
Chapter 13
Video Frame Deletion and Duplication

Chengjiang Long, Arslan Basharat, and Anthony Hoogs

Videos can be manipulated in a number of different ways, including object addition
or removal, deep fake videos, temporal removal or duplication of parts of the video,
etc. In this chapter, we provide an overview of the previous work related to video
frame deletion and duplication and dive into the details of two deep-learning-based
approaches for detecting and localizing frame deletion (Chengjiang et al. 2017) and
duplication (Chengjiang et al. 2019) manipulations. This should provide the reader a
brief overview of the related research and details of a couple of deep-learning-based
forensics methods to defend against temporal video manipulations.

13.1 Introduction

Digital video forgery (Sowmya and Chennamma 2015) is referred to as intentional
modification of the digital video for fabrication. A common digital video forgery
technique is temporal manipulation, which includes frame sequence manipulations
such as dropping, insertion, reordering and looping. By altering only the temporal
aspect of the video the manipulation is not detectable by single-image forensic tech-
niques; therefore, there is need for digital forensics methods that perform temporal
analysis of videos to detect such manipulations.

In this chapter, wewill first focus on the problem of video frame deletion detection
in a given, possibly manipulated, video without the original video. As illustrated in
Fig. 13.1, we define a frame drop to be a removal of any number of consecutive
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Fig. 13.1 The illustration of frame dropping detection challenge. Assuming that there are three
consecutive frame sequences (marked in red, green and blue, respectively) in an original video, the
manipulated video is obtained after removing the green frame sequence. Our goal is to identify the
location of the frame drop at the end of the red frame sequence and the beginning of the blue frame
sequence

frames within a video shot.1 In our work (Chengjiang et al. 2017) to address this
problem, we only consider videos with a single shot to avoid the confusion between
frame drops and shot breaks. Single-shot videos are prevalent from various sources,
like mobile phones, car dashboard cameras or body-worn cameras.

To the best of our knowledge, only a small amount of recent work (Thakur
et al. 2016) has explored automatically detecting dropped frames without a refer-
ence video. In digital forgery detection, we cannot assume a reference video, unlike
related techniques that detect frame drops for quality assurance. Wolf (2009) pro-
posed a frame-by-frame motion energy cue defined based on the temporal infor-
mation difference sequence for finding dropped/repeated frames, among which the
changes are slight. Unlike Wolf’s work, we detect the locations where frames are
dropped in a manipulated video without being compared with the original video.
Recently, Thakur et al. (2016) proposed an SVM-based method to classify tampered
or non-tampered videos. In this work, we explore the authentication (Valentina et al.
2012; Wang and Farid 2007) of the scene or camera to determine if a video has one
or more frame drops without a reference or original video. We expect such authen-
tication is able to explore underlying spatio-temporal relationships across the video
so that it is robust to digital-level attacks and conveys a consistency indicator across
the frame sequences.

We believe that we can still use similar assumption that consecutive frames are
consistent with each other and the consistency will be destroyed if there exists tem-
poral manipulation. To authenticate a video, two-frame techniques such as color
histogram, motion energy (Stephen 2009) and optical flow (Chao et al. 2012; Wang
et al. 2014) have been used. By only using two frames these techniques cannot gen-
eralize to work on both videos with rapid scene changes (often from fast camera

1 A shot is a consecutive sequence of frames captured between the start and stop operations of a
single video camera.
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Fig. 13.2 An illustration of frame duplication manipulation in a video. Assume an original video
has three sets of frames indicated here by red, green and blue rectangles. A manipulated video can
be generated by inserting a second copy of the red set in the middle of the green and the blue sets.
Our goal is to detect both instances of the red set as duplicated and also determine that the second
instance is the one that’s forged

motion) and videos with subtle scene changes such as static camera surveillance
videos.

In the past few years, deep learning algorithms have made significant break-
throughs, especially in the image domain (Krizhevsky et al. 2012). The features com-
puted by these algorithms have been used for image matching/classification (Zhang
et al. 2014; Zhou et al. 2014). In this chapter, we evaluate approaches using these
features for dropped frame detection using two to three frames. However, these
image-based deep features still lack modeling the motion effectively.

Inspired by Tran et al.’s C3D network (Tran et al. 2015), which is able to extract
powerful spatio-temporal features for action recognition, we propose a C3D-based
network for detecting frame drops, as illustrated in Fig. 13.3. As we can observe,
there are three aspects to distinguish our C3D-based network approach (Chengjiang
et al. 2017) from Tran et al.’s work. (1) Our task is to check whether there exist
frames dropped between the 8th and the 9th frame, which makes the center part
more informative than the two ends of the 16-frame video clips; (2) the output of the
network has two branches, which correspond to “frame drop” and “no frame drop”,
between the 8th and the 9th frame; (3) unlike most approaches, we use the output
scores from the network as confidence score directly and define confidence score
with a peak detection step and a scale term based on the output score curves; and (4)
such a network is able to not only predict whether the video has frame dropping but
also detect the exact location where the frame dropping occurs.

To summarize, the contributions of our work (Chengjiang et al. 2017) are:

• Proposed a 3D convolutional network for frame dropping detection, and the con-
fidence score is defined with a peak detection step and a scale term based on the
output score curves. It is able to identify whether there exists frame dropping and
even determine the exact location of frame dropping without any information of
the reference/original video.

• For performance comparison, we also compared a series of baselines, includ-
ing cue-based algorithms (color histogram, motion energy and optical flow) and
learning-based algorithms (an SVM algorithm and convolutional neural networks
(CNNs) using two or three frames as input).
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• The experimental results on both the Yahoo Flickr Creative Commons 100Million
(YFCC100m) dataset and the Nimble Challenge 2017 dataset clearly demonstrate
the efficacy of the proposed C3D-based network.

An increasingly large volume of digital video content is becoming available in our
daily lives through the internet due to the rapid growth of increasingly sophisticated,
mobile and low-cost video recorders. These videos are often edited and altered for
various purposes using image and video editing tools that have become more readily
available. Manipulations or forgeries can be done for nefarious purposes to either
hide or duplicate an event or content in the original video. Frame duplication refers to
a video manipulation where a copy of a sequence of frames is inserted into the same
video either replacing previous frames or as additional frames. Figure13.2 provides
an example of frame duplication where in the manipulated video the red frame
sequence from the original video is inserted between the green and the blue frame
sequences. As a real-world example, frame duplication forgery could be done to hide
an individual leaving a building in a surveillance video. If such a manipulated video
was part of a criminal investigation, without effective forensics tools the investigators
could be misled.

