Skip to main content

Status Review of Research on Co-processing

  • Chapter
  • First Online:
Sustainable Management of Wastes Through Co-processing

Abstract

Portland cement clinker is a very important compound of modern cements. CO2 emission during the calcination of calcium carbonate as raw material takes place in cement plants. Reduction of CO2 emission, the anthropologically caused climate change, is the focus of international initiatives, and hence, finding and development of strong alternatives are the key areas of researchers, policy makers, and plant operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625–2643.

    Article  CAS  Google Scholar 

  • Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32(4), 625–639.

    Google Scholar 

  • Amal, S., Al‑Rahbi, & Paul T. Williams. (2019). Waste ashes as catalysts for the pyrolysis–catalytic steam reforming of biomass for hydrogen‑rich gas production. Journal of Material Cycles and Waste Management, 21, 1224–1231. https://doi.org/10.1007/s10163-019-00876-8.

  • Ashraf, M. S., Ghouleh, Z., & Shao, Y. (2019). Production of eco-cement exclusively from municipal solid waste incineration residues. Conservation & Recycling, 149(2019), 332–342. https://doi.org/10.1016/j.resconrec.2019.06.018.

  • Angela J. Nagleb, Emma L. Delaney, Lawrence C. Bank, Paul G. Leahy. (2020). A comparative life cycle assessment between landfilling and co-processing of waste from decommissioned Irish wind turbine blades. Journal of Cleaner Production, 277, 123321. https://doi.org/10.1016/j.jclepro.2020.123321.

  • Bosmans, A., Vanderreydt, I., Geysen, D., et al. (2013). The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal of Cleaner Production, 55, 10–23.J.

    Google Scholar 

  • Baidya, R., Ghosh, S. K., & Parlikar, U. V. (2016a). Co-processing of industrial waste in cement kiln–a robust system for material and energy recovery. Procedia Environmental Sciences, 31, 309–317.

    Article  Google Scholar 

  • Baidya, R., Ghosh, S. K., & Parlikar, U. V. (2016b). Co-processing of industrial waste in cement kiln—A robust system for material and energy recovery. Procedia Environmental Sciences, 31(2016), 309–317.

    Article  Google Scholar 

  • Baidya, R., Ghosh, S. K., & Parlikar, U. V. (2017a). Sustainability of cement kiln co-processing of wastes in India: A pilot study. Environmental Technology, 38(13–14), 1650–1659.

    Article  CAS  Google Scholar 

  • Baidya, R., Ghosh, S. K., & Parlikar, U. V. (2017b). Environmental Technology, 38(13–14), 1650–1659.

    Article  CAS  Google Scholar 

  • Baidya, R., Kumar Ghosh, S., & Parlikar, U. V. (2019). Blast furnace flue dust co-processing in cement kiln–A pilot study. Waste Management & Research, 37(3), 261–267.

    Article  CAS  Google Scholar 

  • Baidya, Rahul. (2019). Study of sustainable technology for energy recovery from waste, Ph.d. thesis 2019 at Jadavpur University, India.

    Google Scholar 

  • Baidya, R., & Ghosh, S. K. (2019). Low carbon cement manufacturing in India by co-processing of alternative fuel and raw materials. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 41(21), 2561–2572.

    Google Scholar 

  • Baidya, R., & Ghosh, S. K. (2020). Co-processing of industrial trade rejects in cement plant. Waste Management & Research, 38(12), 1314–1320.

    Google Scholar 

  • Chakraborty, M., Sharma, C., Pandey, J., et al. (2013). Assessment of energy generation potentials of MSW in Delhi under different technological options. Energy Conversion and Management, 75, 249–255.

    Article  Google Scholar 

  • Chatziaras, N., Psomopoulos, C. S., & Themelis, N. J. (2014). Use of alternative fuels in cement industry. In: Proceedings of the 12th International Conference on Protection and Restoration of the Environment, ISBN, 2014, pp. 978–960.

    Google Scholar 

  • CII. (2016). Promoting alternate fuel & raw material usage in Indian cement industry (p. 2016). Supported by SHAKTI Sustainable Energy Foundation.

    Google Scholar 

  • Damtoft, J. S., Lukasik, J., Herfort, D., et al. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115–127.

    Article  CAS  Google Scholar 

  • Da-Hai Yan, Kare H. Karstensen, Qi-Fei Huang, Qi Wang, & Min-Lin Cai. (2010). Coprocessing of industrial and hazardous wastes in cement Kilns: A review of current status and future needs in China. Environmental Engineering Science, 27(1), 2010 DOI:10.1089=ees.2009.0144.

