
Chapter 4
Sensor Fingerprints: Camera
Identification and Beyond

Matthias Kirchner

Every imaging sensor introduces a certain amount of noise to the images it captures—
slight fluctuations in the intensity of individual pixels even when the sensor plane
was lit absolutely homogeneously. One of the breakthrough discoveries in multime-
dia forensics is that photo-response non-uniformity (PRNU), a multiplicative noise
component caused by inevitable variations in the manufacturing process of sensor
elements, is essentially a sensor fingerprint that can be estimated from and detected
in arbitrary images. This chapter reviews the rich body of literature on camera identi-
fication from sensor noise fingerprints with an emphasis on still images from digital
cameras and the evolving challenges in this domain.

4.1 Introduction

Sensor noise fingerprints have been a cornerstone ofmedia forensics ever since Lukáš
et al. (2005) observed that digital images can be traced back to their sensor based
on unique noise characteristics. Minute manufacturing imperfections are believed to
make every sensor physically unique, leading to the presence of a weak yet deter-
ministic sensor pattern noise in images captured by the camera (Fridrich 2013). This
fingerprint, commonly referred to as photo-response non-uniformity (PRNU), can be
estimated from images captured by a specific camera for the purpose of source cam-
era identification. As illustrated in Fig. 4.1, a noise signal is extracted in this process
at test time from a probe image of unknown provenance, which can then be compared
against pre-computed fingerprint estimates from a set of candidate cameras.
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Fig. 4.1 Basic camera identification from PRNU-based sensor noise fingerprints (Fridrich 2013).
(1) A camera fingerprint K̂ is estimated from a number flatfield images taken by the camera of
interest. (2) At test time, a noise residualW is extracted from a probe image of unknown provenance.
(3) A detector decides whether or not the probe image originates from the camera of interest by
evaluating a suitable similarity score, ρ

Because PRNU emerges from physical noise-like properties of individual sensor
elements, it has a number of attractive characteristics for source device attribution
(Fridrich 2013). The fingerprint signal appears random and is of high dimensionality,
which makes the probability of two sensors having the same fingerprint extremely
low (Goljan et al. 2009). At the same time, it can be assumed that all common imaging
sensor types exhibit PRNU, that each sensor output contains a PRNU component,
except for completely dark or saturated images, and that PRNUfingerprints are stable
over time (Lukás et al. 2006). Finally, various independent studies have found that
the fingerprint is highly robust to common forms of post-processing, including lossy
compression and filtering.

The goal of this chapter is not to regurgitate the theoretical foundations of the
subject at length, as these have been discussed coherently before, including in a
dedicated chapter in the first edition of this book (Fridrich 2013). Instead, we hope
to give readers an overview of the ongoing research and the evolving challenges in
the domain while keeping the focus on conveying the important concepts.

So why is it that there is still an abundance of active research when extensive
empirical evidence (Goljan et al. 2009) has already established the feasibility of
highly reliable PRNU-based consumer camera identification at scale? The simple
answer is technological progress. Modern cameras, particularly those installed in
smartphones, go to great lengths to produce visually appealing imagery. Imaging
pipelines are ever evolving, and computational photography challenges our under-
standing of what a “camera-original” image looks like. On the flip side, many of
these new processing steps interfere with the underlying assumptions at the core
of PRNU-based camera identification, which requires strictly that the probe image
and the camera fingerprint are spatially aligned with respect to the camera sensor
elements. Techniques such as lens distortion correction (Goljan and Fridrich 2012),
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electronic image stabilization (Taspinar et al. 2016), or high dynamic range imag-
ing (Shaya et al. 2018) have all been found to impede camera identification if not
accounted for through spatial resynchronization. Robustness to low resolution and
strong compression is another concern (van Houten and Geradts 2009; Chuang et al.
2011; Goljan et al. 2016; Altinisik et al. 2020, i. a.) that has been gaining more
and more practical relevance due the widespread sharing of visual media through
online social networks (Amerini et al. 2017; Meij and Geradts 2018). At the same
time, the remarkable success of PRNU-based camera identification has also surfaced
concerns for the anonymity of photographers, who may become identifiable through
the analysis and combination of information derived from one or multiple images.
As a result, the desire to protect anonymous image communication, e.g., in the case
of journalism, activism, or legitimate whistle-blowing, has brought counter-forensic
techniques (Böhme and Kirchner 2013) to suppress traces of origin in digital images
to the forefront.

We discuss these and related topics with a specific focus on still camera images in
more detail below. Our treatment of the subject here is complemented by dedicated
chapters on video source attribution (Chap. 5) and large scale camera identifica-
tion (Chap. 6). An overview of computational photography is given in Chap. 3.
Sections4.2 and 4.3 start with the basics of sensor noise fingerprint estimation and
camera identification, before Sect. 4.4 delves into the challenges related to spatial
sensor misalignment. Section4.5 focuses on recent advances in image manipulation
localization based on PRNU fingerprints. Counter-forensic techniques for finger-
print removal and copying are discussed in Sect. 4.6, while Sect. 4.7 highlights early
attempts to apply tools from the field of deep learning to domain-specific problems.
A brief overview of relevant public datasets in Sect. 4.8 follows, before Sect. 4.9
concludes the chapter.

