Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 166 Accesses

Abstract

Quantum Chromodynamics exhibits a large variety of unique phenomena. The precise description of them is crucial to understand the strong interaction in nature. The purpose of our studies is to thoroughly investigate the vacuum and the deconfined phase of the SU(3) Yang-Mills (YM) theory. To this effect, we focus on one of the most fundamental observables, the energy momentum tensor (EMT), which can characterize the local structure of the non-Abelian fields with gauge invariant and non-perturbative information. We study the EMT distribution around static charges both in the lattice simulations based on the SU(3) YM gauge theory and in the effective model with the Abelian-Higgs model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \(\alpha \) particle is the nucleus of the helium atom.

  2. 2.

    It was, at the same time, confirmed that the mass of the \(\pi \) meson is approximately equal to \(140~\mathrm {MeV}\). In 1937, Anderson and Neddermeyer discovered the particle, whose mass is approximately equal to that of the meson which Yukawa had predicted. This particle was, however, found insensitive to the strong interaction. This particle is today known as the muon.

  3. 3.

    More than a hundred hadrons are often called ‘Hadron Zoo.’

  4. 4.

    Although Zweig named the particle ace, the name quark becomes nowadays popular.

  5. 5.

    Although the Standard Model is almost consistent with the experimental results so far, there exist some phenomena beyond the Standard Model, such as the fine-tuning problem on the Higgs particle, the strong CP problem, the neutrino oscillation, and so on. For the purpose of the exploration beyond the Standard Model, the grand unified theory and super-string theory are discussed from the theoretical aspects, while the experiments at extremely high energy are in progress.

  6. 6.

    Thus, the physical quantities, such as the scattering cross section \(\sigma \), do not depend on \(\mu \), which is summarized in the renormalization group equation as follows:

    $$\begin{aligned} \mu \frac{d}{d\mu } \sigma (p,\mu ,g(\mu )) = 0. \nonumber \end{aligned}$$

    Here, p denotes the momentum in the external legs. Note that the quark mass dependence is suppressed. The renormalization equation provides the relation between the bare and renormalized quantities.

  7. 7.

    See also Fig. 6.6 and refer to the detailed directions on the cylindrical coordinate in Chap. 6.

  8. 8.

    In the pure YM gauge theory, there do not appear any hadrons and the only particle which can be excited in the confined phase is the massive glueball, whose mass is estimated to be \(\gtrsim 1\) GeV. Since the glueball is more difficult to be excited than light hadrons in QCD, the transition temperature in the pure gauge theory is higher than that in QCD. Note that, in this sense, the transition temperature depends on the quark masses.

  9. 9.

    Even at the high temperature slightly above the transition temperature, the perturbative calculation is not necessarily applicable. This is because the strong coupling is not small enough for the perturbation at \(T=\mathcal {O}(100)\) MeV. In addition, to make matters essentially difficult, the magnetic effect breaks down the perturbation at higher order due to the infrared divergence no matter how high the temperature is. In these senses, the non-perturbative formalism is crucial.

  10. 10.

    For the detail of the Polyakov loop, see Chap. 3.

References

  1. Rutherford E (1911) The scattering of alpha and beta particles by matter and the structure of the atom. Phil Mag Ser 6(21):669–688

    Article  MATH  Google Scholar 

  2. Gegier H, Ernest M (1909) A diffuse reflection of the alpha particles. Proc R Soc Lond A 82:495–500

    Article  ADS  Google Scholar 

  3. Rutherford E (2010) Collision of \(\alpha \) particles with light atoms. IV. An anomalous effect in nitrogen. Phil Mag 90(sup1):31–37

    Google Scholar 

  4. Chadwick J (1932) Possible Existence of a Neutron. Nature 129:312

    Article  ADS  Google Scholar 

  5. Yukawa H (1935) On the interaction of elementary particles I. Proc Phys Math Soc Jpn 17:4. [Prog. Theor. Phys. Suppl. 1, 1]

    Google Scholar 

  6. Lattes CMG, Occhialini GPS, Powell CF (1947) Observations on the tracks of slow mesons in photographic emulsions. 1. Nature 160:453

