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Health Condition Assessment
of Hydraulic System Based on Cloud
Model and Dempster–Shafer Evidence
Theory

Shuaijie Mei, Mei Yuan, Jin Cui, Shaopeng Dong, and Juanru Zhao

Abstract Hydraulic transmission systems are widely used in industry because of
their high output power and compact structure. To cope with the ambiguity and
uncertainty in the process of hydraulic system health monitoring, this paper adopts
the combination of cloud model and Dempster–Shafer evidence theory for multi-
sensor data fusion from three levels: data layer, feature layer, and decision layer,
which effectively avoids the problemof high conflict of evidence inDempster–Shafer
theory and completes the assessment of health status of a complex hydraulic system.
Firstly, the cloud parameters are calculated to establish the expert knowledge base.
Secondly, the membership matrix is used to obtain the basic probability assignments
of the evidence. Then, the fusion decision of combining the same type of sensors with
evidence iterations is used to improve the efficiency of fusion, and finally, Dempster’s
rule is performed to obtain the hydraulic system health status assessment results. The
feasibility and effectiveness of this method are verified on a real data set.
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54.1 Introduction

Hydraulic systems have become indispensable transmission systems in many fields
under their high stability, high transmission ratio, and adaptability to complex oper-
ating conditions [1]. To ensure the reliability of hydraulic systems operating in harsh
environments, it is necessary to monitor the condition health of hydraulic system
components [2]. The first is a model-based approach based on the modeling of
the physical and structural information of the hydraulic system, which usually has
poor monitoring results due to the inability to obtain enough detailed information
about the complex structure. The second is a statistical approach based on histor-
ical measurement data and fault characteristic information [3], including the deep
learning approach [4], which has become popular in recent years, the shortcoming
of this approach is that it requires a large amount of historical data and has high
requirements for data completeness and certainty [5]. Therefore, considering the
problems of uncertainty and randomness in the operation of hydraulic systems, the
above methods are not better applicable. Dempster–Shafer (D–S) evidence theory
is a means of decision-making based on expert experience and has good advantages
in the problem of ambiguity [6]. However, in the process of multi-sensor fusion, the
evidence theory often suffers from the problem of conflicting or even contradictory
evidence frommultiple sources [7]. In this paper, we use the improved D-S evidence
theory combined with the cloud model, which organically combines the fuzziness
and randomness in the concept of uncertainty using cloud model [8], and calculates
the cloud parameters of each state parameter as well as the affiliation degree; then,
the basic probability assignment matrix of each evidence in D–S theory is obtained
from the affiliation degree of each state parameter; further, to solve the problem of
high conflict of evidence in D–S evidence theory, the isomorphic sensor evidence
is averaged and iterated, and finally, dempster rule evidence synthesis is performed
for heterogeneous sensors to obtain the evaluation results of hydraulic system health
status.

54.2 Materials and Methods

54.2.1 Cloud Model Characteristics

Let U be a quantitative domain of arbitrary dimension expressed through exact
numerical values, C be a qualitative concept within this domain, x be a quantitative
value, a random realization of C , x ∈ U , and x be a random number with a stable
tendency for the determinacy μ(x) ∈ [0, 1] of C .

μ : U → [0, 1]∀x ∈ Ux → μ(x) (54.1)
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Then the distribution of x over the theoretical domain U is called a cloud, and
each x is called a cloud drop. The normal cloud model expresses the numerical
characteristics of a qualitative concept in terms of a set of mutually independent
parameters that together reflect the uncertainty and wholeness of the concept, thus
enabling better quantitative analysis [9]. The numerical characteristics of a cloud
usually contain three parameters: expectation Ex , entropy En , and superb entropy
He. λ is a constant value determined according to the ambiguity and randomness of
specific different parameters.

Ex = x =
∑k

m=1 x

k
(54.2)

En = σx =
√
√
√
√1

k

k∑

m=1

(x − x)2 (54.3)

He = λ (54.3)

54.2.2 D–S Evidence Theory

D–S evidence theory is an imprecise inference theory approach that addresses uncer-
tainty due to lack of knowledge, and uses the “identification fram” � to represent
the set of data to be fused, and gives a function m : 2� → [0,1] if it satisfies

m(∅) = 0,
∑

A⊂�

m(A) = 1 (54.5)

Then m is called the set of basic credibility of such identification frame �, if A is
contained in the identification frame �, m(A) is called the basic credibility function
of A. The basic credibility functionm(A) represents the magnitude of the credibility
of A itself.