Videos can also be manipulated by duplicating a sequence of consecutive frames
with the goal of concealing or imitating specific content in the same video. In
this chapter, we also describe a coarse-to-fine framework based on deep convo-
lutional neural networks to automatically detect and localize such frame duplica-
tion (Chengjiang et al. 2019). First, an I3D network finds coarse-level matches
between candidate duplicated frame sequences and the corresponding selected origi-
nal frame sequences. Then a Siamese network based onResNet architecture identifies
fine-level correspondences between an individual duplicated frame and the corre-
sponding selected frame. We also propose a robust statistical approach to compute a
video-level score indicating the likelihood of manipulation or forgery. Additionally,
for providing manipulation localization information we develop an inconsistency
detector based on the I3D network to distinguish the duplicated frames from the
selected original frames. Quantified evaluation on two challenging video forgery
datasets clearly demonstrates that this approach performs significantly better than
four state-of-the-art methods.

It is very important to develop robust video forensic techniques, to catch videos
with increasing sophisticated forgeries. Video forensics techniques (Milani et al.
2012; Wang and Farid 2007) aim to extract and exploit features from videos that can
distinguish forgeries from original, authentic videos. Like other areas in information
security, the sophistication of attacks and forgeries continue to increase for images
and videos, requiring a continued improvement in forensic techniques. Robust detec-
tion and localization of duplicated parts of a video can be a very useful forensic tool
for those tasked with authenticating large volumes of video content.

In recent years, multiple digital video forgery detection approaches have been
employed to solve this challenging problem.Wang andFarid (2007) proposed a frame
duplicationdetection algorithmwhich takes the correlation coefficient as ameasure of
similarity. However, such an algorithm results in a heavy computational load due to a
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large number of correlation calculations. Lin et al. (2012) proposed to use histogram
difference (HD) instead of correlation coefficients as the detection features. The
drawback is that the HD features do not show strong robustness against common
video operations or attacks. Hu et al. (2012) propose to detect duplicated frames
using video sub-sequence fingerprints extracted from the DCT coefficients. Yang et
al. (2016) propose an effective similarity-analysis-based method that is implemented
in two stages, where the features are obtained via SVD. Ulutas et al. propose to use
a BoW model (Ulutas et al. 2018) and binary features (Ulutas et al. 2017) for frame
duplication detection. Although deep learning solutions, especially those based on
convolution neural networks, have demonstrated promising performance in solving
many challenging vision problems such as large-scale image recognition (Kaiming
et al. 2016; Stock and Cisse 2018), object detection (Shaoqing et al. 2015; Yuhua
et al. 2018; Tang et al. 2018) and visual captioning (Venugopalan et al. 2015; Aneja
et al. 2018; Huanyu et al. 2018), no deep learning solutions were developed for this
specific task at the time, which motivated us to fill this gap.

In Chengjiang et al. (2019) we describe a coarse-to-fine deep learning framework,
called C2F-DCNN, for frame duplication detection and localization in forged videos.
As illustrated in Fig. 13.4, we first utilize an I3D network (Carreira and Zisserman
2017) to obtain the candidate duplicate sequences at a coarse level; this helps narrow
the search faster through longer videos. Next, at a finer level, we apply a Siamese
network composed of two ResNet networks (Kaiming et al. 2016) to further confirm
duplication at the frame level to obtain accurate corresponding pairs of duplicated
and selected original frames. Finally, the duplicated frame range can be distinguished
from the corresponding selected original frame range by our inconsistency detector
that is designed as an I3D network with 16-frames as an input video clip.

Unlike other methods, we consider the consistency between two consecutive
frames from a 16-frame video clip in which these two consecutive frames are at
the center, i.e., 8th and 9th frame. This is aimed at capturing the temporal context
for matching a range of frames for duplication. Inspired by Long et al. (2017), we
design an inconsistency detector based on the I3D network to cover three categories,
i.e., “none”, “frame drop” and “shot break”, which represent that between the 8th
and 9th frame there are no manipulations, frames removal within one shot, and a shot
boundary transition, respectively. Therefore, we are able to use output scores from the
learned I3D network to formulate a confidence score of inconsistency between any
two consecutive frames to distinguish the duplicated frame range from the selected
original frame range, even in videos with multiple shots.

We also proposed a heuristic strategy to produce a video-level frame duplication
likelihood score. This is built upon the measures like the number of possible frames
duplicated, the minimum distance between duplicated frames and selected frames,
and the temporal gap between the duplicated frames and the selected original frames.

To summarize, the contributions of this approach (Chengjiang et al. 2019) are as
follows:

• A novel coarse-to-fine deep learning framework for frame duplication detection
and localization in forgedvideos. This framework features fine-tuned I3Dnetworks
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and the ResNet Siamese network, providing a robust yet efficient approach to
process large volumes of video data.

• Designed an inconsistency detector based on a fine-tuned I3D network that covers
three categories to distinguish duplicated frame range from the selected original
frame range.

• A heuristic formulation for video-level detection score, which leads to significant
improvement in detection benchmark performance.

• Evaluated performance on two video forgery datasets and the experimental results
strongly demonstrate the effectiveness of the proposed method.

13.2 Related Work

13.2.1 Frame Deletion Detection

The most related prior work can be roughly split into two categories: video inter-
frame forgery identification and shot boundary detection.

Video inter-frame forgery identification. Video inter-frame forgery involves
frame insertion and frame deletion. Wang et al. proposed an SVM method (Wang
et al. 2014) based on the assumption that the optical flows are consistent in an
original video, while in forgeries the consistency will be destroyed. Chao’s optical
flow method (Chao et al. 2012) provides different detection schemes for inter-frame
forgery based on the observation that the subtle difference between frame insertion
and deletion. Besides optic flow, Wang et al. (2014) also extracted the consistency of
correlation coefficients of gray values as distinguishing features to classify original
videos and forgeries. Zheng et al. (2014) proposed a novel feature called block-wise
brightness variance descriptor (BBVD) for fast detection of video inter-frame forgery.
Different from this inter-frame forgery identification, our proposed C3D-based net-
work (Chengjiang et al. 2017) is able to explore the powerful spatio-temporal rela-
tionships as the authentication of the scene or camera in a video for frame dropping
detection.

Shot Boundary Detection. There is a large amount of work to solve the shot
boundary detection problem (Smeaton et al. 2010). The task of shot boundary detec-
tion (Smeaton et al. 2010) is to detect the boundaries to separate multiple shots
within a video. The TREC video retrieval evaluation (TRECVID) is an important
benchmark dataset for automatic shot boundary detection challenge. And different
research groups from across the world have worked to determine the best approaches
to shot boundary detection using a common dataset and common scoring metrics.
Instead of detecting where two shots are concatenated, we are focused on detecting
a frame drop within a single shot.
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Fig. 13.3 The pipeline of the C3D-based method. At the training stage, the C3D-based network
takes 16-frame video clips extracted from the video dataset as input, and produces two outputs, i.e.,
“frame drop” (indicated with “+”) or “no frame drop” (indicated with “–”). At the testing stage,
we decompose a testing video into a sequence of continuous 16-frame clips and then fit them into
the learned C3D-based network to obtain the output scores. Based on the score curves, we use a
peak detection step and introduce a scale term to define the confidence scores to detect/identify
whether there exist dropped frames for per frame clip or per video. The network model consisted
of 66 million parameters with 3× 3× 3 filter size at all convolutional layers

13.2.2 Frame Duplication Detection

The research related to frame duplication can be broadly divided into inter-frame
forgery, copy-move forgery and convolutional neural networks.

