN using an end-to-end framework. 64 × 64 color patches
were extracted from images, fed to a CNN and then passed through majority voting
to classify the source camera model. The authors evaluated their methodology on 25
models from theDresden ImageDatabase (Gloe andBöhme 2010), investigating also
the effects of JPEG compression, noise addition, and image re-scaling on a reduced
set of 5 devices.

Another end-to-end approach was proposed in 2020 by Rafi et al. (2021), which
put particular emphasis on the use of CNNs as pre-processing block prior to a classi-
fication network. The pre-processing CNN was composed of a series of “RemNant”
blocks, i.e., 3-layer convolutional blocks followed by batch normalization. The out-
put to the pre-processing step contained residual information about the input image
and preserved model-related traces from a wide range of spatial frequencies. The
whole network, named “RemNet”, included the pre-processing CNN and a shal-
low CNN for classification. The authors tested their methodology on 64 × 64 image
patches, considering 18 models from the Dresden Image Database (Gloe and Böhme
2010) and the IEEE Signal Processing Cup 2018 dataset (Stamm et al. 2018; IEEE
Signal Processing Cup 2018 Database 2021).

A very straightforward end-to-end learning approach was deployed in Mandelli
et al. (2020), where the authors did not aim at exploring novel strategies to boost the
achieved identification accuracy, but investigated how JPEG compression artifacts
can affect the results. The authors compared four state-of-the-art CNN architectures
in different training and testing scenarios related to JPEG compression. Experiments
were computed on 512 × 512 image patches from 28 camera models of the Vision
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Image Dataset (Shullani et al. 2017). Results showed that being careful to the JPEG
grid alignment and to the compression quality factor of training/testing images is of
paramount importance, independently on the chosen network architecture.

Learned Features in Open-set Problems
The majority of the methods presented in previous sections tackled closed-set cam-
era model identification, leaving open-set challenges to future investigations. Indeed,
the open-set literature still counts very few works and lacks proper algorithm com-
parisons with respect to closed-set investigations. Among learned feature method-
ologies, only Bayar and Stamm (2018) and Júnior et al. (2019) tackled open-set
classification. Here, we illustrate the proposed methodologies in greater more detail.

In 2018, Bayar and Stamm (2018) proposed two different learning frameworks
for open-set model identification. The common paradigm behind the approaches
was two-step sequential learning, where the feature extraction block included all
the layers of a CNN that precede the classification layer. Following their prior work
(Bayar and Stamm 2017), the authors trained a CNN for camera model identification
and selected the resulting deep features associated with the second-to-last layer to
train a classifier. The authors investigated 4 classifiers: (i) one fully connected layer
followed by the softmax function, which is the standard choice in end-to-end learning
frameworks; (ii) an ET classifier; (iii) an SVM-based classifier; (iv) a classifier based
on the cosine similarity distance.

In the first approach, the authors trained the classifier in closed-set fashion over the
set of known camera models. In the testing phase, they thresholded the maximum
score returned by the classifier. If that score exceeded a predefined threshold, the
image was associated with a known camera model, otherwise it was declared to be
of unknown provenance.

In the second approach, known camera models were divided in two disjoint sets:
“known-known” models and “known-unknown” models. A closed-set classifier was
trained over the reduced set of “known-known” models, while a binary classifier was
trained to distinguish “known-known” models from “known-unknown” models. In
the testing phase, if the binary classifier returned the “known-unknown” class, the
image was linked to an unknown source model, otherwise, the image was associated
with a known model.

In any case, when the image was determined to belong to a known model, the
authors estimated the actual source model as in a standard closed-set framework.

Experimental results were evaluated on 256 × 256 grayscale image patches
selected from 10 models of the Dresden Image Database (Gloe and Böhme 2010)
and other 15 personal devices. The authors showed that the softmax-based classifier
performed worst among the 4 proposals. The ET classifier achieved the best perfor-
mance for both approaches both in identifying the source model in closed-set fashion
and in known-vs-unknown model detection.

An in-depth study on the open-set problem has been pursued by Júnior et al.
(2019). The authors thoroughly investigated this issue by comparing 5 feature extrac-
tion methodologies, 3 training protocols and 12 open-set classifiers. Among feature
extractors, they selected hand-crafted based frameworks (Chen and Stamm 2015;
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Marra et al. 2017) together with learned features (Bondi et al. 2017a). As for training
protocols, they considered the two strategies presented by Bayar and Stamm (2018)
and one additional strategy which included more “known-unknown” camera mod-
els. Several open-set classifiers were explored, ranging from different SVM-based
approaches to one classifier proposed in the past by the same authors and to those
previously investigated by Bayar and Stamm (2018).