    Google Scholar 

  7. Bloom ED et al (1969) High-energy inelastic e-p scattering at 6-degrees and 10-degrees. Phys Rev Lett 23:930

    Article  ADS  Google Scholar 

  8. Breidenbach M et al (1969) Observed behavior of highly inelastic electron-proton scattering. Phys Rev Lett 23:935

    Article  ADS  Google Scholar 

  9. Gell-Mann M (1964) A schematic model of baryons and mesons. Phys Lett 8:214

    Article  ADS  Google Scholar 

  10. Zweig G, An SU(3) model for strong interaction symmetry and its breaking. Version 1. CERN-TH-401

    Google Scholar 

  11. Zyla PA et al (2020) [Particle Data Group], Review of Particle Physics. PTEP 2020(8):083C01

    Google Scholar 

  12. Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with Lepton-Hadron symmetry. Phys Rev D 2:1285

    Article  ADS  Google Scholar 

  13. Augustin JE et al (1974) [SLAC-SP-017 Collaboration], Discovery of a narrow resonance in \(e^+ e^-\) annihilation. Phys Rev Lett 33:1406. [Adv. Exp. Phys. 5, 141 (1976)]

    Google Scholar 

  14. Aubert JJ et al (1974) [E598 Collaboration], Experimental observation of a heavy particle \(J\). Phys Rev Lett 33:1404

    Article  ADS  Google Scholar 

  15. Kobayashi M, Maskawa T (1973) CP Violation in the Renormalizable Theory of Weak Interaction. Prog Theor Phys 49:652

    Article  ADS  Google Scholar 

  16. Herb SW et al (1977) Observation of a dimuon resonance at 9.5-GeV in 400-GeV proton-nucleus collisions. Phys Rev Lett 39:252

    Google Scholar 

  17. Abe F et al (1995) [CDF Collaboration], Observation of top quark production in \(\bar{p}p\) collisions. Phys Rev Lett 74:2626 [hep-ex/9503002]

    Article  ADS  Google Scholar 

  18. Abachi S et al (1995) [D0 Collaboration], Search for high mass top quark production in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys Rev Lett 74:2422. [hep-ex/9411001]

    Google Scholar 

  19. Han MY, Nambu Y (1965) Three triplet model with double SU(3) symmetry. Phys Rev 139:B1006

    Article  ADS  MathSciNet  Google Scholar 

  20. Swartz ML (1996) Reevaluation of the hadronic contribution to \(\alpha (M_Z^2)\). Phys Rev D 53:5268 [hep-ph/9509248]

    Article  ADS  Google Scholar 

  21. Yang CN, Mills RL (1954) Conservation of isotopic spin and isotopic gauge invariance. Phys Rev 96:191

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Utiyama R (1956) Invariant theoretical interpretation of interaction. Phys Rev 101:1597–1607

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Glashow SL (1961) Partial symmetries of weak interactions. Nucl Phys 22:579

    Article  Google Scholar 

  24. Weinberg S (1967) A model of leptons. Phys Rev Lett 19:1264

    Article  ADS  Google Scholar 

  25. Salam A (1968) Weak and electromagnetic interactions. Conf Proc C 680519:367

    Google Scholar 

  26. ’t Hooft G, (1971) Renormalizable Lagrangians for massive Yang-Mills fields. Nucl Phys B 35:167

    Google Scholar 

  27. Gross DJ, Wilczek F (1973) Ultraviolet behavior of nonabelian Gauge theories. Phys Rev Lett 30:1343

    Article  ADS  Google Scholar 

  28. Politzer HD (1973) Reliable perturbative results for strong interactions? Phys Rev Lett 30:1346

    Article  ADS  Google Scholar 

  29. Nambu Y, Jona-Lasinio G (1961) Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys Rev 122:345

    Article  ADS  Google Scholar 

  30. Nambu Y, Jona-Lasinio G (1961) Dynamical model of elementary particles based on an analogy With superconductivity. II. Phys Rev 124:246

    Article  ADS  Google Scholar 

  31. Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of superconductivity. Phys Rev 108:1175–1204

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Banks T, Casher A (1980) Chiral Symmetry breaking in confining theories. Nucl Phys B 169:103–125

    Article  ADS  Google Scholar 

  33. Fukaya H et al (2010) [JLQCD] Determination of the chiral condensate from 2+1-flavor lattice QCD. Phys Rev Lett 104:122002. [erratum: Phys Rev Lett 105:159901] arXiv:0911.5555 [hep-lat]

  34. Cossu G, Fukaya H, Hashimoto S, Kaneko T, Noaki JI (2016) Stochastic calculation of the Dirac spectrum on the lattice and a determination of chiral condensate in 2+1-flavor QCD. PTEP 2016(9):093B06. arXiv:1607.01099 [hep-lat]