    Google Scholar 

  • Dipl.-Ing. Sebastian Spaun et al. (2015). EinsatzalternativerRohstoffeimZementherstellungsprozess - Hintergrundwissen, technischeMöglichkeiten und Handlungsempfehlungen , Austrian Standard Önorm S 2100 http://www.zement.at/downloads/positivliste3.pdf.

  • Gaunt, J. L., & Lehmann, J. (2008). Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science & Technology, 42(11), 4152–4158.

    Google Scholar 

  • Garcia, R. I., Moura, F. J., Bertolino, L. C., & de Albuquerque, B. E. (2014). Industrial experience with waste coprocessing and its effects on cement properties. Environmental Progress & Sustainable Energy, 33(3), 956–961.

    Article  CAS  Google Scholar 

  • Gunasegaram, D. R., & Molennar, D. (2015). Towards improved energy efficiency in the electrical connections of Hall-Héroult cellsthrough finite element analysis (FEA) modeling. Journal of Cleaner Production, 93, 174–192.

    Google Scholar 

  • Guo, X., Shi, H., Wu, K., Ju, Z., & Dick, W. A. (2016). Performance and risk assessment of alinite cement-based materials from municipal solid waste incineration fly ash (MSWIFA). Materials and Structures, 49(6), 2383–2391. https://doi.org/10.1617/s11527-015-0655-x.

  • Ghosh, Sadhan K. (2017). State of the 3Rs in Asia and the Pacific, The Republic of India, Institute for Global Environmental Strategies (IGES), United Nations Centre for Regional Development (UNCRD), Japan.

    Google Scholar 

  • Global Cement and Concrete Association (2018). GCCA Sustainability Guidelines for co-processing fuels and raw materials in cement manufacturing.

    Google Scholar 

  • Gisele de Lorena Diniz Chaves, Renato Ribeiro Siman, & Ni-Bin Chang. (2021). Policy analysis for sustainable refuse-derived fuel production in Espírito Santo, Brazil. Journal of Cleaner Production, 294, 126344. https://doi.org/10.1016/j.jclepro.2021.126344.

  • Hanehara, S. (2001). Eco-cement and eco concrete environmentally compatible cement and concrete technology. JCI/KCI International Joint Seminar, Kyonju, South Korea. https://doi.org/10.1007/s10853-009-3342-x.

  • Hammond, J., Shackley, S., Sohi, S., et al. (2011). Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy, 39(5), 2646–2655.

    Article  CAS  Google Scholar 

  • Hornung, A., Apfelbacher, A., & Sagi, S. (2011). Intermediate pyrolysis: A sustainable biomass-to-energy concept-biothermal valorisation of biomass (BtVB) process.

    Google Scholar 

  • https://doi.org/10.1016/S0921-3449(00)00077-X. S. Kerdsuwan, K. Laohalidanond, K., & Gupta Ashwani. (2020, February). Upgrading refuse-derived fuel properties from reclaimed landfill using torrefaction. Journal of Energy Resources; Technology, 143. DOI: https://doi.org/10.1115/1.4047979.

  • https://doi.org/10.1080/09593330.2020.1856191; https://www.cement.org/docs/default-source/market-economics-pdfs/cementindustry-by-state/usa-statefacsheet-17-d2.pdf?sfvrsn=e77fe6bf_2. in portland cement clinker. Chem. Eng. Res. Des. 21, 757–762. https://doi.org/10.

  • Ismael Vemdrame Flores, Felipe Fraiz, Rafael Adriano Lopes Junior, Maurício Covcevich Bagatini. (2019). Evaluation of spent pot lining (SPL) as an alternative carbonaceous material in iron making processes, j m a t e r r e s t e c h n o l . 2 0 1 9;8(1), 33–40.

    Google Scholar 

  • John R. Fyffe, Alex C. Breckel, Aaron K. Townsend, & Michael E. Webber. (2016). Use of MRF residue as alternative fuel in cement production, Waste Management.

    Google Scholar 

  • Jolanta Sobik-Szołtysek, Katarzyna Wystalska. (2019). Coprocessing of sewage sludge in cement kiln, Editor(s): Majeti Narasimha Vara Prasad, Paulo Jorge de Campos Favas, Meththika Vithanage, S. Venkata Mohan, Industrial and Municipal Sludge, Butterworth-Heinemann, pp. 361–381, ISBN 9780128159071, https://doi.org/10.1016/B978-0-12-815907-1.00016-7.

  • Kyle A. Claviera, Benjamin Wattsb, C, Yalan Liua, Christopher C. Ferraroc, & Timothy G. Townsenda. (2019). Risk and performance assessment of cement made using municipal solid waste incinerator bottom ash as a cement kiln feed. Resources, Conservation & Recycling, 146(2019), 270–279. https://doi.org/10.1016/j.resconrec.2019.03.047.