The training dataset included 18 cameramodels from theDresden ImageDatabase
(Gloe and Böhme 2010), i.e., the samemodels used by Bondi et al. (2017a) in closed-
set scenario, as known models, and the remaining Dresden’s models as “known-
unknown” to be used for the additional proposed training protocol. Furthermore,
35 models from the Image Source Attribution UniCamp Dataset (Image Source
Attribution UniCamp Dataset 2021) and 250 models from the Flickr image hosting
service were used to simulate unknown models.

As performed by Bondi et al. (2017a), the authors extracted 32 non-overlapping
64 × 64 patches from images. Results demonstrated the highest effectiveness of
CNN-based learned features over hand-crafted features. Many open-set classifiers
returned high performances and, as reported in Bayar and Stamm (2018), ET clas-
sifier was one of the best performing. Interestingly, the authors noticed that the
third additional training protocol that required more “known-unknown” models was
outperformed by a simpler solution, corresponding to the second training approach
proposed by Bayar and Stamm (2018).

Learned Forensics Similarity
An interesting research work which parallels camera model identification was pro-
posed in 2018 by Mayer and Stamm (2018). In their paper, the authors proposed a
two-step learning framework that did not aim at identifying the source camera model
of an image, but aimed at determining whether two images (or image patches) were
shot by the same camera model.

The main novelty did not lie in the feature extraction step, which was CNN-
based as many other contemporaneous works, but in the second step developing a
learned forensics similarity measure between the two compared patches. This was
implemented by training a multi-layer neural network that mapped the features from
patches into a single similarity score. If the score overcame a predefined threshold,
the two patches were said to come from the same model.

The authors did not limit the comparison over known camera models, but also
demonstrated the effectiveness of the method on unknown models. In particular,
they trained the two networks over disjoint camera model sets, exploiting grayscale
image patches with size 256 × 256, selected from 20 models of the Dresden Image
Database (Gloe andBöhme 2010) and 45 furthermodels. Results showed that authors
could accurately detect a model similarity even if both the two images came from
unknown sources.
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7.4 Datasets and Benchmarks

This section provides a template with the fundamental characteristics an image
dataset should have in order to explore camera model identification. Then, it shows
an overview of available datasets in the literature. It also explains how to properly
deal with these datasets for a fair evaluation.

7.4.1 Template Dataset

The task of camera model identification assumes that we are not interested in retriev-
ing information on the specific device used for capturing a photograph neither on the
scene content depicted. Given these premises, we can define some “good” features
a template dataset should include (Kirchner and Gloe 2015):

• Images of similar scenes taken with different camera models.
• Multiple devices per camera model.

Collecting several images with similar scenes shot by different models avoids any
possible bias on the results due to the depicted scene content. Moreover, capturing
images from multiple devices of the same camera model accounts for realistic sce-
narios. Indeed, we should expect to investigate query images shot by devices never
seen at algorithm development phase, even though their camera models were known.

A common danger that needs to be avoided is to confuse model identification
with device identification. Hence, as we want to solve the source identification task
at model-based granularity, we must not confuse device-related traces with model-
related ones. In other words, query images coming from an unknown device of a
known model should not be confused as coming from an unknown source. In this
vein, a dataset should consist of multiple devices from the same model. This enables
to evaluate a feature set or a classifier for its ability to detect models independently
from individual devices. Including more devices per model in the image dataset
allows to check for this requirement and helps keeping the problem at bay.

7.4.2 State-of-the-art Datasets

The following datasets are frequently used or have been specifically designed for
camera model identification:

• Dresden Image Database (Gloe and Böhme 2010).
• Vision Image Dataset (Shullani et al. 2017).
• Forchheim Image Database (Hadwiger and Riess 2020).
• Dataset for Camera Identification on HDR images (Shaya et al. 2018).
• Raise Image Dataset (Nguyen et al. 2015).
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Table 7.1 Main datasets’ characteristics

Dataset No. of models No. of images Image formats

Dresden (Gloe and Böhme 2010) 26 18,456 JPEG,
Uncompressed-Raw

Vision (Shullani et al. 2017) 28 34,427 JPEG

Forchheim (Hadwiger and Riess
2020)

25 23,106 JPEG

HDR (Shaya et al. 2018) 21 5,415 JPEG

Raise (Nguyen et al. 2015) 3 8,156 Uncompressed-Raw

Socrates (Galdi et al. 2019) 60 9,700 JPEG

IEEE Cup (Stamm et al. 2018;
IEEE Signal Processing Cup 2018
Database 2021)

10 2,750 JPEG

• Socrates Dataset (Galdi et al. 2019);
• the dataset for the IEEE Signal Processing Cup 2018: Forensic Camera Model
Identification Challenge (Stamm et al. 2018; IEEE Signal Processing Cup 2018
Database 2021).