  35. Bazavov A, Bhattacharya T, Cheng M, DeTar C, Ding HT, Gottlieb S, Gupta R, Hegde P, Heller UM, Karsch F et al (2012) The chiral and deconfinement aspects of the QCD transition. Phys Rev D 85:054503 arXiv:1111.1710 [hep-lat]

    Article  ADS  Google Scholar 

  36. Greensite J (2011) An introduction to the confinement problem. Lect Notes Phys 821:1–211

    MathSciNet  MATH  Google Scholar 

  37. Nambu Y (1974) Strings, Monopoles and Gauge Fields. Phys. Rev. D 10:4262

    Article  ADS  Google Scholar 

  38. ’t Hooft G Gauge fields with unified weak, electromagnetic, and strong interactions. PRINT-75-0836 (UTRECHT)

    Google Scholar 

  39. Mandelstam S (1976) Vortices and quark confinement in nonabelian gauge theories. Phys Rept 23:245

    Article  ADS  Google Scholar 

  40. Ginzburg VL, Landau LD (1950) On the Theory of superconductivity. Zh Eksp Teor Fiz 20:1064

    Google Scholar 

  41. Abrikosov AA (1957) The magnetic properties of superconducting alloys. J Phys Chem Solids 2:199

    Article  ADS  Google Scholar 

  42. Nielsen HB, Olesen P (1973) Vortex line models for dual strings. Nucl Phys B 61:45

    Article  ADS  Google Scholar 

  43. ’t Hooft G (1981) Topology of the gauge condition and new confinement phases in nonabelian gauge theories. Nucl Phys B 190:455

    Google Scholar 

  44. Ezawa ZF, Iwazaki A (1982) Abelian dominance and quark confinement in Yang-Mills theories. Phys Rev D 25:2681

    Article  ADS  Google Scholar 

  45. Ezawa ZF, Iwazaki A (1982) Abelian dominance and quark confinement in Yang-Mills theories. 2. Oblique confinement and \(\eta ^\prime \) mass. Phys Rev D 26:631

    Google Scholar 

  46. Suzuki T, Yotsuyanagi I (1990) A possible evidence for Abelian dominance in quark confinement. Phys Rev D 42:4257–4260

    Article  ADS  Google Scholar 

  47. Kronfeld AS, Schierholz G, Wiese UJ (1987) Topology and dynamics of the confinement mechanism. Nucl Phys B 293:461

    Article  ADS  Google Scholar 

  48. Kronfeld AS, Laursen ML, Schierholz G, Wiese UJ (1987) Monopole condensation and color confinement. Phys Lett B 198:516

    Article  ADS  Google Scholar 

  49. Maedan S, Suzuki T (1989) An infrared effective theory of quark confinement based on monopole condensation. Prog Theor Phys 81:229

    Article  ADS  Google Scholar 

  50. Suzuki T (1988) A Ginzburg-Landau type theory of quark confinement. Prog Theor Phys 80:929

    Article  ADS  Google Scholar 

  51. Ball JS, Caticha A (1988) Superconductivity: a testing ground for models of confinement. Phys Rev D 37:524

    Article  ADS  Google Scholar 

  52. Maedan S, Matsubara Y, Suzuki T (1990) Abelian confinement mechanism and the QCD vacuum. Prog Theor Phys 84:130

    Article  ADS  Google Scholar 

  53. Kodama H, Matsubara Y, Ohno S, Suzuki T (1997) Inter-meson potentials in dual Ginzburg-Landau theory. Prog Theor Phys 98:1345

    Article  ADS  Google Scholar 

  54. Kondo KI, Kato S, Shibata A, Shinohara T (2015) Quark confinement: dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory. Phys Rept 579:1–226 arXiv:1409.1599 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Green MB, Schwarz JH (1984) Anomaly cancellation in supersymmetric D=10 gauge theory and superstring theory. Phys Lett B 149:117–122

    Article  ADS  MathSciNet  Google Scholar 

  56. Lüscher M, Symanzik K, Weisz P (1980) Anomalies of the free loop wave equation in the WKB approximation. Nucl Phys B 173:365

    Article  ADS  MathSciNet  Google Scholar 

  57. Lüscher M, Weisz P (2004) String excitation energies in SU(N) gauge theories beyond the free-string approximation. JHEP 07:014. arXiv:hep-th/0406205 [hep-th]

  58. Aharony O, Karzbrun E (2009) On the effective action of confining strings. JHEP 06:012 arXiv:0903.1927 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  59. Lüscher M (1981) Symmetry breaking aspects of the roughening transition in gauge theories. Nucl Phys B 180:317–329