  • Lam, C. H. K., Barford, J. P., & Mckay, G. (2010). Utilization of incineration waste ash residues.

    Google Scholar 

  • Lam, C. H. K., Barford, J. P., & McKay, G. (2011). Utilization of municipal solid waste incineration ash in Portland cement clinker. Clean Technologies and Environmental Policy 13(4)

    Google Scholar 

  • LI Chun-ping. (2012). Pilot experiments on co-processing oversized products screened from aged refuse in cement kiln. Advanced Materials Research, 518–523, 3421–3426. doi:https://doi.org/10.4028/www.scientific.net/AMR.518-523.3421.

  • Lombardi, L., Carnevale, E., & Corti, A. (2015). A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Management, 37, 26–44.

    Google Scholar 

  • Low carbon technology for Indian Cement Industry.

    Google Scholar 

  • Millano, E. F. (1996). Hazardous waste: Storage, disposal, remediation, and closure. Water Environment Research, 68(4), 586–608.

    Google Scholar 

  • Murphy, J. D., & McKeogh, E. (2004). Technical, economic and environmental analysis of energy production from municipal solid waste. Renewable Energy, 29(7), 1043–1057.

    Google Scholar 

  • Michaeleliasboesch, Annettekoehler, & Stefaniehellweg. (2009). Model for cradle-to-gate life cycle assessment of clinker production. Environmental Science & Technology, 43, 7578–7583.

    Google Scholar 

  • Moses P. M. Chinyama. (2011). Alternative fuels in cement manufacturing, alternative fuel. In Dr. Maximino Manzanera (Ed.), ISBN: 978-953-307-372-9. InTech, Available from: http://www.intechopen.com/books/alternative-fuel/alternative-fuels-in-cement-manufacturing.

  • Madlool, N. A., Saidur, R., Rahim, N. A., & Kamalisarvestani, M. (2013). An overview of energy savings measures for cement industries. Renew Sust Energ Rev, 19, 18–29.

    Google Scholar 

  • Ministry of Housing and Urban Affairs (2018). Guidelines on Usage of Refuse Derived Fuel in Various Industries.

    Google Scholar 

  • Mohamed M. Elfaham, & Usama Eldemerdash. (2018). Advanced analyses of solid waste raw materials from cement plant using dual spectroscopy techniques towards co-processing. Optics and Laser Technology, 111, 338–346. https://doi.org/10.1016/j.optlastec.2018.10.009.

  • Michael Hinkel, Daniel Hinchliffe, Dieter Mutz, Steffen Blume, & Dirk Hengevoss. (2019). Guidelines on pre- and co-processing of waste in cement production. Deutsche Gesellschaft für, InternationaleZusammenarbeit, GmbH (GIZ).

    Google Scholar 

  • Nema, A. K., & Gupta, S. K. (1999). Optimization of regional hazardous waste management systems: An improved formulation. Waste Management, 19(7–8), 441–451.

    Article  Google Scholar 

  • Nixon, J. D., Dey, P. K., Ghosh, S. K., et al. (2013a). Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy, 59, 215–223.

    Article  Google Scholar 

  • Nixon, J. D., Wright, D. G., Dey, P. K., et al. (2013b). A comparative assessment of waste incinerators in the UK. Waste Management, 33(11), 2234–2244.

    Article  CAS  Google Scholar 

  • Nixon, J. D., Dey, P. K., Davies, P. A., et al. (2014). Supply chain optimisation of pyrolysis plant deployment using goal programming. Energy, 68, 262–271.

    Google Scholar 

  • Pan, J. R., Huang, C., Kuo, J. J., & Lin, S. H. (2008). Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Management, 28(7), 1113–1118. https://doi.org/10.1016/j.wasman.2007.04.009.

    Article  CAS  Google Scholar 

  • Planning Commission. (2014). Report by the Planning Commission “Task Force on Waste to Energy,” India.

    Google Scholar 

  • Parlikar, U., Bundela, P. S., Baidya, R., Ghosh, S. K., & Ghosh, S. K. (2016). Effect of variation in the chemical constituents of wastes on the co-processing performance of the cement kilns. Procedia Environmental Sciences, 35, 506–512.

    Article  CAS  Google Scholar 

  • Press Information Bureau. (2016). Solid Waste Management Rules Revised 25. after 16 years; Rules now extend to Urban and Industrial Areas: Javadekar”. Ministry of Environment, Forest and Climate Change, April 5, 2016.

    Google Scholar 

  • Peter, C. H, Martin, L. (2019). Lea’s chemistry of cement and concrete. 5th ed: Butterworth-Heinemann: Academic Press, pp. 31–56.