To highlight the differences among the datasets in terms of camera models and
images involved, Table7.1 summarizes the main datasets’ characteristics. In the fol-
lowing, we illustrate in detail the main features of each dataset.

Dresden Image Database
The Dresden Image Database (Gloe and Böhme 2010) has been designed with the
specific purpose of investigating the camera model identification problem. This is
a publicly available dataset, including approximately 17,000 full-resolution natu-
ral images stored in the JPEG format with the highest available JPEG quality and
1,500 uncompressed raw images. The image acquisition process has been carefully
designed in order to provide image forensics analysts a dataset which satisfies the two
properties reported in Sect. 7.4.1. Images were captured under controlled conditions
from 26 different camera models considering up to 5 different instances per model.
For each motif, at least 3 scenes were captured by varying the focal length.

Thanks to the careful design process and to the considerable amount of images
included, theDresden ImageDatabase has becomeover the years one of themost used
image datasets for tackling image forensics investigations. The use of this dataset as
a benchmark has favored the spreading of research works on the topic, easing the
comparison between different methodologies and their reproducibility. Focusing on
the research on the camera model identification task, the Dresden Image Database
has been used several times by state-of-the-art works (Bondi et al. 2017b; Marra
et al. 2017; Tuama et al. 2016).

Vision Image Dataset
The Vision dataset (Shullani et al. 2017) is a recent image and video dataset, pur-
posely designed for multimedia forensics investigations. Specifically, Vision dataset
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has been designed to follow the trend on image and video acquisition and social
sharing. In the last few years, photo-amateurs have rapidly transitioned to hand-held
devices as preferred mean to capture images and videos. Then, the acquired content
is typically shared on social media platforms like WhatsApp or Facebook. In this
vein, Vision dataset collects almost 12,000 native images captured by 35 modern
smartphones/tablets, including also their related social media version.

TheVision datasetwell satisfies the first requirement presented in Sect. 7.4.1 about
capturing images of similar scenes taken with different camera models. Moreover,
it represents a substantial improvement with respect to Dresden Image Database,
since it collects images from modern devices and social media platforms. However,
a minor limitation regards the second requirement provided in Sect. 7.4.1: there are
only few camera models with two or more instances. Indeed, over the 35 available
modern devices, we have 28 different camera models.

In the literature, Vision dataset has been used many times for investigations on
the camera model identification problem. Among them, we can cite (Cozzolino and
Verdoliva 2020; Mandelli et al. 2020).

Forchheim Image Database
The Forchheim Image Database (Hadwiger and Riess 2020) consists of more than
23,000 images of 143 scenes shot by 27 smartphone cameras of 25 models and 9
brands. It has been proposed to cleanly separate scene content and forensic traces,
and to support realistic post-processing like social media recompression. Indeed, six
different qualities are provided per image, collecting different copies of the same
original image passed through social networks.

Dataset for Camera Identification on HDR Images
The proposed dataset collects standard dynamic range and HDR images captured in
different conditions, including various capturingmotions, scenes, and devices (Shaya
et al. 2018). It has been proposed to investigate the source identification problem on
HDR images, which usually introduce some difficulties due to their complexity and
wider dynamic range. 23 mobile devices were used for capturing 5,415 images in
different scenarios.

Raise Image Dataset
The Raise Image Dataset (Nguyen et al. 2015) concerns 8,156 high-resolution raw
images, depicting various subjects and scenarios. 3 different camera of diverse mod-
els were employed.

Socrates Dataset
The Socrates Dataset (Galdi et al. 2019) has been built to investigate the source cam-
era identification problem on images and videos coming from smartphones. Images
and videos have been collected directly by smartphone owners, ending up with about
9,700 images and 1000 videos captured with 104 different smartphones of 15 differ-
ent makes and about 60 different models.
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Dataset for the IEEE Signal Processing Cup 2018: Forensic Camera Model
Identification Challenge
The IEEE Signal Processing Cup (SP Cup) is a student competition in which under-
graduate students form teams to work on real-life challenges. In 2018, the camera
model identification goal was selected as the topic for the SP Cup (Stamm et al.
2018). Participants were provided with a dataset consisting of JPEG images from 10
different camera models (including point-and-shoot cameras, cell phone cameras,
and digital single-lens reflex cameras), with 200 images captured using each camera
model. In addition, also post-processed operations (e.g., JPEG recompression, crop-
ping, contrast enhancement) were applied to the images. The complete dataset can
be downloaded from IEEE DataPort (IEEE Signal Processing Cup 2018 Database
2021).