4.2 Sensor Noise Fingerprints

State-of-the-art sensor noise forensics assumes a simplified imagingmodel for single-
channel images I(m, n), 0 ≤ m < M , 0 ≤ n < N ,

I = I(o)(1 + K) + θ , (4.1)

in which the multiplicative PRNU factor K modulates the noise-free image I(o),
while θ comprises a variety of additive noise components (Fridrich 2013). Ample
empirical evidence suggests that signal K is a unique and robust camera fingerprint
(Goljan et al. 2009). It can be estimated from a set of L images taken with the specific
sensor of interest. The standard procedure relies on a denoising filter F(·) to obtain
a noise residual,

Wl = Il − F(Il) , (4.2)

http://dx.doi.org/https://doi.org/10.1007/978-981-16-7621-5_5
http://dx.doi.org/https://doi.org/10.1007/978-981-16-7621-5_6
http://dx.doi.org/https://doi.org/10.1007/978-981-16-7621-5_3
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from the l-th image Il , 0 ≤ l < L . The filter acts mainly as a means to increase the
signal-to-noise ratio between the signal of interest (the fingerprint) and the observed
image. To date, most works still resort to the wavelet-based filter as adopted by Lukáš
et al. (2006) for its efficiency andgenerally favorable performance, although anumber
of studies have found that alternative denoising algorithms can lead to moderate
improvements (Amerini et al. 2009; Cortiana et al. 2011; Al-Ani and Khelifi 2017;
Chierchia et al. 2014, i. a.). In general, it is accepted that noise residuals obtained
from off-the-shelf filters are imperfect by nature and that they are contaminated non-
trivially by remnants of image content. Salient textures or quantization noise may
exacerbate the issue. For practical applications, a simplified modeling assumption

Wl = KIl + ηl (4.3)

with i. i. d. Gaussian noise ηl leads to a maximum likelihood estimate (MLE) K̂ of
the PRNU fingerprint of the form (Fridrich 2013)

K̂ =
∑

l WlIl
∑

l I
2
l

. (4.4)

In this procedure, it is assumed that all images Il are spatially aligned so that the pixel-
wise operations are effectively carried out over the same physical sensor elements.

If available, it is beneficial to use flatfield images for fingerprint estimation to
minimize contamination from image content. The quality of the estimate in Eq. (4.4)
generally improves with L , but a handful of homogeneously lit images typically
suffices in practice. Uncompressed or raw sensor output is preferable over com-
pressed images, as it will naturally reduce the strength of unwanted nuisance signals
in Eq. (4.1). When working with raw output from a sensor with a color filter array
(CFA), it is advisable to subsample the images based on the CFA layout (Simon et al.
2009).

Practical applications warrant a post-processing step to clean the fingerprint esti-
mate from non-unique artifacts, which may otherwise increase the likelihood of false
fingerprint matches. Such artifacts originate from common signal characteristics that
occur consistently across various devices, for instance, due to the distinctively struc-
tured layout of the CFA or block-based JPEG compression. It is thus strongly rec-
ommended to subject K̂ to zero-meaning and frequency-domain Wiener filtering,
as detailed in Fridrich (2013). Additional post-processing operations have been dis-
cussed in the literature (Li 2010; Kang et al. 2012; Lin and Li 2016, i. a.), although
their overall merit is often marginal (Al-Ani and Khelifi 2017). Other non-trivial
non-unique artifacts have been documented as well. Cases of false source attribution
linked to lens distortion correction have been reported when images from a different
camera were captured at a focal length that was prominently featured during finger-
print estimation (Goljan and Fridrich 2012; Gloe et al. 2012). Non-unique artifacts
introduced by advanced image enhancement algorithms in modern devices are a
subject of ongoing research (Baracchi et al. 2020; Iuliani et al. 2021).
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For multi-channel images, the above procedures can be applied to each color
channel individually before averaging the obtained signals into a single-channel
fingerprint estimate (Fridrich 2013).

4.3 Camera Identification

For a given probe image I of unknown provenance, camera identification can be
formulated as a hypothesis testing problem:

H0 : W = I − F(I) does not contain the fingerprint of interest, K

H1 : W does contain the fingerprint K ;

i. e., the probe is attributed to the tested camera if H1 holds. In practice, the test can
be decided by evaluating a similarity measure ρ,

ρ = sim(W, K̂I)≷H1
H0

τ . (4.5)

for a suitable threshold τ . Under the modeling assumptions adopted in the literature
(Fridrich 2013), the basic building block for this is the normalized cross-correlation
(NCC), which is computed over a grid of shifts s = (s1, s2), 0 ≤ s1 < M , 0 ≤ s2 <
N , for two matrices A,B as

NCCA,B(s1, s2) =
∑

m,n

(
A(m, n) − Ā

) (
B(m + s1, n + s2) − B̄

)

∥
∥A − Ā

∥
∥

∥
∥B − B̄

∥
∥

. (4.6)

We assume implicitly that matrices A and B are of equal dimension and that zero-
padding has been applied to assert this where necessary. In practice, the above expres-
sion is evaluated efficiently in the frequency domain. It is common in the field to
approximate Eq. (4.6) by working with the circular cross-correlation, i. e., by oper-
ating on the FFTs of matrices A, B without additional zero-padding. Taking the
maximum NCC over a set S of admissible shifts as similarity,

ρ(S)
ncc = max

s∈S
NCCW,K̂Y(s) , (4.7)

can conveniently account for potential sensor misalignment between the tested fin-
gerprint and the probe as they would result from different sensor resolutions and /or
cropping. Peak-to-correlation energy (PCE) has been proposed as an alternative that
mitigates the need for sensor-specific thresholds

ρ(S)
pce = (MN − |N |) · (

ρ(S)
ncc

)2

∑
s/∈N NCC2

W,K̂Y
(s)

. (4.8)
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In the equation above, N denotes a small neighborhood around the peak NCC.
It is commonly set to a size of 11 × 11 (Goljan et al. 2009). In practice, camera
identification must account for the possibility of mismatching sensor orientations in
the probe image and in the fingerprint estimate, so the test for the presence of the
fingerprint should be repeated with one of the signals rotated by 180◦ if the initial
test stays below the threshold.