Inter-frame forgery refers to frame deletion and frame duplication. For features
used for inter-frame forgery, either spatially or temporally, keypoints are extracted
from nearby patches recognized over distinctive scales. Keypoint-based methodolo-
gies can be further subdivided into direction-based (Douze et al. 2008; Le et al. 2010),
keyframe-based coordinating (Law-To et al. 2006) and visual-words-based (Sowmya
and Chennamma 2015). In particular, keyframe-based feature has been shown to per-
form well for close video picture/feature identification (Law-To et al. 2006).

In addition to keypoint-based features, Wu et al. (2014) propose a velocity field
consistency-based approach to detect inter-frame forgery. This method is able to
distinguish the forgery types, identify the tampered video and locate the manipulated
positions in forged videos as well. Wang et al. (2014) propose to make full use of
the consistency of the correlation coefficients of gray values to classify original
videos and inter-frame forgeries. They also propose an optical flow method (Wang
et al. 2014) based on the assumption that the optical flows are consistent in an
original video, while in forgeries the consistency will be destroyed. The optical flow
is extracted as a distinguishing feature to identify inter-frame forgeries through a
support vector machine (SVM) classifier to recognize frame insertion and frame
deletion forgeries.
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Fig. 13.4 The C2F-DCNN framework for frame duplication detection and localization. Given a
testing video, we first run the I3D network (Carreira and Zisserman 2017) to extract deep spatial-
temporal features and build the coarse sequence-to-sequence distance to determine the possible
frame sequences that are likely to have frame duplication. For the likely duplicated sequences, a
ResNet-based Siamese network further confirms a frame duplication at the frame level. For the
videos with duplication detected, temporal localization is determined with an I3D-based inconsis-
tency detector to distinguish the duplicated frames from the selected frames

Huang et al. (2018) proposed a fusion of audio forensics detection methods for
video inter-frame forgery. Zhao et al. (2018) developed a similarity analysis-based
method to detect inter-frame forgery in a video shot. In this method, the HSV color
histogram is calculated to detect and locate tampered frames in the shot, and then
the SURF feature extraction and FLANN (Fast Library for Approximate Nearest
Neighbors) matching are used for further confirmation.

Copy-move forgery is created by copying and pasting content within the same
frame, and potentially post-processing it (Christlein et al. 2012; D’Amiano et al.
2019).Wang et al. (2009) propose a dimensionality reduction approach through prin-
cipal component analysis (PCA) on the different pieces. Mohamadian et al. (2013)
develop a singular value decomposition (SVD) based method in which the image
is isolated into numerous little covering squares and after that SVD is requested to
remove the copied frames. Yang et al. (2018) proposed a copy-move forgery detec-
tion based on a modified SIFT-based detector. Wang et al. (2018) presented a novel
block-based robust copy-move forgery detection approach using invariant quater-
nion exponent moments. D‘Amiano et al. (2019) proposed a dense-field method
with a video-oriented version of PatchMatch for the detection and localization of
copy-move video forgeries.

Convolutional neural networks (CNNs) have been demonstrated to learn rich,
robust and powerful features for large-scale video classification (Karpathy et al.
2014). Various 3D CNN architectures (Tran et al. 2015; Carreira and Zisserman
2017;Hara et al. 2018;Xie et al. 2018) have been proposed to explore spatio-temporal
contextual relations between consecutive frames for representation learning. Unlike
the existing methods for inter-frame forgery and copy-move forgery which mainly
use hand-crafted features or bag-of-words, we take advantage of convolutional neural
networks to extract spatial and temporal features for frame duplication detection and
localization.
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13.3 Frame Deletion Detection

There is limited work exploring frame deletion or dropping detection problem with-
out reference or original video. Therefore, we first introduce a series of baselines,
including cue-based and learning-based methods, and then introduce our proposed
C3D-based CNN.

13.3.1 Baseline Approaches

We studied three different cue-based baseline algorithms from the literature, i.e., (1)
color histogram, (2) optical flow (Wang et al. 2014; Chao et al. 2012) and (3) motion
energy (Stephen 2009) as follows:

• Color histogram. We calculate the histograms on all R, G and B three chan-
nels. Whether there are frames dropped between the two consecutive frames is
detected by thresholding the score calculated by the L2 distances based on the
color histograms of the two adjacent frames.

• Optical flow. We calculate the optical flow (Wang et al. 2014; Chao et al. 2012)
from the two adjacent frames by the Lucas-Kanade method. Whether there exist
frames dropped between the current frame and the next frame is detected by
thresholding the L2 distance between the average moving direction between the
previous frame and the current frame, and the average moving direction between
the current frame and the next frame.

• Motion energy. Motion energy is the temporal information (TI) difference
sequence (Stephen 2009), i.e., the difference of Y channel in the YCrCb color
space. Whether there exist frames dropped between the current frame and the next
frame is detected by thresholding the motion energy between the current frame
and the next frame.

Note that each algorithm mentioned above compares two consecutive frames and
estimates whether there are missing frames between them. We also developed four
learning-based baseline algorithms as follows:

• SVM. We train an SVM model to predict whether there are frames dropped
between two adjacent frames. The feature vector is the concatenation of the abso-
lute difference of color histograms and the two-dimensional absolute difference of
the optical flow directions. The optical flow dimensionality is much smaller than
the color histogram, and therefore we give it a higher weight.

• Pairwise Siamese Network. We train a Siamese CNN that determines if the two
input frames are consecutive or if there is frame dropping between them. Each
CNN consists of two convolutional layers and three fully connected layers. The
loss used is contrastive loss.

• Triplet Siamese Network. We extend the pairwise Siamese network to use three
consecutive frames. Unlike the pairwise Siamese network, the triplet Siamese
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Table 13.1 A list of related algorithms for temporal video manipulation detection. The first three
algorithms are cue-basedwithout any trainingwork.The rest are learned-based algorithms, including
the traditional SVM, the popular CNNs and the method we proposed in Chengjiang et al. (2019)

Method Brief description Learning?