7.4.3 Benchmark Protocol

The benchmark protocol commonly followed by forensics researchers is to divide
the available images into three disjoint image datasets: the training dataset It , the
validation dataset Iv and the evaluation dataset Ie. This split ensures that images
seen during the training process (i.e., images belonging to either It or Iv) are never
used in testing phase, thus they do not introduce any bias in the results.

Moreover, it is reasonable to assume that query images under analysis might not
be acquired with the same devices seen in training phase. Therefore, what is usually
done is to pick a selection of devices to be used for the training process, namely the
training device set Dt . Then, the proposed method can be evaluated over the total
amount of available devices. A realistic and challenging scenario is to include only
one device per known camera model in the training set Dt .

7.5 Case Studies

This section is devoted to numerical analysis of some selected methods in order to
showcase the capabilities of modern camera model identification algorithms. Specif-
ically, we consider a set of baseline CNNs and co-occurrences of image residuals
(Fridrich and Kodovský 2012) analyzing both closed-set and open-set scenarios. The
impact of JPEG compression is also investigated.

7.5.1 Experimental Setup

To perform our experiments, we select natural JPEG compressed images from the
Dresden Image Database (Gloe and Böhme 2010) and the Vision Image Dataset
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(Shullani et al. 2017). Regarding the Dresden Image Database, we consider images
from “Nikon_D70” and “Nikon_D70s” camera models as coming from the same
model, as the differences between these two models are negligible due to a minor
version update (Gloe and Böhme 2010; Kirchner and Gloe 2015). We pick the same
number of images per device, and use as reference the device with the lowest image
cardinality. We end up with almost 15,000 images from 54 different camera models,
including 108 diverse devices.

We work in a patch-wise fashion, extracting N patches with size P × P pixels
from each image. We investigate four different networks. Two networks are selected
from the recently proposed EfficientNet family of models (Tan and Le 2019), which
achieves very good results both in computer vision and multimedia forensics tasks.
Specifically, we select EfficientNetB0 and EfficientNetB4 models. The other net-
works are known in literature as ResNet50 (He et al. 2016) and XceptionNet (Chollet
2017). Following a common procedure in CNN training, we initialize the network
weights using those trained on ImageNet database (Deng et al. 2009). All CNNs are
trained using cross-entropy loss and Adam optimizer with default parameters. The
learning rate is initialized to 0.001 and is decreased by a factor 10 whenever the
validation loss does not improve for 10 epochs. The minimum accepted learning rate
is set to 10−8. We train the networks for at most 500 epochs, and training is stopped
if loss does not decrease for more than 50 epochs. The model providing the best
validation loss is selected.

At test time, classification scores are always fed to the softmax function. In the
closed-set scenario, we assign the query image to the camera model associated with
the highest softmax score. We use the average accuracy of correct predictions as
evaluation metrics. In the open-set scenario, we evaluate results as a function of
the detection accuracy of “known” versus “unknown” models. Furthermore, we also
provide the average accuracy of correct predictions over the set of known camera
models. In other words, given that a query image was taken with one camera model
belonging to the known class, we evaluate the classification accuracy as in a closed-
set problem reduced to the “known” categories.

Concerning the dataset split policy, we always keep 80%of the images for training
phase, further divided in 85%/15% for training set It and validation set Iv , respec-
tively. The remaining 20% of the images are used in the evaluation set Ie. All tests
have been run on a workstation equipped with one Intel® Xeon Gold 6246 (48 Cores
@3.30GHz), RAM 252 GB, one TITAN RTX (4608 CUDA Cores @1350MHz),
24 GB, running Ubuntu 18.04.2. We resort to Albumentation (Buslaev et al. 2020)
as data augmentation library for applying JPEG compression to images, and we use
Pytorch (Paszke et al. 2019) as Deep Learning framework.

7.5.2 Comparison of Closed-Set Methods

In this section, we compare closed-set camera model identification methodologies.
We do not consider model-based approaches, since data-driven methodologies have



156 S. Mandelli et al.

extensively outperformed them in the last few years (Bondi et al. 2017a; Marra
et al. 2017). In particular, we compare 4 different CNN architectures with a well-
known state-of-the-art method based on hand-crafted feature extraction. Specifically,
we extracted the co-occurrences of image residuals as suggested in Fridrich and
Kodovský (2012). Indeed, it has been shown that exploiting these local features
provides valuable insights on the camera model identification task (Marra et al.
2017).

Since data-drivenmethods need to be trained on a specific set of images (or image-
patches), we consider different scenarios in which the characteristics of the training
dataset change.