The choice of set S crucially impacts the characteristics of the detector, as a larger
searchgridwill naturally increase the varianceof detector responses on true negatives.
If it can be ruled out a priori that the probe image underwent cropping, the “search”
can be confined to S = {(0, 0)} to reduce the probability of false alarms. Interested
readers will find a detailed error analysis for this scenario in Goljan et al. (2009),
where the authors determined a false alarm rate of 2.4 × 10−5 while attributing
97.62% of probes to their correct source in experiments with more than one million
images from several thousand devices. The PCE threshold for this operating point is
60, which is now used widely in the field as a result.

A number of variants of the core camera identification formulation can be
addressed with only a little modification (Fridrich 2013). For instance, it can be of
interest to determine whether two arbitrary images originate from the same device,
without knowledge or assumptions about associated camera fingerprints (Goljan et al.
2007). In a related scenario, the goal is to compare and match a number of finger-
print estimates, which becomes particularly relevant in setups with the objective of
clustering a large set of images by their source device (Bloy 2008; Li 2010; Amerini
et al. 2014; Marra et al. 2017, i.a.).

Specific adaptations also exist for testing against large databases of camera finger-
prints, where computational performance becomes a relevant dimension to monitor
in practice. This includes efforts to reduce the dimensionality of camera fingerprints
(Goljan et al. 2010; Bayram et al. 2012; Valsesia et al. 2015, i.a.) and protocols for
efficient fingerprint search and matching (Bayram et al. 2015; Valsesia et al. 2015;
Taspinar et al. 2020, i.a.). We refer the reader to Chap. 6 in this book which discusses
these techniques in detail.

4.4 Sensor Misalignment

Camera identification from PRNU-based sensor fingerprints can only succeed if the
probe image and the tested fingerprint are spatially aligned. While cross-correlation
can readily account for translation and cropping, additional steps become inevitable
if more general geometric transformations have to be considered. This includes,
for instance, combinations of scaling and cropping when dealing with the variety of
image resolutions and aspect ratios supported bymodern devices (Goljan andFridrich
2008; Tandogan et al. 2019). Specifically, assuming that a probe image I underwent
a geometric transform Tu∗(·) with parameters u∗, we want to carry out the above
basic procedures on I ← T−1

u∗ (I). If the parameters of the transform are unknown,
the problem essentially translates into a search over a set U of admissible candidate

http://dx.doi.org/https://doi.org/10.1007/978-981-16-7621-5_6


4 Sensor Fingerprints: Camera Identification and Beyond 71

transforms u. In practice, the maximum similarity over all candidate transforms will
determine whether or not an image contains the tested fingerprint,

ρ = max
u∈U

sim
(
T−1
u (I) − F

(
T−1
u (I)

)
, K̂T−1

u (I)
)

≷H1
H0

τ , (4.9)

and the detector threshold should be adjusted accordingly compared to the simpler
case above to maintain a prescribed false alarm rate. Unfortunately, this search can
quickly become computationally expensive. A number of approximations have been
proposed to speed up the search (Goljan and Fridrich 2008), including applying
the inverse transform to a precomputed noise residual W instead of recomputing
the noise residual for each candidate transform, and evaluating sim(T−1

u (WI), K̂)

instead of sim(T−1
u (W), K̂T−1

u (I)).1 As for the search itself, a coarse-to-fine grid
search is recommended by Goljan and Fridrich (2008) for potentially scaled and
cropped images, while Mandelli et al. (2020) adopt a particle swarm optimization
technique. Gradient-based search methods generally do typically not apply to the
problem due to the noise-like characteristics of detector responses outside of a very
sharp peak around the correct candidate transform (Fridrich 2013).

Sensormisalignmentmaynot only be caused by “conventional” image processing.
With camera manufacturers constantly striving to improve the visual image quality
that their devices deliver to the customer, advanced in-camera processing and the
rise of computational photography in modern imaging pipelines can pose significant
challenges in that regard. One of the earliest realizations along those lines was that
computational lens distortion correction can introduce non-linear spatial misalign-
ment that needs to be accounted for (Goljan and Fridrich 2012; Gloe et al. 2012).
Of particular interest is lens radial distortion, which lets straight lines in a scene
appear curved in the captured image. This type of distortion is especially prominent
for zoom lenses as they are commonly available for a wide variety of consumer
cameras. For a good trade-off between lens size, cost and visual quality, cameras
correct for lens radial distortion through warping the captured image according to
a suitable compensation model that effectively inverts the nuisance warping intro-
duced by the lens. This kind of post-processing will displace image content relative
to the sensor elements. It impairs camera identification because the strength of lens
radial distortion depends on the focal length, i.e., images taken by the same camera at
different focal lengths will undergo different warping in the process of lens distortion
correction. As a result, a probe image captured at a certain focal length that was not
(well) represented in the estimation of the camera fingerprint K̂ in Eq. (4.4) may not
be associated with its source device inadvertently.

