Skip to main content

Adaptive Fuzzy Finite-Time Constraint Control for Attitude Tracking of Rigid Spacecrafts

  • Conference paper
  • First Online:
Proceedings of 2021 Chinese Intelligent Systems Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 804))

  • 1267 Accesses

Abstract

This article proposes an adaptive fuzzy finite-time constraint control scheme for attitude tracking of rigid spacecrafts with inertia uncertainties and external disturbances. A novel modified prescribed performance function (MPPF) is constructed for characterizing the convergence rate and steady state of the attitude tracking error, such that the tracking error can converge to a prescribed small region within a finite time. Fuzzy logic systems (FLSs) are used to approximate the unknown and nonlinear functions of the spacecraft system. Then, a finite-time adaptive backstepping controller is designed to improve the error convergence performance, and the singularity problem caused by the differentiation of the virtual control can be avoided by the presented controller. Finally, the simulations are given to show the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)

    Google Scholar 

  2. Luo, W.C., Chu, Y.C., Ling, K.V.: Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Trans. Autom. Control 50(11), 1639–1654 (2005)

    Article  MathSciNet  Google Scholar 

  3. Tayebi, A.: Unit quaternion-based output feedback for the attitude tracking problem. IEEE Trans. Autom. Control 53(6), 1516–1520 (2008)

    Article  MathSciNet  Google Scholar 

  4. Zhang, J.H., Zhao, W.S., Shen, G.H., Xia, Y.Q.: Disturbance observer-based adaptive finite-time attitude tracking control for rigid spacecraft. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2019.2947320

  5. Chen, Q., Xie, S.Z., Sun, M.X., He, X.X.: Adaptive nonsingular fixed-time attitude stabilization of uncertain spacecraft. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2937–2950 (2018)

    Article  Google Scholar 

  6. Lu, K.F., Xia, Y.Q.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  7. Lu, K.F., Xia, Y.Q., Yu, C.M., Liu, H.L.: Finite-time tracking control of rigid spacecraft under actuator saturations and faults. IEEE Trans. Autom. Sci. Eng. 13(1), 368–381 (2016)

    Article  Google Scholar 

  8. Hu, Q.L., Shao, X.D., Zhang, Y.M., Guo, L.: Nussbaum-type function-based attitude control of spacecraft with actuator saturation. Int. J. Robust Nonlinear Control 28(8), 2927–2949 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    Article  MathSciNet  Google Scholar 

  10. Wang, S.B., Na, J., Chen, Q.: Adaptive predefined performance sliding mode control of motor driving systems with disturbances. IEEE Trans. Energy Convers. (2020). https://doi.org/10.1109/TEC.2020.3038010

  11. Zhang, C., Na, J., Wu, J.D., Chen, Q., Huang, Y.B.: Proportional-integral approximation-free control of robotic systems with unknown dynamics. IEEE/ASME Trans. Mechatron. (2020). https://doi.org/10.1109/TMECH.2020.3035660

  12. Luo, J.J., Yin, Z.Y., Wei, C.S., Yuan, J.P.: Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking. Aerosp. Sci. Technol. 74(3), 173–183 (2018)

    Article  Google Scholar 

  13. Hu, Y.B., Geng, Y.H., Wu, B.L., Wang, D.W.: Model-free prescribed performance control for spacecraft attitude tracking. IEEE Trans. Control Syst. Technol. 29(1), 165–179 (2021)

    Article  Google Scholar 

  14. Chen, Q., Xie, S.Z., He, X.X.: Neural-network based adaptive singularity-free fixed-time attitude tracking control for spacecrafts. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3024672

    Article  Google Scholar 

  15. Du, H.B., Li, S.H., Qian, C.J.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)

    Article  MathSciNet  Google Scholar 

  16. Yu, J.P., Zhao, L., Yu, H.S., Lin, C., Dong, W.J.: Fuzzy finite-time command filtered control of nonlinear systems with input saturation. IEEE Trans. Cybern. 48(8), 2378–2387 (2018)

    Article  Google Scholar 

  17. Xie, S.Z., Chen, Q.: Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts. IEEE Trans. Circ. Syst. II Exp. Briefs (2021). https://doi.org/10.1109/TCSII.2021.3078708

    Article  Google Scholar 

  18. Hardy, G.H., Littlewood, J.E., Plya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    Google Scholar 

Download references

Acknowledgment

The authors would thank the support from the National Natural Science Foundation (NNSF) of China under Grant Nos. 61973274, and the Key Laboratory Open Project Fund under Grant GDSC202010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, S., Chen, Q., Na, J., Wang, S. (2022). Adaptive Fuzzy Finite-Time Constraint Control for Attitude Tracking of Rigid Spacecrafts. In: Jia, Y., Zhang, W., Fu, Y., Yu, Z., Zheng, S. (eds) Proceedings of 2021 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering, vol 804. Springer, Singapore. https://doi.org/10.1007/978-981-16-6324-6_41

Download citation

Publish with us

Policies and ethics