Training with Variable Patch-sizes, Proportional Number of Patches per Image
In this setup, we work with images from both the Dresden Image Database and the
Vision Image Dataset. We randomly extract N patches per image with size P × P
pixels.We consider patch-sizes P ∈ {256, 512, 1024}. As first experiment, wewould
like to maintain a constant number of image pixels seen in training phase. In doing
so, we can compare the methods’ performance under the same number of input
pixels. Hence, the smaller the patch-size, the more image patches are provided. In
case of P = 256, we randomly extract N = 40 patches per image; for P = 512, we
randomly extract N = 10 patches per image; when P = 1024, we randomly extract
N = 3 patches per image. The number of input image pixels remains constant in the
first two situations, while the last scenario includes few pixels more.

Co-occurrence Based Local Features. We extract co-occurrences features of 625
elements (Fridrich and Kodovský 2012) from each analyzed patch independent of
the input patch-size P . More precisely, we extract features based on the third order
filter named “s3-spam14hv”, as suggested in Marra et al. (2017). We apply this filter
to the luminance component of the input patches.

Then, to associate the co-occurrences features with one camera model, we train
a 54-classes classifier composed of a shallow neural network. The classifier is
defined as

• a fully connected layer with 625 input channels, i.e., the dimension of co-
occurrences, and 256 output channels;

• a dropout layer with 0.5 as dropout ratio;
• a fully connected layer with 256 input channels and 54 output channels.

We train this elementary network using Adam optimization with initial learning rate
of 0.1, following the same paradigm described in Sect. 7.5.1. Results on evaluation
images are shown in Table7.2.

Table 7.2 Accuracy of camera model identification in closed-set scenario using co-occurrences
features

Patch-size P 256 512 1024

Accuracy (%) 68.77 78.81 82.77
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Fig. 7.3 Confusion matrix achieved in closed-set classification by co-occurrences extraction, P =
1024

Notice that the larger the patch-size, the higher the achieved accuracy. Even though
the number of image pixels seen by the classifier in training phase is essentially
constant, the features extracted from the patches become more significant as the
pixel region fed to the co-occurrence extraction grows. Figure7.3 shows the achieved
confusion matrix for P = 1024.

CNNs. CNN results are shown in Table7.3. Differently from co-occurrences,
CNNs seem tobe considerably less dependent on the specific patch-size, as long as the
number of image pixels fed to the network remains the same. All the network models
perform slightly worse on larger patches (i.e., P = 1024). This lower performance
may originate from a higher difficulty of the networks in converging during the
trainingprocess. Larger patches inevitably require reducedbatch-size during training.
Less samples in the batch means less results’ average in one training epoch and
reduced CNN capabilities in converging to the best parameters.
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Table 7.3 Accuracy of closed-set camera model identification using 4 different CNN architectures
as a function of the patch-size. The number of extracted patches per image varies such that the
overall image pixels seen by CNNs is almost constant

Patch-size P 256 512 1024

EfficientNetB0 (%) 94.68 94.60 94.28

EfficientNetB4 (%) 94.29 94.57 93.20

ResNet50 (%) 93.71 92.48 91.70

XceptionNet (%) 93.74 94.21 91.23

Fig. 7.4 Confusion matrix achieved in closed-set classification by EfficientNetB0, P = 512,
N = 10

Overall, results on CNNs strongly outperform co-occurrences. Fixing a patch-
size, all the CNNs return very similar results. The EfficientNet family of models
slightly outperforms the other CNN architectures, as it has been shown several times
in the literature (Tan and Le 2019).

To provide an example of the results, Fig. 7.4 shows the achieved confusionmatrix
by EfficientNetB0 architecture for P = 512, N = 10.
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Fig. 7.5 Closed-set
classification accuracy
achieved by CNNs as a
function of the number of
extracted patches per image,
patch-size P = 256

Training with Fixed Patch-sizes, Variable Number of Patches per Image
In this setup, we work again with images from both the Dresden Image Database and
the Vision Image Dataset. Differently from the previous setup, we do not evaluate
results of co-occurrences since they are significantly outperformed by the CNN-
based framework. Instead of exploring diverse patch-sizes, we now fix the patch-size
P = 256. We aim at investigating how CNN performance changes by varying the
number of extracted patches per image. N can vary among {1, 5, 10, 25, 40}.

Figure7.5 depicts the closed-set classification accuracy results. For small values
of N (i.e., N < 10), all the 4 networks enhance their performance as the number of
extracted patches increases.When N further increases, CNNs achieve a performance
plateau and accuracy does not change too much across N ∈ {10, 25, 40}.

Training with Variable Patch-size, Fixed Number of Patches per Image
We now fix the number of extracted patches per image to N = 10. Then, we vary
the patch-size P among {64, 128, 256, 512}. The goal is to explore whether results
change as a function of the patch-size.

Figure7.6 depicts the results. All the CNNs achieve accuracies beyond 90%when
patch-size is larger or equal to 256. When the data fed to the network are too small,
CNNs are not able to estimate well the classification parameters.