A simple first-order parametric model to describe and invert radially symmet-
ric barrel/pincushion distortion facilitates camera identification via a coarse-to-fine
search over a single parameter (Goljan and Fridrich 2012), similar to the handling
of general geometric transformations in Eq. (4.9) above. The model makes a number

1 The two expressions are equivalent when used in combination with the PCE whenever it can be
assumed that T−1

u (W) · T−1
u (I) ≈ T−1

u (WI).
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of simplifying assumptions that may not always hold in practice to avoid a higher
dimensional search space, including the assumed concurrence of the optical center
and the image center. Crucially, the practical applicability of such an approach first
and foremost depends on the validity of the assumed distortion correction model in
real cameras. In most circumstances, it is ultimately not fully known which design
choices camera manufacturers make, and we are not aware of published large-scale
evaluations that span a significant number of different devices/lenses. There are inci-
dental observations of missed detections that suggest deviations from a purely radial
distortion correction model (Gloe et al. 2012; Goljan and Fridrich 2014), however.

One of the reasons why interest in the effects of lens distortion correction and
their remedies seems to have waned over the past years may be the enormous gain in
the popularity of smartphones and similar camera-equipped mobile devices. These
devices operate under very different optical and computational constraints than “con-
ventional” consumer cameras and have introduced their own set of challenges to the
field of PRNU-based camera identification. The source attribution of video data,
and in particular the effects of electronic image stabilization (EIS), have arguably
been the heavyweight in this research domain, and we direct readers to Chap. 5
of this book for a dedicated exposition. In the context of this chapter, it suffices
to say that EIS effectively introduces gradually varying spatial misalignment to
sequences of video frames, which calls for especially efficient computational cor-
rection approaches (Taspinar et al. 2016; Iuliani et al. 2019; Mandelli et al. 2020;
Altinisik and Sencar 2021, i.a.).

Other types of in-camera processing are more and more moving into the focus
as well. For instance, high dynamic range (HDR) imaging (Artusi et al. 2017) is
routinely supported on many devices today and promises enhanced visual quality,
especially also under challenging light conditions. In smartphones, it is usually real-
ized by fusing a sequence of images of a scene, each taken at a different exposure
setting in rapid succession. This requires registration of the images to mitigate global
misalignment due to camera motion and local misalignment due to moving objects in
the scene. In practice, the HDR image will be a content-dependent weighted mixture
of the individual exposures, and different regions in the image may have undergone
different geometric transformations.Without additional precautions, camera identifi-
cation may fail under these conditions (Shaya et al. 2018). While it seems infeasible
to express such complex locally varying geometric transformations in a paramet-
ric model, it is possible to conduct a search over candidate transformation on local
regions of the image. Empirical evidence from a handful of smartphones suggests
that the contributions of the individual exposures can be locally synchronized via
cross-correlation, after correcting for a global, possibly anisotropic rescaling oper-
ation (Hosseini and Goljan 2019). Future research will have to determine whether
such approach generalizes.

Sensor misalignment can be expected to remain a practical challenge, and it is
likely to take on new forms and shapes as imaging pipelines continue to evolve. We
surmise that the nature of misalignments will broaden beyond purely geometrical
characteristics with the continued rise of computational photography and camera
manufacturers allowing app developers access to raw sensor measurements. Empir-

http://dx.doi.org/https://doi.org/10.1007/978-981-16-7621-5_5
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ical reports of impaired camera identification across mismatching imaging pipelines
may be taken as first cautionary writing on the wall (Joshi et al. 2020).

4.5 Image Manipulation Localization

When a region of an image is replaced with content from elsewhere, the new content
will lack the characteristic camera PRNU fingerprint one would expect to find other-
wise. This is true irrespective of whether the inserted content has been copied from
within the same image, or from a different image. Recasting camera identification as
a local test for the presence of an expected fingerprint thus allows for the detection
and localization of image manipulations (Chen et al. 2008; Fridrich 2013).

A straightforward approach is to examine the probe image I by sliding an analysis
window of size B × B over the probe image, and to assign a binary label Y(m, n) ∈
{−1, 1},

Y(m, n) = sgn (ρ(m, n) − τ ) , (4.10)

to the window centered around location (m, n), with ρ(m, n) obtained by evaluat-
ing Eq. (4.5) for the corresponding analysis window. The resulting binary map Y
will then be indicative of local manipulations, with Y(m, n) = −1 corresponding to
the absence of the fingerprint in the respective neighborhood. The literature mostly
resorts to the normalized correlation for this purpose, ρ = ρ({0})ncc . It can be computed
efficiently in one sweep for all sliding windows by implementing the necessary sum-
mations as linear filtering operations on the whole image.

The localization of small manipulated regions warrants sufficiently small analysis
windows, which impacts the ability to reliably establish whether or not the expected
fingerprint is present negatively. The literature often finds a window size of B = 64
as a reasonable trade-off between resolution and accuracy (Chierchia et al. 2014;
Chakraborty andKirchner 2017;Korus andHuang2017).Acore problem for analysis
windows that small is that themeasured local correlation under H1 depends greatly on
local image characteristics. One possible remedy is to formulate a camera-specific
correlation predictor ρ̂(m, n) that uses local image characteristics to predict how
strongly the noise residual in a particular analysis window is expected to correlate
with the purported camera fingerprint under H1 (Chen et al. 2008). The decision
whether to declare the absence of the tested fingerprint can then be conditioned on
the expected correlation.