For an arbitrary set, D–S evidence inference gives a notion of credibility function

Bel(A) =
∑

B⊂A

m(B) (54.6)

Suppose there exists an A contained in this recognition framework �, then give
the following definition:

pl(A) = 1 − Bel
(
A
)
Dou(A) = Bel

(
A
)

(54.7)
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where pl is called Bel ′s likelihood function, and Dou is called Bel ′s doubt function.
Then according to this definition, we can call pl(A) the seeming truth of A, and
Dou(A) can be called the doubtfulness of A. According to the plausibility synthesis
lawproposed byDempster, thenwe give the synthesis law for two plausibility degrees

m(A) = m1 ⊕ m2 =
∑

Ai
⋂

Bj=A m1(Ai )m2
(
Bj

)

1 − ∑
Ai

⋂
Bj=� m1(Ai )m2

(
Bj

) (54.8)

Using m1,m2, . . . ,mn to represent the credibility distribution function of n data,
and these n data are independent of each other, then multiple credibilities can be
written in the following form after fusion:

m(A) = m1 ⊕ m2 ⊕ · · · ⊕ mn =
∑

∩Ai=A

∏m
i=1 mi (Ai )

1 − ∑
∩Ai=�

∏m
i=1 mi (Ai )

(54.9)

54.2.3 Improved D–S Evidence Theory Based on Cloud
Model

The flow chart of improved D–S evidence theory based on the cloud model for
hydraulic system health condition assessment is shown in Fig. 54.1. It mainly
includes the calculation of cloud model feature parameters, the establishment of
cloud model knowledge base, the calculation of membership function and basic
probability assignment, the fusion of D–S evidence, and the fusion result by fusion
decision.

Suppose that there are n classes of faults in the expert system knowledge base
of the system: F1, F2, F3, ...Fn , each class of faults has m characteristic parameters:
xi1, xi2, ..., xim , where xi j ( j = 1, 2, ..m) denotes the jth parameter of the ith class of
faults. In industry, there are two main types of parameters for industrial equipment,
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discrete and continuous parameters, so these two can be modeled separately. The
required a priori knowledge is obtained through historical information to construct
the fault knowledge base.

For the modeling of continuous parameters, since the values of variables are
different under different fault conditions, the cloud with the main action region as
the bilateral constraint region can be used to approximate the modeling. If the value
interval in the fault signal measured under the rth fault mode is [Cmin(r),Cmax(r)],
the median value of the constraint can be adopted as the expected value, and the
specific cloud model parameters are calculated as follows:

Exi j (r) = (Cmin(r) + Cmax(r))

2
(54.10)

Eni j (r) = (Cmin(r) + Cmax(r))

6
(54.11)

Hei j = λ (54.12)

For the modeling of discrete parameters, the cloud model of the expert system
fault knowledge base can be established directly by experimentally measuring the
mathematical expectation and standard deviation of the variable parameters (see
54.2–54.4). For the characteristic variables of discrete parameters, the membership
degree is calculated as follows, which is the same as continuous parameters.

μi j = e

−(x j−Exi j)
2

2(E ′
ni j)

2

(54.13)

where μi j (k) is the membership degree of the jth characteristic parameter of a fault
signal obtained by the measurement with respect to the jth characteristic pattern of
the i-th class of faults in the expert knowledge base, Exi j denotes the expectation
value previously obtained in the expert knowledge base, and E ′

ni j is a normal random
number generated with the entropy Eni j as the expectation and the superentropy Hei j

as the standard deviation and the normal random number generated. This leads to
the affiliation matrix

Rm×n =

⎡

⎢
⎢
⎢
⎣

μ11 μ12

μ12 μ22

· · · μn1

· · · μn2
...

...

μ1m μ2m

...
...

· · · μnm

⎤

⎥
⎥
⎥
⎦

(54.14)

To improve the credibility and accuracy of the fusion results, the membership
degree matrix Rm×n is normalized.
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γi j = μi j/

n∑

i=1

μi j , j = 1, 2, . . .m (54.15)

The uncertainty of the actual measurement signal due to the errors caused by the
circumstances such as the measurement environment and the measurement method
in the actual project is represented by the variable θ . Wheremax(μi1, μi2, . . . , μnm)

denotes the maximum value of each element in each row of the membership degree
matrix.