Color histogram RGB 3 channel histograms +
L2 distance

No

Optical flow The optic flow (Wang et al.
2014; Chao et al. 2012) with
Lucas-Kanade method + L2
distance

No

Motion energy Based on temporal information
difference (Stephen 2009)
sequence

No

SVM 770-D feature vector
(3× 256-D RGB histogram +
2-D optic flow)

Yes

Pairwise Siamese Network Siamese network architecture
(2 conv layers + 3 fc layers +
contrastive loss)

Yes

Triplet Siamese Network Siamese network architecture
(Alexnet-variant +
Euclidean&contrastive loss)

Yes

Alexnet (Krizhevsky et al.
2012) Network

Alexnet-variant network
architecture

Yes

C3D-based
Network (Chengjiang et al.
2019)

C3D-variant network
architecture + confidence score

Yes

network consisted of three Alexnets (Krizhevsky et al. 2012) merging their output
with Euclidean loss between the previous frame and the current frame, and with
contrastive loss between the current frame and the next frame.

• Alexnet-variant Network. The input frames are converted to gray-scale and put
into the RGB channels.

To facilitate the comparison of the competing algorithms,we summarize the above
descriptions in Table 13.1.

13.3.2 C3D Network for Frame Deletion Detection

The baseline CNN algorithms we investigated lacked a strong temporal feature suit-
able to capture the signature of frame drops. These algorithms only used features from
two to three frames that were computed independently. C3D network was originally
designed for action recognition, however, we found that spatio-temporal signature
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produced by the 3D convolution is also very effective in capturing the frame drop
signatures.

The pipeline of our proposed method is as shown in Fig. 13.3. As we can observe,
there are three modifications from the original C3D network. First, the C3D network
takes clips of 16 frames, therefore we check the center of the clip (between frames 8
and 9) for frame drops to give equal context on both sides of the drop. This is done by
formulating our training data so that frame drops only occur in the center. Secondly,
we have a binary output associated with “frames dropped” and “no frames dropped”
between the 8th and 9th frame. Lastly, we further refine the per-frame network output
scores into a confidence score using peak detection and temporal scaling to further
suppress the noisy detections. With the refined confidence scores we are not only
able to identify whether the video has frame drops but also localize them by applying
the network to the video in a sliding window fashion.

13.3.2.1 Data Preparation

To obtain the training data, we used 2,394 iPhone 4 consumer videos from the
World Dataset made available on the DARPA Media Forensics (MediFor) program
for research. We pruned the videos such that all videos were of length 1–3min.
We get ended up with 314 videos, of which we randomly selected 264 videos for
training, and the rest 50 videos for validation. We developed a tool that randomly
drops fixed-length frame sequences from videos. It picks a random number of frame
drops and random frame offsets in the video for each removal. The frame drops do
not overlap, and it forces 20 frames to be kept around each drop. In our experiments,
we manipulate each video many different times to create more data. We vary the
fixed frame drop length to see how it affects detection we used 0.5 s, 1 s, 2 s, 5 s
and 10 s as five different frame drop durations. We used the videos with these drop
durations to train a general C3D-based network for frame drop detection.

13.3.2.2 Training

We usemomentumμ = 0.9, γ = 0.0001 and set power to be 0.075.We start training
at a base learning rate of α = 0.001 and the “inv” as the learning rate policy. We
set the batch size to be 15 and use the 206000th iteration as the learned model for
testing, which achieves about 98.2% validation accuracy.

13.3.2.3 Testing

The proposed C3D-based network is able to identify the temporal removal manipu-
lation due to dropped frames in a video and also localize one or more frame drops
within the video. We observe that some videos captured by moving digital cam-
eras may have multiple changes due to quickly camera motion, zooming in/out, etc.,
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which can be deceiving to the C3D-based network and can result in false frame drop-
ping detections. In order to reduce such false alarms and increase the generalization
ability of our proposed network, we propose an approach to refine the raw network
output scores to the confidence scores using peak detection and introduction of a
scale term based on the output score variation, i.e.,

1. We first detect the peaks on the output score curve obtained from the proposed
C3D-based network per video. Among all the peaks, we only pick the top 2%
peaks and ignore the rest of the peaks. Then we shift the time window to check
the number of peaks (denoted as np) appearing in the time windowwith i th frame
as the center (denoted as W (i)). If the number is more than one, i.e., other peaks
in the neighborhood, the output score f (i) will be penalized. The value will be
penalized more if there are a lot of high peaks detected. The intuition behind is
that we want to reduce the false alarms when there are multiple peaks occurring
close just because the camera is moving or even zooming in/out.

2. We also introduce a scale term �(i) defined as the difference of the median score
and the minimum score within the time window W (i) to control the influence of
the camera motion.

Based on the above statement, we can obtain the confidence score for the i th frame
as

fcon f (i) =
{

f (i) − λ�(i) when np < 2
f (i)
np

− λ�(i) otherwise , (13.1)

where
W (i) = {i − w

2
, . . . , i + w

2
}. (13.2)

Note that λ in Eq.13.1 is a parameter to control how much the scale term affects the
confidence score, and w in Eq.13.2 indicates the width of the time window.

For testing per frame, say i th frame, we first form a 16-frame video clip and set
the i th frame to be the 8th frame in the video clip, and then we can get the output
score fcon f (i). If fcon f (i) > Threshold, then we predict there are dropped frames
between the i th frame and the (i + 1)th frame. For testing per video, we take it
as a binary classification and confidence measure per video. To simplify, we use a
simple confidence measure, i.e., max

i
fcon f (i) across all frames. If max

i
fcon f (i) >

Threshold, then there are temporal removal within the video. Otherwise, the video
is predicted without any temporal removal. The results reported in this work are
without any Threshold as we are reporting the ROC curves.

13.3.3 Experimental Result

We conducted the experiments on a Linux machine with Intel(R) Xeon(R) CPU E5-
2687 0 @ 3.10GHz, 32GB system memory and graphical card NVIDIA GTX 1080
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(a) (b) (c)

(d) (e) (f)

Fig. 13.5 Performance comparison on the YFCC100m dataset against seven baseline approaches,
using per-frame ROCs for five different drop durations (a–e), and (f) is frame-level ROC for all the
five drop durations combined

(Pascal). We report our results as the ROC curves based on the output score fcon f (i)
and accuracy as metrics. We present the ROC curves with false positive rate as well
as false alarm rate per minute to provide and demonstrate the level of usefulness for
a user that might have to adjudicate each detection reported by the algorithm. We
present the ROC curves for both per-frame analysis where the ground truth data is
available and per-video analysis otherwise.