Adopting the rationale that more conservative decisions should be in place when
the local correlation cannot be expected to take on large values per se, an adjusted
binary labeling rule decidesY(m, n) = −1 iff ρ(m, n) ≤ τ and ρ̂(m, n) > λ, where
threshold λ effectively bounds the probability of missed fingerprint detection under
H1 (Chen et al. 2008). To ensure that the binary localization map mostly contains
connected regions of a minimum achievable size, a pruning and post-processing step
with morphological filters is recommended.
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(a) pristine image (b) manipulated image

(c) local correlation ρ (d) binary localization map

Fig. 4.2 Imagemanipulation localization. The local correlation between the camera fingerprint and
the noise residual extracted from themanipulated image is lowest (darker) in themanipulated region.
It was computed from sliding windows of size 64 × 64. The binary localization map (overlayed on
top of the manipulated image) was obtained with a conditional random field approach that evaluates
the difference betweenmeasured and predicted correlation,ρ − ρ̂ (Chakraborty andKirchner 2017).
Images taken from the Realistic Tampering Dataset (Korus and Huang 2017)

Significant improvements have been reported when explicitly accounting for the
observation that local decisions from neighboring sliding windows are interdepen-
dent. A natural formulation follows from approaching the problem in a global opti-
mization framework with the objective of finding the optimal mapping

Y∗ = argmax
Y

p
(
Y|ρ, ρ̂)

. (4.11)

This sets the stage for rewarding piecewise constant label maps via a variety of
probabilistic graphicalmodeling techniques such asMarkov randomfields (Chierchia
et al. 2014) and conditional random fields (Chakraborty and Kirchner 2017; Korus
and Huang 2017). Figure4.2 gives an example result.

A general downside of working with fixed-sized sliding windows is that ρ(m, n)
will naturally change only very gradually, which makes the detection of very small
manipulated regions challenging (Chierchia et al. 2011). Multi-scale reasoning over
various analysis window sizes can mitigate this to some extent (Korus and Huang
2017). Favorable results have also been reported for approaches that incorporate
image segmentation (Korus and Huang 2017; Zhang et al. 2019; Lin and Li 2020) or
guided filtering (Chierchia et al. 2014) to adaptively adjust analysis windows based
on image characteristics.
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Surprisingly, very few notable updates to the seminal linear correlation predictor
ρ̂ from simple intensity, flatness, and texture features by Chen et al. (2008) have
surfaced in the literature, despite its paramount role across virtually all PRNU-based
localization approaches and a generally rather mixed performance (Quan and Li
2021). We highlight here the replacement of the original linear regression model
with a feed-forward neural network by Korus and Huang (2017), and the observation
that amore accurate prediction can be achievedwhen the camera’s ISO speed is taken
into account (Quan and Li 2021). Attempts to leverage a deep learning approach to
obtain potentially more expressive features Chakraborty (2020) are commendable
but require a more thorough evaluation for authoritative conclusions.

Overall, image manipulation localization based on camera sensor noise has its
place in the broader universe of digital media forensics when there is a strong prior
belief that the probe image indeed originates from a specific camera. If the manipu-
lated region is sufficiently small, this can be established through conventional full-
frame camera identification.Non-trivial sensormisalignment as discussed inSect. 4.4
can be expected to complicate matters significantly for localization, but we are not
aware of a principled examination of this aspect to date.

4.6 Counter-Forensics

The reliability and the robustness of camera identification based on sensor noise
have been under scrutiny ever since seminal works on sensor noise forensics sur-
faced over 15years ago. As a result, it is widely accepted that PRNU fingerprints
survive a variety of common post-processing operations, including JPEG compres-
sion and resizing. Counter-forensics focuses on more deliberate attempts to impair
successful camera identification by acknowledging that there are scenarios where
intelligent actors make targeted efforts to induce a certain outcome of forensic anal-
yses (Böhme and Kirchner 2013). In this context, it is instructive to distinguish
between two major goals of countermeasures, fingerprint removal and fingerprint
copying (Lukás et al. 2006; Gloe et al. 2007). The objective of fingerprint removal
is the suppression of a camera’s fingerprint to render source identification impossi-
ble. This can be desirable in efforts of protecting the anonymity of photographers,
journalists, or legitimate whistleblowers in threatening environments (Nagaraja et al.
2011). Fingerprint copying attempts to make an image plausibly appear as if it was
captured by a different camera, which is typically associated with nefarious motives.
It strictly implies the suppression of the original fingerprint and it is thus generally a
harder problem. The success of such counter-forensic techniques is to a large degree
bound by the admissible visual quality of the resulting image. If an image purports to
be camera-original but has suffered from noticeable degradation, it will likely raise
suspicion. If anonymity is of utmost priority, strong measures that go along with a
severe loss of image resolution are more likely acceptable.