Investigations on the Influence of JPEG Grid Alignment
When editing a photograph or uploading a picture over a socialmedia platform, itmay
be cropped with respect to its original size. After the cropping, a JPEG compression
is usually applied to the image. These operations may de-synchronize the 8 × 8
characteristic pixel grid of the original JPEG compression. Usually, a new 8 × 8 grid
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Fig. 7.6 Closed-set
classification accuracy
achieved by CNNs as a
function of the patch-size P ,
the number of extracted
patches per image is fixed to
N = 10

non-aligned with the original one is generated. When training a CNN to solve an
image classification problem, the presence of JPEG grid misalignment on images
can strongly impact the performance. In this section, we summarize the experiments
performed in Mandelli et al. (2020) to investigate on the influence of JPEG grid
alignment on the closed-set camera model identification task.

During training and evaluation steps, we investigate two scenarios:

1. working with JPEG compressed images whose JPEG grid is aligned to the 8 × 8
pixel grid starting from upper-left corner;

2. working with JPEG compressed images whose JPEG grid starts in random pixel
position.

To simulate these scenarios, we first compress all the images with the maximum
JPEGQuality Factor (QF), i.e., QF = 100. This process generates images with JPEG
lattice and does not impair the image visual quality. The first scenario includes images
cropped such that the extracted image patches are always aligned to the 8 × 8 pixel
grid. In the latter scenario, we extract patches in random positions. Differently from
previous sections, here we are considering a reduced image dataset, the same used in
Mandelli et al. (2020) from which we are reporting the results. Images are selected
only from the Vision dataset and N = 10 squared patches of 512 × 512 pixels are
extracted from the images.

Figure7.7 shows the closed-set classification accuracy for all CNNs as a func-
tion of the considered scenarios. In particular, Fig. 7.7a depicts results in case we
train and test on randomly cropped patches; Fig. 7.7b shows what happens when
training on JPEG-aligned images and testing on randomly cropped images; Fig. 7.7c
explores training on randomly cropped images and testing on JPEG-aligned images;
Fig. 7.7d draws results in case we train and test on JPEG-aligned images. It is worth
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(a) (b)

(c) (d)

Fig. 7.7 Closed-set classification accuracy achieved by CNNs as a function of JPEG grid align-
ment in training and/or evaluation phases. The bars represent, respectively, from left to right:
EfficientNetB0; EfficientNetB4; ResNet50; XceptionNet. In a, we train and test on ran-
domly cropped patches; in b, we train on JPEG-aligned and test on randomly cropped patches;
in c, we train on randomly cropped and test on JPEG-aligned patches; in d, we train and test on
JPEG-aligned patches

noticing that being careful to the JPEG grid alignment is paramount for achieving
good accuracy. When training a detector on JPEG-aligned patches and testing on
JPEG-misaligned ones, results drop consistently as shown in Fig. 7.7b.

Investigations on the Influence of JPEG Quality Factor
In this section, we aim at investigating how the QF of JPEG compression affects
CNN performance in closed-set cameramodel identification. As done in the previous
section, we illustrate the experimental setup provided in Mandelli et al. (2020),
where the effect of JPEG compression quality is studied for images belonging to
the Vision dataset. We JPEG-compress the images with diverse QFs, namely QF ∈
{50, 60, 70, 80, 90, 99}. Then, we extract N = 10 squared patches of 512 × 512
pixels from images. Following previous considerations, we randomly extract the
patches both for the training and evaluation datasets.

To explore the influence of JPEG QF on CNN results, we train the network in two
ways:

1. we use only images of the original Vision Image dataset;
2. we perform some training data augmentation. Half of the training images are

taken from the original Vision Image dataset; the remaining part is compressed
with a JPEG QF picked from the reported list.

Notice that the second scenario assumes some knowledge on the JPEG QF of the
evaluation images, and can thus improve the achieved classification results.

Closed-set classification accuracy achieved by the CNNs is reported in Fig. 7.8.
In particular, we show results as a function of the QF of the evaluation images.
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Fig. 7.8 Accuracy as a function of test QF for a EfficientNetB0, b EfficientNetB4, c ResNet50, d
XceptionNet. The curves are drawn in accordance to the following legend: train on QF = 50;

train on QF = 60; train on QF = 70; train on QF = 80; train on QF = 90; train on QF =
99; No augmentation

The gray curve represents the first training scenario, i.e., in absence of training data
augmentation. Note that this setup always draws the worst results. Also training on
data augmented with QF = 99 almost corresponds to absence of augmentation and
achieves acceptable results only when the test QF matches the training one. On the
contrary, training on data augmentedwith low JPEGQFs (i.e., QF ∈ {50, 60}) returns
acceptable results for all the possible test QFs. For instance, by training on data com-
pressed with QF = 50, evaluation accuracy can improve from 0.2 to more than 0.85.
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7.5.3 Comparison of Open-Set Methods

In the open-set scenario some camera models are unknown, so we cannot train CNNs
on the complete device set as information can be extracted only from the known
devices. Let us represent the original camera model set with T : known models are
denoted as Tk , unknown models are denoted as Tu .