To demonstrate the effectiveness of the proposed approach, we ran experiments
on the YFCC100m dataset2 and the Nimble Challenge 2017 (Development 2 Beta
1) dataset.3

13.3.3.1 YFCC100m Dataset

We download 53 videos tagged with iPhone from Yahoo Flickr Creative Commons
100 Million (YFCC100m) dataset and manually verified that they are single-shot
videos. To create ground truth we used our automatic randomized frame dropping
tool to generate the manipulated videos. For each video we generated manipulated

2 YFCC100m dataset: http://www.yfcc100m.org.
3 Nimble Challenge 2017 dataset: https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-
evaluation.

http://www.yfcc100m.org
https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
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Table 13.2 The detailed results of our proposed C3D-based network. #pos and #neg are the number
instances for the positive and the negative testing 16-frame video clips, respectively. The Accpos
and Accneg are the corresponding accuracy. Acc is the total accuracy. All the accuracies use the
unit %

Duration (s) #pos : #neg Accpos Accneg Acc

0.5 2816:416633 98.40 98.15 98.16

1 2333:390019 99.49 98.18 98.18

2 2816:416633 99.57 98.11 98.12

5 1225:282355 99.70 98.17 98.18

10 770:239210 100.00 98.12 98.13

videos with frame drops of 0.5, 1, 2, 5 or 10 s intervals at random locations. For each
video and each drop duration, we randomly generate 10 manipulated videos. In this
way we collect 53 × 5 × 10 = 2650 manipulated videos as testing dataset.

For each drop duration, we run all the competing algorithms in Table13.1 on the
530 videos with the parameter setting w = 16, λ = 0.22. The experimental results
are summarized in the ROC curves for all these five different drop durations in
Fig. 13.5.

One can note that (1) the traditional SVM outperforms the three simple cue-based
algorithms; (2) the four convolution neural networks algorithms performmuch better
than the traditional SVM and all the cue-based algorithms; (3) among all the CNN-
based networks, both the triplet Siamese network and the Alexnet-variant network
perform similar and better than the pairwise Siamese network; and (4) our proposed
C3D-based network performs the best. This provides some empirical support to the
hypothesis that the proposed C3D-based method is able to take advantage of the
temporal and spatial correlations, while the other CNN-based networks only explore
the spatial information in the individual frames.

To better understand the C3D-based network, we provide more experimental
details in Table13.2. With the drop duration increase, both the number of positive
and negative testing instances decrease and the positive accuracy keeps increasing.
As one might expect, the shorter the frame drop duration, the more difficult it is to
detect.

We also merge the results of the C3D-based network with five different drop
durations in Fig. 13.5 together to plot a unified ROC curve. For comparison, we also
plot another ROC curve that uses the output scores to detect whether there exist frame
dropswithin a testing video. Aswe can see in Fig. 13.5(f), using output score from the
C3D-based network, we can still achieve very good performance to 0.9983854 AUC.
This observation can be explained by the fact that the raw phone videos from the
YFCC100m dataset have less quick motion, no zooming in/out occurring and even
no video manipulations. Also, the manipulated videos are generated in the same way
as the generation of training manipulated videos with the same five drop durations.
Since there are no overlaps on the video contents between training videos and testing
videos, such a good performance demonstrates the power and the generalization
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(a) (b)

(c) (d)

Fig. 13.6 The visualization of two successful examples (one true positive and the other one is true
negative) and two failure examples (one false positive and the other one is false negative) from the
YFCC100m dataset. The red dashed line indicates the location between the 8th frame and the 9th
frame where we test for a frame drop. The red arrows point to the frame on the confidence score
plots

ability of the trained network. Although using output score directly achieves a very
good AUC, using the confidence score defined in Eq.13.1 can still improve the AUC
from 0.9983854 to 0.9992465. This demonstrates the effectiveness of our confidence
score defined with such a peak detection step and a scale term.

We visualize both success and failure cases in our proposed C3D-based network,
as shown in Fig. 13.6. Looking at the successful cases in Fig. 13.6(a), “frame drops”
is identified correctly in the 16-frame video clip because a man stands at one side in
the 8th frame and move to another side suddenly in the 9th frame, and the video clip
in Fig. 13.6(b) is predicted as “no frame drops” correctly since a child follows his
father in all 16 frames and the 8th frame and the 9th frame are consistent with each
other.

Regarding the failures cases, as shown in Fig. 13.6(c), there is no frame drop but it
is still identified as “frame drop” between the 8th frame and the 9th frame due to the
camera shakes during the video capture of such a street scene. Also, “frame drop”
in the top clip cannot be detected correctly between the 8th frame and the 9th frame
in the video clip, as shown in Fig. 13.6(d), since the scene inside the bus has almost
no visible changes between these two frames.
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Fig. 13.7 The ROC curve of our proposed C3D-based network on the Nimble Challenge 2017
dataset

Note that our training stage is carried out off-line. Here we only offer the runtime
for the testing stage under our experimental environment. For each testing video clip
with a 16-frame length, it takes about 2 s. For a one-minute short video with 30 FPS,
it requires about 50min to complete the testing throughout all the frame sequence.

13.3.3.2 Nimble Challenge 2017 Dataset

In order to check whether our proposed C3D-based network is able to identify a
testing video with unknown arbitrary drop duration, we also conducted experiments
on the Nimble Challenge 2017 dataset, specifically the NC2017-Dev2Beta1 version,
in which there are 209 probe videos with various video manipulations. Among these
videos, there are six videos manipulated with “TemporalRemove”, which is regarded
as “frame dropping”. Therefore, we run our proposed C3D-based network as a binary
classifier to classify all these 209 videos into two groups, i.e., “frame dropping” and
“no frame dropping”, at the video level. In this experiment, the parameters are set as
w = 500, λ = 1.25.

We first plot the output scores from the C3D-based network and the confidence
score of each of the six videos is labeled with “TemporalRemove” in Fig. 13.9. It
is clear that the video named “d3c6bf5f224070f1df74a63c232e360b.mp4” has the
lowest confidence score smaller than zero.

To explain such a case, we further check the content of the video, as shown in
Fig. 13.8. As we can observe, this video is even really hard for us to identify it as
“TemporalRemoval” since it is taken by a static camera and only the lady’s mouth
and head are taking very slight changes across the whole video from the beginning
to the end. As we trained purely on iPhone videos, our training network was biased
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Fig. 13.8 The entire frame sequence of the 34-second video
“d3c6bf5f224070f1df74a63c232e360b.mp4”, which has 1047 frames and was captured by a
static camera. We observe that only the lady’s mouth and head are taking very slight change across
the video from the beginning to the end

Fig. 13.9 The illustration of output scores from the C3D-based network and their confidence scores
for six videos labeled with “TemporalRemove” from the Nimble Challenge 2017 dataset. The blue
curve is the output score, the red “+” marks the detected peaks, and the red confidence score is used
to determine whether the video can be predicted as a video with “frame drops”

toward videos with camera motion. With a larger dataset of static camera videos, we
can train different networks for static and dynamic cameras to address this problem.