θ j = 1 − max(μi1, μi2, . . . , μnm), j = 1, 2, . . .m (54.16)

Thus, the basic probability assignment function can be computationally deter-
mined as

{
m

(
� j

) = θ j , j = 1, 2, . . .m
m

(
Fi j

) = (1 − θ j )γi j , i = 1, 2, . . . n
(54.17)

wherem
(
� j

)
denotes the basic probability assignment of the jth evidence uncertainty

in the test sample, and m
(
Fi j

)
denotes the basic probability assignment of the jth

characteristic parameter of the fault signal obtained from themeasurement compared
to the jth characteristic value of the ith fault in the expert knowledge base. The basic
probability assignment matrix Mm×(n+1) for m rows and n + 1 columns can be
obtained after considering both measurement data and uncertainty

Mm×(n+1) =

⎡

⎢
⎢
⎢
⎣

m(R11) · · ·
m(R12) · · ·

m(Rn1) θ1

m(Rn2) θ2
...

. . .

m(R1m) · · ·
...

...

m(Rnm) θm

⎤

⎥
⎥
⎥
⎦

(54.18)

In order to solve the problems of low sensitivity among fault features, high conflict
among fused evidence and large uncertainty, this study determines the weights of
fused evidence by two aspects and reallocates the weights by the uncertainty coeffi-
cient ωσ

j and the overall support coefficient ω
s
j of the evidence, respectively, so as to

mitigate the conflict problem among the evidence, and after that, use Dempster’s rule
for evidence fusion. Let ω j be the weight coefficient of the jth fault feature measured
after fusing the evidence, then ω j should satisfy the condition that

m∑

j=1

ω j = 1, ω j ≥ 0 (54.19)

ω j = 0.5ωσ
j + 0.5ωs

j , j = 1, 2, . . . ,m, 0 ≤ ω j ≤ 1 (54.20)
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In the actual industry, there will be errors when measuring and collecting data
due to the layout location of heterogeneous sensors, environmental conditions, and
other factors, and the weight coefficient determined by the uncertainty brought by the
sensor measurement and the fusion evidence is defined as the uncertainty coefficient.
Let the relative measurement error of the sensor be χ j , then

χ j =
√

σ 2
j /E

(
x j

)
, j = 1, 2, . . . ,m (54.21)

ωσ = 1

χ j + θ j
/

m∑

k=1

1

χ j + θ j
, j = 1, 2, . . . ,m (54.22)

where E
(
x j

)
, σ 2

j denote the mean and variance of the jth fault characteristic
parameter, respectively. The overall support coefficient indicates the mutual support
between the evidence and the evidence, and the overall support of the evidence is
determined by the distance between the evidence, assuming the existence of two
pieces of evidence m j and md , and defining the distance function as

d
(
m j ,md

) = ‖m j − md‖√
s

=
√
√
√
√1

s

s∑

i=1

(
m ji + mdi

)2
j, d = 1, 2, ..,m (54.23)

Then the overall support of the evidence is

η
(
m j

) =
m∑

d=1,d = j

(1 − d
(
m j ,md

)
) j = 1, 2, . . . ,m (54.24)

where the larger η
(
m j

)
indicates that the higher the support of the evidence in the

overall evidence, the less conflict with other evidence, and thus the greater the weight
of the evidence in the final fusion. The overall support coefficient of the evidence is
calculated as

ωs
j = η

(
m j

)
/

m∑

j=1

η
(
m j

)
j = 1, 2, . . . ,m (54.25)

In order to reduce the number of evidence in the final fusion, reduce the running
time and improve the fusion efficiency, after obtaining the basic probability assign-
ment matrix and the fusion weight coefficients, the combined evidence iterations
are performed on the homogeneous sensor information, and then the final fusion is
performed by the Dempster combination rule after the iterations to obtain the deci-
sion results. Let there be j pieces of evidence generated by the feature parameters
obtained from the homogeneous sensors, the average iterative evidence is calculated
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as

m(�) =
m∑

j=1

ω jθ j ,m(F) =
m∑

j=1

ω jm
(
Fi j

)
i = 1, 2, . . . , n (54.26)

54.3 Results and Discussion

This work uses a publicly available real dataset of complex hydraulic systems, which
has been publicly released by the UC Irvine Machine Learning Repository [2, 10].
The author has developed a hydraulic test bench to measure the state data of this
hydraulic system through multiple real and virtual sensors, from which the charac-
teristics of the hydraulic system under different faults are analyzed. This study is
illustrated with one of the cooling state health states, which are divided into three
operating states: Close to Total Failure (CTF), Reduced Efficiency (RE), and Full
Efficiency (FE). For each condition, 150 sets of data are selected for the calculation
to obtain a priori knowledge, and 60 sets of data are selected as tests to verify the
results.