    Google Scholar 

  • Rigo & Rigo Associates. (1995). An analysis of technical issues pertaining to the determination of MACT standards for the waste recycling segment of the cement industry. Environmental Risk SciencesInc., Environomics, and CKRC (Cement Kiln Recycling Coalition).

    Google Scholar 

  • Ryunosuke Kikuchi. (2001). Recycling of municipal solid waste for cement production: Pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resources, Conservation and Recycling, 31(2), 137–147, ISSN 0921–3449.

    Google Scholar 

  • Richard Bolwerk. (2004). Co-processing of waste and Energy efficiency by cement plants, not mentioned.

    Google Scholar 

  • Reza, B., Soltani, A., Ruparathna, R., Sadiq, R., & Hewage, K. (2013). Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: A case study of Metro Vancouver Waste Management. Resources, Conservation and Recycling, 81(2013), 105–114.

    Article  Google Scholar 

  • Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2015). Recent development on the uses of alternative fuels in cement manufacturing process. Fuel, 145, 84–99.

    Google Scholar 

  • Saikia, N., Kato, S., & Kojima, T. (2007). Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Management, 27(9), 1178–1189. https://doi.org/10.1016/j.wasman.2006.06.004.

  • Singh, R. P., Tyagi, V. V., Allen, T., et al. (2011). An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renewable and Sustainable Energy Reviews, 15(9), 4797–4808.

    Google Scholar 

  • Saini, S., Rao, P., & Patil, Y. (2012). City based analysis of MSW to energy generation in India, calculation of state-wise potential and tariff comparison with EU. Procedia-Social and Behavioral Sciences, 37, 407–416.

    Article  Google Scholar 

  • Samolada, M. C., & Zabaniotou, A. A. (2014). Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Management, 34(2), 411–420.

    Article  CAS  Google Scholar 

  • Trezza, M. A., & Scian, A. N. (2000). Burning wastes as an industrial resource: Their effect on Portland cement clinker. Cement and Concrete Research, 30(1), ISSN 0008–8846.

    Google Scholar 

  • Volume 47, Part B, 2016, Pages 276–284, ISSN 0956–053X, https://doi.org/10.1016/j.wasman.2015.05.038.

  • Wang, L., Li, R., Li, Y., & Wei, L. (2012). Incorporation of cadmium into clinker during the co-processing of waste with cement kiln. Advanced Materials Research, 347–353(2012), 2160–2164.

    Google Scholar 

  • Wendell de Queiroz Lamas, Jose Carlos Fortes Palau, Jose Rubens de Camargo. (2012). Waste materials co-processing in cement industry: Ecological efficiency of waste reuse. Renewable and Sustainable Energy Reviews, 19(2013), 200–207. http://dx.doi.org/https://doi.org/10.1016/j.rser.2012.11.015.

  • WBCSD. (2014). Guidelines for Co-Processing Fuels and Raw Materials in Cement Manufacturing.

    Google Scholar 

  • Yassin, L., Lettieri, P., Simons, S. J., et al. (2009). Techno-economic performance of energy-from-waste fluidized bed combustion and gasification processes in the UK context. Chemical Engineering Journal, 146(3), 315–327.

    Google Scholar 

  • Yufei Yang, Yu Yang, Qunhui Wang, & Qifei Huang. (2011). Release of heavy metals from concrete made with cement from cement Kiln co-processing of hazardous wastes in pavement scenarios. Environmental Engineering Science, 28(1), 2011. DOI: https://doi.org/10.1089/ees.2010.0066.

  • Yap, H. Y., & Nixon, J. D. (2015). A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Management, 46, 265–277.

    Google Scholar 

  • Yao, J., Kong, Q., Qiu, Z., Chen, L., & Shen, D. (2019). Patterns of heavy metal 655 immobilization by MSW during the landfill process. Chemical Engineering Journal, 375(122060), 656. https://doi.org/10.1016/j.cej.2019.12206.

  • Yeqing, Li. et al. (2020). Research on dioxins suppression mechanisms during MSW co-processing in cement kilns. Procedia Environmental Sciences, 16(2012), 633–640. doi: https://doi.org/10.1016/j.proenv.2012.10.087.

  • Ziegler, D., Schimpf, W., Dubach, B., Degré, J.-P., & Mutz, D. (2006). Guidelines on co-processing waste materials in cement production. The GTZ-Holcim Public Private Partnership.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhan Kumar Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S.K., Parlikar, U.V., Karstensen, K.H. (2022). Status Review of Research on Co-processing. In: Sustainable Management of Wastes Through Co-processing. Springer, Singapore. https://doi.org/10.1007/978-981-16-6073-3_3

Download citation

Publish with us

Policies and ethics