We plot the ROC curve in Fig. 13.7. As we can see, the AUC of the C3D-based
network with confidence scores is high to 0.96, while the AUC of the C3D-based
network with the output scores directly is only 0.86. The insight behind such a
significant improvement is that there are testing videos with camera quick-moving,
zooming in and out, as well as other types of videomanipulations, and our confidence
scores defined with the peak detection step and the scale term to penalize multiple
peaks occurring too close and large scales is able to significantly reduces the false
alarms. Such a significant improvement by 0.11 AUC strongly demonstrates the
effectiveness of our proposed method.
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13.4 Frame Duplication Detection

As shown in Fig. 13.4, given a probe video, our proposed C2F-DCNN framework is
designed to detect and localize frame duplication manipulation. An I3D network is
used to produce a sequence-to-sequence matrix and determine the candidate frame
sequences at the coarse-search stage. A Siamese network is then applied for a fine-
level search to verify whether frame duplications exist. After this, an inconsistency
detector is applied to further distinguish duplicated frames from selected frames. All
of these steps are described below in detail.

13.4.1 Coarse-Level Search for Duplicated Frame Sequences

In order to efficiently narrow the search space, we start by finding possible duplicate
sets of frames throughout the video using a robust CNN representation. We split a
video into overlapping frame sequences, where each sequence has 64 frames and the
number of overlapped frames is 16.We choose I3DNetwork (Carreira and Zisserman
2017), instead of using C3D network (Tran et al. 2015) due to these reasons: (1) It
inflates 2D ConvNets into 3D and makes filters from typically N × N square to
N×N×N cubic; (2) it bootstraps 3D filters from 2D filters to bootstrap parameters
from the pre-trained ImageNet models; and (3) it paces receptive field growth in
space, time and network depth.

In this work, we apply the pre-trained off-the-shell I3D network to extract the
1024-dimensional feature vector for k = 64 frame sequences since the input for the
standard I3D network is 64 rgb-data and 64 flow-data. We observed that a lot of
time was being spent on the pre-processing. To reduce the testing runtime, we only
compute thefirst k rgb-data and k flow-data items. For the subsequent frame sequence,
we can copy (k − 1) rgb-data and (k − 1) flow-data from the previous video clip,
and only calculate the last rgb-data and flow-data. This significantly improved the
testing efficiency.

Based on the sequence features, we calculate the sequence-to-sequence distance
matrix over the whole video using L2 distance. If the distance is smaller than the
threshold T1, then this indicates that these two frame sequences are likely duplicated
and we take them as two candidate frame sequences for further confirmation during
the next fine-level search.

13.4.2 Fine-Level Search for Duplicated Frames

For the candidate frame sequences, detected by the previous stage described in
Sect. 13.4.1, we evaluate the distance between all pairs of frames across the two
sequences, i.e., a duplicated frame and the corresponding selected original frame.
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Fig. 13.10 A sample distance matrix based on the frame-to-frame distances computed by the
Siamese network between a pair of frame sequences. The symbols shown on the line segment with
low distance are used to compute the video-level confidence score for frame duplication detection

For this purpose we propose a Siamese neural network architecture, which learns
to differentiate between two frames in the provided pair. It consists of two identical
networks by sharing exactly the same parameters, each taking one of the two input
frames. A contrastive loss function is applied to the last layers to calculate the dis-
tance between the pair. In principle, we can choose any neural network to extract
features for each frame.

In this work, we choose the ResNet network (Kaiming et al. 2016) with 152
layers given its demonstrated robustness. We connect two ResNets in the Siamese
architecture with a contrastive loss function, and each loss value associated with the
distance between a pair of frames is formulated into the frame-to-frame distance
matrix, in which the distance is normalized to the range [0, 1]. A distance smaller
than the threshold T2 indicates that these two frames are likely duplicated. For videos
that have multiple consecutive frames duplicated we expect to see a line with low
values parallel to the diagonal in the visualization of the distance matrix, as plotted
in Fig. 13.10.

It is worth mentioning that we provide both frame-level and video-level scores to
evaluate the likelihood of frame duplication. For the frame-level score, we can use the
value in the frame-to-frame distance directly. For the video-level score, we propose a
heuristic strategy to formulate the confidence value.Wefirst find theminimal value of
distance dmin = d(imin, jmin) where imin, jmin = argmin0≤i< j≤n d(i, j) is the frame-
to-frame distance matrix. Then a search is performed in two directions to find the
number of consecutive duplicated frames:

k1 = argmax
k:k≤imin

|d(imin − k, jmin − k) − dmin| ≤ ε (13.3)

and
k2 = argmax

k:k≤n− jmin

|d(imin + k, jmin + k) − dmin| ≤ ε (13.4)

where ε = 0.01 and the length of the interval with duplicated frames can be defined
as
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l = k1 + k2 + 1. (13.5)

Finally, we can formulate the video-level confidence score as follows:

Fvideo = − dmin

l × ( jmin − imin)
. (13.6)

The intuition here is that a more likely frame duplication is indicated by a smaller
value of dmin, a longer interval of duplicated frames and a larger temporal gap between
the selected original frames and the duplicated frames.

13.4.3 Inconsistency Detector for Duplication Localization

We observe that the duplicated frames inserted into the source video usually yield
artifacts due to temporal inconsistency at both the beginning frames and the end
frames in a manipulated video. To automatically distinguish the duplicated frames
from selected frames, we make use of both spatial and temporal information by
training an inconsistency detector to locate this temporal discrepancy. For this pur-
pose, we build upon our work discussed above, Long et al. (2017), which proposed a
C3D-based network for frame-drop detection and only works for single-shot videos.
Instead of using only one RGB stream data as input, we replace the C3D network
with an I3D network to also incorporate the optical flow data stream. It is also worth
mentioning that unlike the I3D network used in Sect. 13.4.1, input to the I3D network
here is a 16-frame temporal interval, every frame in a sliding window, with RGB
and optical flow data. The temporal classification provides insight into the tempo-
ral consistency between the 8th and the 9th frame within the 16-frame interval. In
order to handle multiple shots in a video with hard cuts, we extend the binary clas-
sifier to three classes: “none”—no temporal inconsistency indicating manipulation;
“frame drop”—there are frames removed within one-shot video; and “shot break” or
“break”—there is a temporal boundary or transition between two video shots. Note
that the training data with shot-break videos are obtained from TRECVID 2007
dataset (Kawai et al. 2007), and we only use the hard-cut shot-breaks since soft-cut
changes gradually and has strong consistency between any two consecutive frames.
The confusion matrix in Fig. 13.11 illustrates the high effectiveness of the proposed
I3D network-based inconsistency detector.