    Article  ADS  MathSciNet  Google Scholar 

  60. Lüscher M, Munster G, Weisz P (1981) How thick are chromoelectric flux tubes? Nucl Phys B 180:1–12

    Article  ADS  Google Scholar 

  61. Gliozzi F, Pepe M, Wiese UJ (2010) The width of the color flux tube at 2-loop order. JHEP 11:053 arXiv:1006.2252 [hep-lat]

    Article  ADS  MATH  Google Scholar 

  62. Collins PDB (1977) An Introduction to Regge Theory and High-Energy Physics

    Google Scholar 

  63. Wilson KG (1974) Confinement of quarks. Phys Rev D 10:2445

    Article  ADS  Google Scholar 

  64. Bali GS (2001) QCD forces and heavy quark bound states. Phys Rept 343:1–136. arXiv:hep-ph/0001312 [hep-ph]

  65. Bali GS, Schilling K (1993) Running coupling and the Lambda parameter from SU(3) lattice simulations. Phys Rev D 47:661–672. arXiv:hep-lat/9208028 [hep-lat]

  66. Bali GS, Schilling K, Wachter A (1997) Complete \(\cal O\it (v^2)\) corrections to the static interquark potential from SU(3) gauge theory. Phys Rev D 56:2566–2589. arXiv:hep-lat/9703019 [hep-lat]

  67. Cardoso N, Cardoso M, Bicudo P (2013) Inside the SU(3) quark-antiquark QCD flux tube: screening versus quantum widening. Phys Rev D 88:054504 arXiv:1302.3633 [hep-lat]

    Article  ADS  Google Scholar 

  68. Cea P, Cosmai L, Papa A (2012) Chromoelectric flux tubes and coherence length in QCD. Phys Rev D 86:054501 arXiv:1208.1362 [hep-lat]

    Article  ADS  Google Scholar 

  69. Clem JR (1975) Simple model for the vortex core in a type II superconductor. J Low Temp Phys 18:427

    Article  ADS  Google Scholar 

  70. Collins JC, Perry MJ (1975) Superdense matter: neutrons or asymptotically free quarks? Phys Rev Lett 34:1353

    Article  ADS  Google Scholar 

  71. Baym G (1979) Confinement of quarks in nuclear matter. Phys A 96(1–2):131–135

    Article  Google Scholar 

  72. Celik T, Karsch F, Satz H (1980) A percolation approach to strongly interacting matter. Phys Lett B 97:128–130

    Article  ADS  Google Scholar 

  73. Andronic A, Arleo F, Arnaldi R, Beraudo A, Bruna E, Caffarri D, del Valle ZC, Contreras JG, Dahms T, Dainese A et al (2016) Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions. Eur Phys J C 76(3):107 arXiv:1506.03981 [nucl-ex]

    Article  ADS  Google Scholar 

  74. Aarts G, Aichelin J, Allton C, Arnaldi R, Bass SA, Bedda C, Brambilla N, Bratkovskaya E, Braun-Munzinger P, Bruno GE et al (2017) Heavy-flavor production and medium properties in high-energy nuclear collisions - What next?. Eur Phys J A 53(5):93. arXiv:1612.08032 [nucl-th]

  75. Iritani T, Kitazawa M, Suzuki H, Takaura H (2019) Thermodynamics in quenched QCD: energy–momentum tensor with two-loop order coefficients in the gradient-flow formalism. PTEP 2019(2):023B02. arXiv:1812.06444 [hep-lat]

  76. Kitazawa M, Iritani T, Asakawa M, Hatsuda T, Suzuki H (2016) Equation of state for SU(3) gauge theory via the energy-momentum tensor under gradient Flow. Phys Rev D 94(11):114512 arXiv:1610.07810 [hep-lat]

    Article  ADS  Google Scholar 

  77. Boyd G, Engels J, Karsch F, Laermann E, Legeland C, Lutgemeier M, Petersson B (1996) Thermodynamics of SU(3) lattice gauge theory. Nucl Phys B 69:419-444. arXiv:hep-lat/9602007 [hep-lat]

  78. Borsanyi S, Endrodi G, Fodor Z, Katz SD, Szabo KK (2012) Precision SU(3) lattice thermodynamics for a large temperature range. JHEP 07:056 [arXiv:1204.6184 [hep-lat]]

    Article  ADS  Google Scholar 

  79. Giusti L, Pepe M (2017) Equation of state of the SU(3) Yang-Mills theory: A precise determination from a moving frame. Phys Lett B 769:385–390 [arXiv:1612.00265 [hep-lat]]