54.3.1 Cloud Model Parameters Calculation

The actual industry faces the problem of inconsistent sensor sampling rate, to unify
the data length, this paper adopts the unified data length utilizing time–frequency
domain feature extraction, 24 common time–frequency domain features are selected
in this paper [11], and finally, the cloud model feature matrix data of the cooling
condition of the hydraulic system of 3*24 is obtained, and the value of super entropy
is taken as a constant value of 0.1, as shown in Table 54.1. Due to space limitation,
only the first five parameters of a set of test data are shown in all the following tables.

Table 54.1 Cloud characteristics of partial time–frequency features

Condition type Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Cloud expectation CTF 19.8686 0.2613 19.8678 19.8704 0.5098

RE 27.7732 0.2889 27.7724 27.7748 0.5411

FE 47.1203 0.2618 47.1199 47.1210 0.5123

Cloud entropy CTF 0.1921 0.0637 0.1920 0.1923 0.1151

RE 0.2339 0.0747 0.2339 0.2340 0.1222

FE 0.3311 0.0726 0.3311 0.3311 0.1167
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Table 54.2 Partial basic probability assignment matrix

Time and frequency characteristics CTF RE FE Uncertainty

1 0.0000 0.0000 0.8047 0.1953

2 0.3225 0.3301 0.3365 0.0109

3 0.0000 0.0000 0.7231 0.2769

4 0.0000 0.0000 0.7928 0.2075

5 0.3239 0.3288 0.3448 0.0025

Table 54.3 Partial final fusion evidence and results

Evidence CTF RE FE Uncertainty

1 0.0077 0.0093 0.0117 0.0031

2 0.0083 0.0071 0.0094 0.0062

3 0.0108 0.0060 0.0128 0.0015

4 0.0096 0.0108 0.0105 0.0010

5 0.0064 0.0065 0.0087 0.0183

� 0.1750 0.1441 0.6809 0.0000

54.3.2 Calculation of the Basic Probability Assignment
Matrix

According to the obtained cloud model parameters, calculate the membership degree
of each parameter relative to the corresponding parameter of the cooling state of the
hydraulic system, calculate the uncertainty of each piece of evidence, to obtain the
basic probability assignment matrix of the hydraulic system as shown in Table 54.2.

54.3.3 Iteration of Homogeneous Sensor Merging Evidence

The same sensors in this dataset are iterated to merge evidence, 8 heterogeneous
sensor evidence information are obtained, and finally, these 8 shreds of evidence are
fused by applying Dempster’s rule to obtain the cooling condition health assessment
of this hydraulic system, as shown in Table 54.3, and the final fusion result of this
test data is FE.

54.3.4 Experimental Results

The 60 sets of data of the cooling condition of each type of hydraulic system are
subjected to the above experimental calculation, and the final operating condition
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Fig. 54.2 Experimental
results
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classification results are shown in Fig. 54.2. It can be seen that the classification
accuracy of the three operating states of the cooling condition of this hydraulic
system reached 100%, and achieved quite good classification results, which proved
the feasibility and effectiveness of the improved D–S evidence theory based on the
cloud model.

54.4 Conclusions

In this paper, a hydraulic system health assessment method based on the cloud
model and D–S evidence theory is proposed to address the problem of ambiguity
and randomness of each assessment state quantity in hydraulic system health state
assessment. To cope with the problem of the inconsistent sampling rate of hydraulic
system acquisition sensors in the industry, a time–frequency domain feature analysis
is performed to unify the data length; then, a multi-source information uncertainty
fusion method for hydraulic system condition monitoring is constructed using the
cloudmodel fromquantitative to qualitativemodeling and usingD–S evidence theory
to obtain the assessment results of hydraulic system health status. The validity and
feasibility of the method are verified by real data sets to provide a basis for the
condition maintenance of the hydraulic system.
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