Based on the output scores for the three categories from the I3D network, i.e.,
SnoneI3D (i), SdropI3D (i) and SbreakI3D (i), we formulate the confidence score of inconsistency
as the following function:

S(i) = SdropI3D (i) + SbreakI3D (i) − λSnoneI3D (i), (13.7)

where λ is the weight parameter, and for the results presented here, we use λ = 0.1.
We assume the selected original frames have a higher temporal consistency with
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Fig. 13.11 The confusion matrix for three classes of temporal inconsistency within a video, used
with the I3D-based inconsistency. We expect a high likelihood of “drop” class at the two ends of the
duplicated frame sequence and a high “none” likelihood at the ends of the selected original frame
sequence

Fig. 13.12 Illustration of distinguishing duplicated frames from the selected frames. The index
ranges for the red frame sequence and the green sequence are [72, 191] and [290, 409], respectively.
s1 and s2 are the corresponding inconsistency scores for the red sequence and green sequence,
respectively. Obviously, s1 > s2, which indicates that the red sequence is duplicated frames as
expected

frames before and after such frames than the duplicated frames because the insertion
of duplicated frames usually causes a sharp inconsistency at the beginning and the
end of the duplicated interval, as illustrated in Fig. 13.12. Given a pair of frame
sequences that are potentially duplicated, [i, i + l] and [ j, j + l], we compare two
scores,

s1 =
wind∑

k=−wind

S(i − 1 + k) + S(i + l + k) (13.8)

and

s2 =
wind∑

k=−wind

S( j − 1 + k) + S( j + l + k), (13.9)

where wind is the window size. We check the inconsistency at both the beginning
and the end of the sequence. In this work, we set wind = 3 to avoid the failure
cases where a few start or end frames were detected incorrectly. If s1 > s2, then the
duplicated frame segment is [i, i + l]. Otherwise, the duplicated frame segmentation
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Fig. 13.13 Illustration of frame-to-frame distance between duplicated frames and the selected
frames

is [ j, j + l]. As shown in Fig. 13.12, our modified I3D network is able to measure
the consistency between consecutive frames.

13.4.4 Experimental Results

We evaluate our proposed C2F-DCNN method on a self-collected video dataset and
the Media Forensics Challenge 2018 (MFC18)4 dataset (Guan et al. 2019).

Our self-collected video dataset is obtained through automatically adding frame
duplicationmanipulation on the 12 raw static camera videos fromVIRATdataset (Oh
et al. 2011) and 17 dynamic iPhone 4 videos. The duration of each video is in the
range from 47seconds to 3minutes. In order to generate test videos with frame
duplication, we randomly select frame sequences with the duration 0.5, 1, 2, 5 and
10s, and then re-insert them into the same source videos. We use the X264 video
codec and a frame rate of 30 fps to generate these manipulated videos. Note that we
avoid any temporal overlap between the selected original frames and the duplicated
frames in all generated videos. Since we have the frame-level ground truth, we can
use it for frame-level performance evaluation.

The MFC18 dataset consists of two subsets, Dev dataset and Eval dataset, which
we denote as the MFC18-Dev dataset and the MFC18-Eval dataset, respectively.
There are 231 videos in the MFC18-Dev dataset and 1036 videos in the MFC18-
Eval dataset. The duration of each video is in the range from 2seconds to 3minutes.
The frame rate for most of the videos is 29–30 fps, while a smaller number of videos
are 10 or 60 fps and only five videos in the MFC18-Eval dataset are larger than
240 fps. We opt out these five videos and another two videos which have less than 17

4 https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018.

https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018


13 Video Frame Deletion and Duplication 355

frames from the MFC18-Eval dataset because the input for the I3D network should
have at least 17 frames.We use the remaining 1029 videos in theMFC18-Eval dataset
to conduct the video-level performance evaluation.

The detection task is to detect whether or not a video has been manipulated with
frame duplication manipulation, while the localization task to localize the duplicated
frames index. For themeasurementmetrics, we use the performancemeasures of area
under the ROC curve (AUC) for the detection task, and use the Matthews correlation
coefficient

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

for localization evaluation, where TP, FP, TN and FN refer to frames which represent
true positive, false positive, true negative and false negative, respectively. See Guan
et al. (2019) for further details on the metrics.

13.4.4.1 Frame-Level Analysis on Self-collected Dataset

To better verify the effectiveness of deep learning solution in frame-duplication
detection on the self-collected dataset, we consider four baselines: Lin et al.’s
method (Guo-Shiang and Jie-Fan 2012) that uses histogram difference as the detec-
tion features, Yang et al.’s method (Yang et al. 2016) that is an effective similarity-
analysis-based method with SVD features, Ulutas et al.’s method (Ulutas et al. 2017)
based on binary features and another method by them (Ulutas et al. 2018) that uses
bag-of-words with 130-dimensional SIFT descriptors. Different from our proposed
C2F-DCNN method, all of these methods use traditional feature extraction without
deep learning.

Note that the manipulated videos are generated by us, hence both selected original
frames and duplicated frames are accessible to us. We treat these experiments as a
white-box attack and evaluate the performance of frame-to-frame distance measure-
ments.

We run the proposed C2F-DCNN approach and the above-mentioned four state-
of-the-art approaches on our self-collected dataset and the results are summarized
in Table13.3. As we can see, due to the X264 codec, the contents of the duplicated
frames have been affected so that the detection of a duplicated frame and its corre-
sponding selected frame is very challenging. In this case, our C2F-DCNN method
still outperforms the four previous methods.

To help the reader better understand the comparison, we provide a visualization
of the normalized distances between the selected frames and the duplicated frames
in Fig. 13.13. We can see our C2F-DCNN performs the best for both sample videos,
especially with respect to the ability to distinguish the temporal boundary between
duplicated frames andnon-duplicated frames.All these observations strongly demon-
strate the effectiveness of this deep learning approach for frame duplication detection.
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Table 13.3 TheAUC performance of frame-to-frame distancemeasurements for frame duplication
detection on our self-collected video dataset.(unit: %)

Method iPhone 4 videos VIRAT videos

Lin 2012 (Guo-Shiang and
Jie-Fan 2012)

80.81 80.75

Yang 2016 (Yang et al. 2016) 73.79 82.13

Ulutas 2017 (Ulutas et al.
2017)

70.46 81.32

Ulutas 2018 (Ulutas et al.
2018)

73.25 69.10

C2F-DCNN 81.46 84.05

Fig. 13.14 The ROC curves
for video-level frame
duplication detection on the
MFC18-Dev dataset

Fig. 13.15 The ROC curves
for video-level frame
duplication detection on the
MFC18-Eval dataset

13.4.4.2 Video-Level Analysis on the MFC18 Dataset

It is worth mentioning that the duplicated videos in the MFC18 dataset usually
include multiple manipulations, and this makes the content between the selected
original frames and duplicated frames different at times. Therefore, the testing video
in both theMFC18-Dev and theMFC18-Eval datasets are very challenging. Sincewe
are not aware of the details about the generation of all the testing videos, we take this
dataset as a black-box attack and evaluate its video-level detection and localization
performance.
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Table 13.4 The MCC metric in [–1.0, 1.0] range for video temporal localization on the MFC18
dataset. Our approach generates the best MCC score, where 1.0 is perfect