    Article  ADS  Google Scholar 

  80. Caselle M, Nada A, Panero M (2018) QCD thermodynamics from lattice calculations with nonequilibrium methods: The SU(3) equation of state. Phys Rev D 98(5):054513 arXiv:1801.03110 [hep-lat]

    Article  ADS  Google Scholar 

  81. Maezawa Y, Umeda T, Aoki S, Ejiri S, Hatsuda T, Kanaya K, Ohno H (2012) Application of fixed scale approach to static quark free energies in quenched and 2+1 flavor lattice QCD with improved Wilson quark action. Prog Theor Phys 128:955–970 arXiv:1112.2756 [hep-lat]

    Article  ADS  Google Scholar 

  82. Caracciolo S, Curci G, Menotti P, Pelissetto A (1988) The energy momentum tensor on the lattice: the scalar case. Nucl Phys B 309:612

    Article  ADS  MATH  Google Scholar 

  83. Caracciolo S, Curci G, Menotti P, Pelissetto A (1990) The energy momentum tensor for lattice gauge theories. Ann Phys 197:119

    Article  ADS  MATH  Google Scholar 

  84. Narayanan R, Neuberger H (2006) Infinite N phase transitions in continuum Wilson loop operators. JHEP 0603:064 [hep-th/0601210]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Lüscher M (2010) Properties and uses of the Wilson flow in lattice QCD. JHEP 1008:071 arXiv:1006.4518 [hep-lat]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Lüscher M, Weisz P (2011) Perturbative analysis of the gradient flow in non-abelian gauge theories. JHEP 1102:051 arXiv:1101.0963 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Suzuki H (2013) Energy-momentum tensor from the Yang-Mills gradient flow. PTEP 2013(8):083B03. [Erratum: PTEP 2015(7):079201 (2015)] arXiv:1304.0533 [hep-lat]

  88. Makino H, Suzuki H (2015) Lattice energy–momentum tensor from the Yang–Mills gradient flow—inclusion of fermion fields. PTEP 2014:063B02. [erratum: PTEP 2015:079202 (2015)] arXiv:1403.4772 [hep-lat]

  89. Harlander RV, Kluth Y, Lange F (2018) The two-loop energy–momentum tensor within the gradient-flow formalism. Eur Phys J C 78(11):944 [erratum: Eur Phys J C 79(10):858 (2019)] arXiv:1808.09837 [hep-lat]

  90. Asakawa M et al (2014) [FlowQCD], Thermodynamics of SU(3) gauge theory from gradient flow on the lattice. Phys Rev D 90(1):011501 [erratum: Phys Rev D 92(5):059902 (2015)] arXiv:1312.7492 [hep-lat]

  91. Kitazawa M, Iritani T, Asakawa M, Hatsuda T (2017) Correlations of the energy-momentum tensor via gradient flow in SU(3) Yang-Mills theory at finite temperature. Phys Rev D 96(11):111502 arXiv:1708.01415 [hep-lat]

    Article  ADS  Google Scholar 

  92. Shirogane M, Ejiri S, Iwami R, Kanaya K, Kitazawa M, Suzuki H, Taniguchi Y, Umeda T (2021) Latent heat and pressure gap at the first order deconfining phase transition of SU(3) Yang-Mills theory using the small flow-time expansion method. PTEP 2021(1):013B08. arXiv:2011.10292 [hep-lat]

  93. Taniguchi Y, Ejiri S, Iwami R, Kanaya K, Kitazawa M, Suzuki H, Umeda T, Wakabayashi N (2017) Exploring \(N_{f}\) = 2+1 QCD thermodynamics from the gradient flow. Phys Rev D 96(1):014509. [erratum: Phys Rev D 99(5):059904 (2019)] arXiv:1609.01417 [hep-lat]

  94. Taniguchi Y et al (2020) [WHOT-QCD], \(N_f\) = 2+1 QCD thermodynamics with gradient flow using two-loop matching coefficients. Phys Rev D 102(1):014510 arXiv:2005.00251 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  95. Kitazawa M, Mogliacci S, Kolbé I, Horowitz WA (2019) Anisotropic pressure induced by finite-size effects in SU(3) Yang-Mills theory. Phys Rev D 99(9):094507 arXiv:1904.00241 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Yanagihara .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yanagihara, R. (2021). Introduction. In: Distribution of Energy Momentum Tensor around Static Charges in Lattice Simulations and an Effective Model. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-6234-8_1

Download citation

Publish with us

Policies and ethics