Existing fingerprint removal methods can be categorized under two general
approaches (Lukás et al. 2006). Methods of the first category are side-informed
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(a) original image (b) modified image (c) close-up

Fig. 4.3 Fingerprint removal with PatchMatch replaces local image content with visually similar
content from elsewhere in the image (Entrieri and Kirchner 2016). The PCE, computed considering
all possible cross-correlation shifts, decreases from 5,617 for the original image to 32 after the
modification. The “anonymized” image has a PSNR of 38.3dB. Original image size: 2,000×2,000
pixels

in the sense that they use an estimate of the sensor noise fingerprint to ensure a
detector output below the identification threshold. Flatfielding—a denoising tech-
nique that targets the general imaging model in Eq. (4.1)—is known to remove the
multiplicative noise termK effectively, but it ideally requires access to the raw sensor
measurements (Lukás et al. 2006; Gloe et al. 2007). Adaptive fingerprint removal
techniques explicitly attempt to minimize Eq. (4.5) by finding a noise sequence that
cancels out the multiplicative fingerprint term in Eq. (4.3) (Karaküçük and Dirik
2015; Zeng et al. 2015). This works best when exact knowledge of the detector (and
thus the images used to estimate K̂) is available.

Uninformed techniques make less assumptions and directly address the robust-
ness of the sensor noise fingerprint. Methods of this category apply post-processing
to the image until the noise pattern is too corrupted to correlate with the finger-
print. No specific knowledge of the camera, the camera’s fingerprint, or the detector
is assumed in this process. However, the high robustness of the sensor fingerprint
makes this a non-trivial problem (Rosenfeld and Sencar 2009), and solutions may
often come with a more immediate loss of image quality compared to side-informed
methods. One promising direction is to induce irreversible sensor misalignment.
Seam-carving—a form of content-adaptive resizing that shrinks images by remov-
ing low-energy “seams” (Avidan and Shamir 2007)—is an effective candidate oper-
ation in this regard (Bayram et al. 2013), although a considerable amount of seams
must be removed to successfully desynchronize the sensor fingerprint (Dirik et al.
2014). This bears a high potential for the removal of “important” seams, degrading
image quality and resolution. In many ways, recomposing the image entirely instead
of removing a large number of seams is thus a more content-preserving alterna-
tive. The idea here is to replace local content with content from elsewhere in the
image with the objective of finding replacements that are as similar to the original
content as possible while lacking the telltale portion of the fingerprint. A modified
version of the PatchMatch algorithm (Barnes et al. 2009) has been demonstrated to
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produce viable results (Entrieri and Kirchner 2016), while a later variant employed
inpainting for this purpose (Mandelli et al. 2017). Figure4.3 showcases an example
of successful fingerprint removal with the PatchMatch algorithm. All three strate-
gies, seam-carving, PatchMatch, and inpainting, can reliably prevent PRNU-based
camera identification from a single image. An aggregation of fingerprint traces from
multiple “anonymized” images from the same camera can reestablish the link to the
common source device to some extent, however (Taspinar et al. 2017; Karaküçük
and Dirik 2019).

In a fingerprint copy attack, a nefarious actor Eve operates with the goal of making
an arbitrary image J look as if it was captured by an innocent user Alice’s camera.
Eve may obtain an estimate K̂ E of Alice’s camera fingerprint from a set of publicly
available images and leverage themultiplicative nature of the PRNU to obtain (Lukás
et al. 2006)

J′ = J(1 + αK̂ E ) , (4.12)

where the scalar factorα > 0 determines the fingerprint strength. Attacks of this type
have been demonstrated to be effective, in the sense that they can successfully mis-
lead a camera identification algorithm in the form of Eq. (4.5). The attack’s success
generally depends on a good choice of α: too low values mean that the bogus image
J′ may not be assigned to Alice’s camera; a too strong embedding will make the
image appear suspicious (Goljan et al. 2011; Marra et al. 2014). In practical scenar-
ios, Eve may have to apply further processing to make her forgery more compelling,
e.g., removing the genuine camera fingerprint, synthesizing color filter interpola-
tion artifacts (Kirchner and Böhme 2009), and removing or adding traces of JPEG
compression (Stamm and Liu 2011).

Under realistic assumptions, it is virtually impossible to preventEve from forcing a
high similarity score in Eq. (4.5). All is not lost, however. Alice can utilize that noise
residuals computed with practical denoising filters are prone to contain remnants
of image content. The key observation here is that the similarity between a noise
residual WI from an image I taken with Alice’s camera and the noise residual WJ′

due to a common attack-induced PRNU term will be further increased by some
shared residual image content, if I contributed to Eve’s fingerprint estimate K̂E .
The so-called triangle test (Goljan et al. 2011) picks up on this observation by also
considering the correlation between Alice’s own fingerprint and bothWI andWJ′ to
determinewhether the similarity betweenWIwithWJ′ is suspiciously large.Apooled
version of the test establishes whether any images in a given set of Alice’s images
have contributed to K̂E (Barni et al. 2018), without determining which. Observe that
in either case Alice may have to examine the entirety of images ever made public
by her. On Eve’s side, efforts to create a fingerprint estimate K̂E in a procedure that
deliberately suppresses telltale remnants of image content can thwart the triangle
test’s success (Caldelli et al. 2011; Rao et al. 2013; Barni et al. 2018), thereby only
setting the stage for the next iteration in the cat-and-mouse game between attacks
and defenses.