Method MFC18-Dev MFC18-Eval

Lin 2012 (Guo-Shiang and
Jie-Fan 2012)

0.2277 0.1681

Yang 2016 (Yang et al. 2016) 0.1449 0.1548

Ulutas 2017 (Ulutas et al.
2017)

0.2810 0.3147

Ulutas 2018 (Ulutas et al.
2018)

0.0115 0.0391

C2F-DCNN w/ ResNet 0.4618 0.3234

C2F-DCNN w/ C3D 0.6028 0.3488

C2F-DCNN w/ I3D 0.6612 0.3606

Table 13.5 The video temporal localization performance on the MFC18 dataset. Note
√
, × and

⊗ indicate correct cases, incorrect cases and ambiguously incorrect cases, respectively. And #(.)
indicates the number of a kind of specific cases

Dataset #(
√

) #(×) #(⊗)

MFC18-Dev 14 6 1

MFC18-Eval 33 38 15

We compare the proposed C2F-DCNN method and the above-mentioned four
state-of-the-art methods, i.e., Lin 2012 (Guo-Shiang and Jie-Fan 2012), Yang
2016 (Yang et al. 2016),Ulutas 2017 (Ulutas et al. 2017) andUlutas 2018 (Ulutas et al.
2018) on these two datasets. We use the negative minimum distance (i.e.,−dmin) as a
default video-level scoring method to generate a video-level score for each compet-
ingmethod, including ours. “C2F-DCNN+confscore” denotes our best configuration
with C2F-DCNN along with the proposed video-level confidence score defined in
Eq.13.6. In contrast, “C2F-DCNNa” uses only −dmin as the confidence score. The
comparative manipulated video detection results are summarized in Figs. 13.14 and
13.15.

A few observations that we would like to point out: (1) C2F-DCNN always out-
performs the four previous methods for the video-level frame duplication, with the
video-level score as negative minimum distance; (2) with “+conf score”, our “C2F-
DCNN+confscore” method generates a significant boost in AUC as compared to
the baseline score of −dmin and achieves a high correct detection rate at a low false
alarm rate; and (3) the proposed “C2F-DCNN+confscore”method achieves very high
AUC scores on the two benchmark datasets: 99.66% on MFC18-Dev, and 98.02%
on MFC18-Eval.

We also performed a quantified analysis of the temporal localization within a
manipulated video with frame duplication. For comparison with the four previ-
ous methods, we use the feature distance between any two consecutive frames.
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Fig. 13.16 The visualization of confusion bars in video temporal localization. For each subfigure,
the top (purple) bar is ground truth indicating duplication, the middle bar (pink) is the system output
from the proposed method and the bottom bar is the confusion calculated based on the above the
truth and the system output. Note TN, FN, FP, TP and “OptOut” in the confusion are marked in
white, blue, red, green and yellow/black, respectively. a and b–d are correct results, which include
completely correct cases and partially correct cases. e and f show the failure cases

For the proposed C2F-DCNN approach, the best configuration “C2F-DCNN w/
I3D” includes the I3D network as the inconsistency detector. We also provide two
baseline variants by replacing the I3D inconsistency detector with a ResNet net-
work feature distance SRes(i) only (“C2F-DCNNw/ ResNet”) or the C3D network’s
scores SdropC3D (i) − λSnoneC3D (i) from (Chengjiang et al. 2017) (“C2F-DCNN w/ C3D”).
The temporal localization results are summarized in Table13.4, from which we can
observe that (1) our deep learning solutions, “C2F-DCNNw/ ResNet”, “C2F-DCNN
w/ C3D” or “C2F-DCNN w/ I3D” work better than the four previous methods and
“C2F-DCNN w/ I3D” performs the best. These observations suggest that 3D convo-
lutional kernel is able to measure the inconsistency between the consecutive frames,
and both RGB data stream and optical flow data stream are complementary to further
improve the performance.

To better understand the video temporal localization measurement, we plot the
confusion bars on the video timeline based on the truth and the corresponding system
output under different scenarios, as shown in Fig. 13.16. We would like to emphasize
that no algorithm is able to distinguish duplicated frames from selected frames for
the ambiguously incorrect cases indicated as ⊗ in Table13.5, because such videos



13 Video Frame Deletion and Duplication 359

often break the assumption of temporal consistency and in many cases the duplicated
frames are difficult to identify by the naked eye.

13.5 Conclusions and Discussion

We presented a C3D-based network with a confidence score defined with a peak
detection step and a scale term for frame dropping detection. The method we pro-
posed in Chengjiang et al. (2017) flexibly explores the underlying spatio-temporal
relationship across the one-shot videos. Empirically, it is not only able to identify
manipulation of temporal removal type robustly but also to detect the exact location
where the frame dropping occurred.

Our future work includes revising frame dropping strategy to be more realistic for
training video collection, evaluating an LSTM-based network for quicker runtime,
and working on other types of video manipulation detection such as addressing shot
boundaries and duplication in looping cases.

Multiple factors cause frame duplication detection and localization becoming
more andmore challenging in video forgeries. These factors include high frame rates,
multiple manipulations (e.g., “SelectCutFrames”, “TimeAlterationWarp”,
“AntiForensicCopyExif”, “RemoveCamFingerprintPRNU”5) involved before and
after, and gaps between the selected frames and the duplicated frames. In partic-
ular, zero gap between the selected frames and the duplicated frames renders the
manipulation undetectable because the inconsistency which should exist at the end
of the duplicated frames does not appear in the video temporal context.

Regarding the runtime, the I3D network for inconsistency detection is the most
expensive component in our framework but we only apply it on the candidate frames
that are likely to have frame duplication manipulations detected in the coarse-search
stage. For each testing video clip with a 16-frame length, it takes about 2 s with our
learned I3D network. For a one-minute short video with 30 FPS, it requires less than
5min to complete the testing throughout all the frame sequences.

The coarse-to-fine deep learning approach is designed for frame duplication detec-
tion at both frame-level and video-level, as well as for video temporal localization.
This work also included a heuristic strategy to formulate the video-level confidence
score, as well as an I3D network-based inconsistency detector to distinguish the
duplicated frames from the selected frames. The experimental results have demon-
strated the robustness and effectiveness of the method.

Our future work includes continuing to extend multi-stream 3D neural networks
for both frame drop, frame duplication and other video manipulation tasks like loop-
ing detection, working on frame-rate variations and train on multiple manipulations,
investigating the effects of various video codecs on algorithm accuracy.

5 These manipulation operation are defined in the MFC18 dataset.
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