To perform open-set classification, two main training strategies can be pursued
(Bayar and Stamm 2018; Júnior et al. 2019):

1. Consider all the available set Tk as “known” camera models. Train one closed-set
classifier over Tk camera models.

2. Divide the set of Tk camera models into two disjoint sets: the “known-known” set
Tkk , and the “known-unknown” set Tku . Train one binary classifier to identify Tkk
camera models from Tku camera models.

Results are evaluated accordingly to two metrics (Bayar and Stamm 2018):

1. the accuracy of detection between known camera models and unknown camera
models;

2. the accuracy of closed-set classification among the set of known camera models.
This metric is validated only for images belonging to camera models in set Tk .
Our experimental setup considers only EfficientNetB0 as network architecture,

sinceEfficientNet family ofmodels (bothEfficientNetB0 andEfficientNetB4) always
reports higher or comparable accuracies with respect to other architectures. We
choose EfficientNetB0 which is lighter than EfficientNetB4 to reduce training and
testing time.We exploit images fromboth theDresden ImageDatabase and theVision
Image Dataset. Among the pool of 54 camera models, we randomly extract 36 cam-
era models for the “known” set Tk and leave the remaining 18 to the “unknown”
set Tu . Following considerations, we randomly extract N = 10 squared patches per
image with patch-size P = 512.

Training One Closed-set Classifier over “Known” Camera Models
We train one closed-set classifier over models belonging to Tk set by following the
same training protocol previously seen for closed-set camera model identification.
In testing phase, we proceed with two consequential steps:

1. detect if the query image is taken by a “known” camera model or an “unknown”
model;

2. if the query image comes from a “known” camera model, identify the source
model.

Regarding the first step, we follow the approach suggested in Bayar and Stamm
(2018). Given a query image, if themaximumscore returned by the classifier exceeds
a predefined threshold, we assign the image to the category of “known” camera
models. Otherwise, the image is associated with an “unknown” model. Following
this procedure, the closed-set classification accuracy across models in Tk is 95%.
Figure7.9 shows the confusion matrix achieved by closed-set classification.
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Fig. 7.9 Confusionmatrix achieved in closed-set classification by training one classifier (in closed-
set fashion) over the 36 camera models in Tk . The average closed-set accuracy is 95%

The detection accuracy varies with the threshold used to classify “known” ver-
sus “unknown” camera models. Figure7.10 depicts the ROC curve achieved by the
proposed method. Specifically, we see the behavior of True Positive Rate (TPR) as
a function of the False Positive Rate (FPR). Themaximum accuracy value is 86.19%.

Divide the Set of Known Camera Models into “Known-known” and “Known-
unknown”
In this experiment, we divide the set of known camera models into two disjoint sets:
the set of “known-known” models Tkk and the set of “known-unknown” models Tku .
Then, we train a binary classifier which discriminates between the two classes. In
testing phase, all the images assigned to the “known-unknown” classwill be classified
as unknown. Notice that by training one binary classifier we are able to recognize
as “known” category only images taken from camera models in Tkk . Therefore, even
if camera models belonging to Tku are known, their images will be classified as
unknown in testing phase.
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Fig. 7.10 ROC curve
achieved by training one
classifier (in closed-set
fashion) over camera models
in Tk
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Fig. 7.11 Training dataset
split policy applied to set Tk
in case C = 2 and C = 3

To overcome this limitation, we explore the possibility of training a binary classi-
fier in different setups. In practice, we divide the known camera models’ set Tk into
C disjoint subsets containing images of |Tk |/C models, where | · | is the cardinality
of the set. We define every disjoint set as Tkc , c ∈ [1,C]. Then, for each disjoint set
Tkc , we train one binary classifier telling known models and unknown models apart.
Set Tkc represents the “known-known” class, while the remaining sets are joined and
form the “known-unknown” class. Figure7.11 depicts the split policy applied to Tk
for C = 2 and C = 3. For instance, when C = 3, we end up with 3 different training
setups: the first considers Tk1 as known class and models in {Tk2 , Tk3} as unknowns;
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Fig. 7.12 Maximum
detection accuracy achieved
in the ROC curve by training
C classifiers over camera
models in Tk
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the second considers Tk2 as known class and models in {Tk1 , Tk3} as unknowns; the
third considers Tk3 as known class and models in {Tk1 , Tk2} as unknowns.