The potentially high computational (and logistical) burden and the security con-
cerns around the triangle test can be evaded in a more constrained scenario. Specif-
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ically, assume that Eve targets the forgery of an uncompressed image but only has
access to images shared in a lossy compression format when estimating K̂E . Here, it
can be sufficient to test for the portion of the camera fingerprint that is fragile to lossy
compression to establish that Eve’s image J′ does not contain a complete fingerprint
(Quiring andKirchner 2015). Thisworks because the PRNU in uncompressed images
is relatively uniform across the full frequency spectrum, whereas lossy compression
mainly removes high-frequency information from images. As long as Alice’s public
images underwent moderately strong compression, such as JPEG at a quality factor
of about 85, no practicable remedies for Eve to recover the critically missing portion
of her fingerprint estimate are known at the time of this writing (Quiring et al. 2019).

4.7 Camera Fingerprints and Deep Learning

The previous sections have hopefully given the reader the impression that research
around PRNU-based camera fingerprints is very much alive and thriving, and that
new (and old) challenges continue to spark the imagination of academics and prac-
titioners alike. Different from the broader domain of media forensics, which is now
routinely drawing on deep learning solutions, only a handful of works have made
attempts to apply ideas from this rapidly evolving field to the set of problems typically
discussed in the context of device-specific (PRNU-based) camera fingerprints. We
can only surmise that this in part due to the robust theoretical foundations that have
defined the field and that have ultimately led to the wide acceptance of PRNU-based
camera fingerprints in practical forensic casework, law enforcement, and beyond.
Data-driven “black-box” solutions may thus appear superfluous to many.

However, one of the strengths that deep learning techniques can bring to the rigid
framework of PRNU-based camera identification is in fact their very nature: they
are data-driven. The detector in Sect. 4.3 was originally derived under a specific
set of assumptions with respect to the imaging model in Eq. (4.1) and the noise
residuals in Eq. (4.3). There is good reason to assume that real images will deviate
from these simplified models to some degree. First and foremost, noise residuals
from a single image will always suffer from significant and non-trivial distortion, if
we accept that content suppression is an ill-posed problem in the absence of viable
image models (and possibly even of the noise characteristics itself (Masciopinto and
Pérez-González 2018)). This opens the door to potential improvements from data-
driven approaches, which ultimately do not care about modeling assumptions but
rather learn (hopefully) relevant insights from the training data directly.

One such approach specifically focuses on the extraction of a camera signature
from a single image I at test time (Kirchner and Johnson 2019). Instead of relying
on a “blind” denoising procedure as it is conventionally the case, a convolutional
neural network (CNN) can serve as a flexible non-linear optimization tool that learns
how to obtain a better approximation of K. Specifically, the network is trained to
extract a noise pattern K̃ to minimize ‖K̂ − K̃‖22, as the pre-computed estimate K̂ is
the best available approximation of the actual PRNU signal under the given imaging
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Fig. 4.4 Camera identification from noise signals computed with a deep-learning based fingerprint
extractor (coined “SPN-CNN”) (Kirchner and Johnson 2019). The ROC curves were obtained by
thresholding the normalized correlation, ρ

(0)
ncc, between the extracted SPN-CNN noise patterns,

K̃, and “conventional” camera fingerprints, K̂, for patches of size 100 × 100 (blue) and 50 × 50
(orange). Device labels correspond to devices in theVISION (Shullani et al. 2017) (top) andDresden
Image Databases (Gloe and Böhme 2010) (bottom). Curves for the standard Wavelet denoiser and
an off-the-shelf DnCNN denoiser (Zhang et al. 2017) are included for comparison

model. The trained network replaces the denoiser F(·) at test time, and the fingerprint
similarity is evaluated directly for K̂ instead of K̂I in Eq. (4.5). Notably, this breaks
with the tradition of employing the very same denoiser for both fingerprint estimation
and detection. Empirical results suggest that the resulting noise signals have clear
benefits over conventional noise residuals when used for camera identification, as
showcased in Fig. 4.4. A drawback of this approach is that it calls for extraction
CNNs trained separately for each relevant camera (Kirchner and Johnson 2019).

The similarity function employed by the detector in Eq. (4.5) is another target
for potential improvement. If model assumptions do not hold, the normalized cross-
correlation may no longer be a good approximation of the optimal detector (Fridrich
2013), and a data-driven approach may be able to reach more conclusive decisions.
Along those lines, a Siamese network structure trained to compare spatially aligned
patches from a fingerprint estimate K̂ and the noise residualW from a probe image I
was reported to greatly outperform a conventional PCE-based detector across a range
of image sizes (Mandelli et al. 2020). Different from the noise extraction approach
byKirchner and Johnson (2019), experimental results suggest that no device-specific
training is necessary. Both approaches have not yet been subjected to more realistic
settings that include sensor misalignment.

While the two works discussed above focus on specific building blocks in the
established camera identification pipeline, we are not currently aware of an end-to-
end deep learning solution that achieves source attribution at the level of individual
devices at scale. There is early evidence, however, to suggest that camera model
traces derived from a deep model can be a beneficial addition to conventional camera
fingerprints, especiallywhen the size of the analyzed images is small (Cozzolino et al.
2020).
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CNNs have also been utilized in the context of counter-forensics, where the two-
fold objective of minimizing fingerprint similarity while maximizing image quality
almost naturally invite data-driven optimization solutions to the problem of side-
informed fingerprint removal. An early proposal trains an auto-encoder inspired
anonymization operator by encoding the stated objectives in a two-part cost function
(Bonettini et al. 2018). The solution, which has to be retrained for each new image,
relies on a learnable denoising filter as part of the network, which is used to extract
noise residuals from the “anonymized” images during training. The trained network is
highly effective at test time as long as the detector uses the same denoising function,
but performance dwindles when a different denoising filter, such as the standard
Wavelet-based approach, is used instead. This limits the practical applicability of the
fingerprint removal technique for the time being.