In testing phase, we assign a query image to the “known-known” class only if at
least one classifier returned a score associated with the “known-known” class which
is sufficiently confident. In practice, we threshold the maximum score associated
to the “known-known” class returned by the C classifiers. Whenever the maximum
score overcomes the threshold, we assign the query image to a known camera model;
otherwise we associate it with an unknown model.

Notice that the number of classifiers can vary from C = 2 to C = 36 (i.e., the
total number of available known camera models). In our experiments, we considerC
equal to all the possible divisors of 36, i.e., C ∈ {2, 3, 4, 6, 9, 12, 18, 36}. In order
to work with balanced training datasets, we always fix the number of images for each
class to be equal to the image cardinality of the known set Tkk .

The maximum detection accuracy achieved as a function of the number of clas-
sifiers used is shown in Fig. 7.12. The case C = 1 corresponds to training only one
classifier in closed-set fashion. Notice that when the number of classifiers starts to
increase (i.e., whenC > 9), the proposedmethodology can outperform the closed-set
classifier.

We also evaluate the accuracy achieved in closed classification for images belong-
ing to knownmodels in Tk . For each disjoint set Tkc , we can train a |Tk |/C-class clas-
sifier in closed-set fashion. If one of the C binary classifiers assigns the query image
to the Tkc set, we can identify the source camera model by exploiting the related
closed-set classifier. This procedure is not needed in case C = |Tk |, i.e., C = 36.
In this case, we can exploit the maximum score returned by the C binary classi-
fiers. If the maximum score is related to the “known-known” class, the estimated
source camera model is associated with the binary classifier providing the highest
score. If the maximum score is related to the “known-unknown” class, the estimated
source cameramodel is unknown. For example, Fig. 7.13 shows the confusionmatrix
achieved in closed-set classification by training 36 classifiers. The average closed-set
accuracy is 99.56%.

ExploitingC = 36 binary classifiers outperforms the previously presented closed-
set classifier, both in known-vs-unknown detection and closed-set classification. This
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Fig. 7.13 Confusion matrix achieved in closed-set classification by training 36 classifier, consid-
ering the 36 camera models in Tk . The average closed-set accuracy is 99.56%

comes at the expense of training 36 binary classifiers instead of oneC-class classifier.
However, each binary classifier is trained over a reduced amount of images, i.e., twice
the number of images of the “known-known” class. On the contrary, the C-class
classifier is trained over the total amount of known images. Therefore, the required
computation time by training 36 classifiers does not significantly increase and it is
still acceptable.

7.6 Conclusions and Outlook

In this chapter, we have reported multiple examples of camera model identification
algorithms developed in the literature. From this report and the showcased exper-
imental results, it is possible to understand that the camera model identification
problem can be well solved in some situations, but not always.
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For instance, good solutions exist for solving the camera model identification task
in a closed-set scenario, when images have not been further post-processed or edited.
Given a set of known camera models and a pool of training images, standard CNNs
can solve the task in a reasonable amount of time with high accuracy.

However, this setup is too optimistic. In practical situations, it is unlikely that
images never undergo any processing step after acquisition. Moreover, it is not real-
istic to assume that an analyst has access to all possible camera models needed for an
investigation. In this situation, further research is needed. As an example, compres-
sion artifacts and other processing operations like cropping or resizing can strongly
impact on the achieved performance. For this reason, a deeper analysis on images
shared through social media networks is worthy of investigations.

Moreover, open-set scenarios are still challenging even considering original (i.e.,
not post-processed) images. The proposed methods in the literature are not able to
approach closed-set accuracy yet. As the open-set scenario is more realistic than its
closed-set counterpart, further work in this direction should be done.

Furthermore, the newest smartphone technologies based on HDR images, multi-
ple cameras, super-dense sensors and advanced internal processing (e.g., “beautify”
filters, AI-guided enhancements, etc.) can further complicate the source identifica-
tion problem, due to an increased image complexity (Shaya et al. 2018; Iuliani et al.
2021). For instance, it has been already shown that sensor-based methodologies to
solve the camera attribution problem may suffer for the portrait mode employed in
smartphones of some particular brands (Iuliani et al. 2021). When portrait modality
is selected to capture a human subject in foreground and blur the remaining back-
ground, sensor traces risk to be hindered (Iuliani et al. 2021).

Finally, we have not considered scenarios involving attackers. On one hand,
antiforensic techniques could be applied to images in order to hide camera model
traces. Alternatively, workingwith data-driven approaches, it is important to consider
possible adversarial attacks to the used classifiers. In the light of these considerations,
forensic approaches for camera model identification in modern scenarios still have
to be developed. Such future algorithmic innovations can be further fostered with
novel datasets that include these most recent challenges.
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