Overall, it seems almost inevitable that deep learning will take on a more promi-
nent role across a wide range of problems in the field of (PRNU-based) device
identification. We have included these first early works here mainly to highlight the
trend, and we invite the reader to view them as important stepping stones for future
developments to come.

4.8 Public Datasets

Various publicly available datasets have been compiled over time to advance research
on sensor-based device identification, see Table4.1. Not surprisingly, the evolution
of datasets since the release of the trailblazing Dresden Image Database (Gloe and
Böhme 2010) mirrors the general consumer shift from dedicated digital cameras
to mobile devices. There are now also several diverse video datasets with a good
coverage across different devices available. In general, a defining quality of a good
dataset for source device identification is not only the number of available images
per unique device, but also whether multiple instances of the same device model
are represented. This is crucial for studying the effects of model-specific artifacts
on false alarms, which may remain unidentified when only one device per camera
model is present. Other factors worth considering may be whether the image/video
capturing protocol controlled for certain exposure parameters, or whether all devices
were used to capture the same set (or type) of scenes.

Although it has become ever more easy to gather suitably large amounts of data
straight from some of the popular online media sharing platforms, dedicated custom-
made research datasets offer the benefit of a well-documented provenance while fos-
tering the reproducibility of research and mitigating copyright concerns. In addition,
many of these datasets include, by design, a set of flatfield images to facilitate the
computation of high-quality sensor fingerprints. However, as we have seen through-
out this chapter, a common challenge in this domain is to keep pace with the latest
technological developments on the side of camera manufacturers. This translates
into a continued need for updated datasets to maintain practical relevance and time-
liness. Results obtained on an older dataset may not hold up well on data from newer
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Table 4.1 Public datasets with a special focus on source device identification. The table lists the
number of available images and videos per dataset, the number of unique devices and cameramodels
covered, as well as the types of cameras included (C: consumer, D: DSLR, M: mobile device)

Dataset Year Images Videos Devices Models Cameras

Dresden
Gloe and Böhme (2010)*

2010 14k+ 73 25 CD

RAISE
Dang-Nguyen et al. (2015)

2015 8k+ 3 3 D

VISION
Shullani et al. (2017)**

2017 11k+ 0.6k 35 30 M

HDR
Shaya et al. (2018)

2018 5k+ 23 22 M

SOCRatES
Galdi et al. (2019)

2019 9k+ 1k 103 60 M

video-ACID
Hosler et al. (2019)

2019 12k+ 46 36 CDM

NYUAD-MMD
Taspinar et al. (2020)

2020 6k+ 0.3k 78 62 M

Daxing
Tian et al. (2019)

2020 43k+ 1k+ 90 22 M

Warwick
Quan et al. (2020)*

2020 58k+ 14 11 CD

Forchheim
Hadwiger and Riess (2020)**

2020 3k+ 27 25 M

*Includes multiple images of the same scene with varying exposure settings
**Provides auxiliary data from sharing the base data on various social network sites

devices due to novel sensor features or acquisition pipelines. A good example is
the recent release of datasets with a specific focus on high dynamic range (HDR)
imaging (Shaya et al. 2018; Quan et al. 2020), or the provision of annotations for
videos that underwent electronic image stabilization (Shullani et al. 2017). With the
vast majority of media now shared in significantly reduced resolution through online
social network platforms or messaging apps, some of the more recent datasets also
consider such common modern-day post-processing operations explicitly (Shullani
et al. 2017; Hadwiger and Riess 2020).

4.9 Concluding Remarks

Camera-specific sensor noise fingerprints are a pillar of media forensics, and they are
unrivaled when it comes to establishing source device attribution. While our focus
in this chapter has been on still camera images (video data is covered in Chap.5 of
this book), virtually all imaging sensors introduce the same kind of noise fingerprints
as we discussed here. For example, line sensors in flatbed scanners received early
attention (Gloe et al. 2007; Khanna et al. 2007), and recent years have also seen

http://dx.doi.org/https://doi.org/10.1007/978-981-16-7621-5_5
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biometric sensors move into the focus (Bartlow et al. 2009; Kauba et al. 2017;
Ivanov and Baras 2017, 2019, i. a.).

Although keeping track of advances by device manufacturers and novel imaging
pipelines is crucial for maintaining this status, an active research community has
so far always been able to adapt to new challenges. The field has come a long way
over the past 15years, and new developments such as the cautious cross-over into
the world of deep learning promise a continued potential for fruitful exploration.
New perspectives and insights may also arise from applications outside the realm of
media forensics. For example, with smartphones as ubiquitous companions in our
everyday life, proposals to utilize camera fingerprints as building blocks to multi-
factor authentication let users actively provide their device’s sensor fingerprint via a
captured image to be granted access to a web server (Valsesia et al. 2017; Quiring
et al. 2019; Maier et al. 2020, i. a.). This poses a whole range of interesting practical
challenges on its own, but it also invites a broader discussion about what camera
fingerprintsmean to an image-saturatedworld.At theminimum, concerns over image
anonymity must be taken seriously in situations that call for it, and so we also see
counter-forensics as part of the bigger picture unequivocally.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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