Skip to main content

A Novel Visible Light Communication System Based on a SiPM Receiver

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Telecommunications and Communication Engineering (ICTCE 2020)

Abstract

Silicon photomultiplier (SiPM) has several attracting features, which can be helpful in the communication field, such as high photon detection efficiency, fast transient response, excellent timing resolution, and wide spectral range. In this paper, we compare SiPM with photodiode (PD), avalanche photodiodes (APD), and photomultiplier tube (PMT) in terms of the transformation related performance. Based on SiPM and visible light light-emitting diode (LED), we implement visible light communication (VLC) system, and conduct numerical simulation experiment research to convert data transmission problems into signal processing problems. In addition, we also propose the SR algorithm, which compares and analyzes with the PMID and FD algorithms used before. The system throughout ability, transmission rate, and data reconstruction are evaluated. The encouraging results suggest that the SiPM receiver has great application potentials, such as optical wireless communication systems and light fidelity, in which a wide bandwidth of the sensor response is important to enhance the transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balta-Ozkan, N., Davidson, R., Bicket, M., Whitmarsh, L.: The development of smart homes market in the UK. Energy 60, 361–372 (2013)

    Article  Google Scholar 

  2. Kang, C.H., et al.: High-speed colour-converting photodetector with all-inorganic CsPbBr 3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl. 8(1), 1–12 (2019)

    Article  Google Scholar 

  3. Tsonev, D., Videv, S., Haas, H.: Light fidelity (Li-Fi): towards all-optical networking. In: Broadband Access Communication Technologies VIII, vol. 9007, p. 900702. International Society for Optics and Photonics (2014)

    Google Scholar 

  4. Rehman, S.U., Ullah, S., Chong, P.H.J., Yongchareon, S., Komosny, D.: Visible light communication: a system perspective—overview and challenges. Sensors 19(5), 1153 (2019)

    Article  Google Scholar 

  5. Ling, R.: The Mobile Connection: The Cell Phone’s Impact on Society. Elsevier, San Francisco (2004)

    Google Scholar 

  6. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(6), 1067–1080 (2007)

    Google Scholar 

  7. Nizzi, F., et al.: Data dissemination to vehicles using 5G and VLC for Smart Cities. In: 2019 AEIT International Annual Conference (AEIT), Florence, Italy, pp. 1–5. IEEE (2019)

    Google Scholar 

  8. Vieira, M.A., Vieira, M., Louro, P., Vieira, P.: Bi-directional communication between infrastructures and vehicles through visible light. In: Fourth International Conference on Applications of Optics and Photonics, Lisbon, Portugal, p. 112070C. International Society for Optics and Photonics (2019)

    Google Scholar 

  9. Saeed, N., Celik, A., Al-Naffouri, T.Y., Alouini, M.S.: Underwater optical wireless communications, networking, and localization: a survey. Ad Hoc Netw. 94, 101935 (2019)

    Article  Google Scholar 

  10. Aminian, M., Naji, H.R.: A hospital healthcare monitoring system using wireless sensor networks. J. Health Med. Inform. 4(02), 121 (2013)

    Article  Google Scholar 

  11. Pathak, P.H., Feng, X., Hu, P., Mohapatra, P.: Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17(4), 2047–2077 (2015)

    Article  Google Scholar 

  12. Biton, C., Arnon, S.: Improved multiple access resource allocation in visible light communication systems. Optics Commun. 424, 98–102 (2018)

    Article  Google Scholar 

  13. Islim, M.S., et al.: Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res. 5(2), A35–A43 (2017)

    Article  Google Scholar 

  14. Haas, H.: Visible light communication. In: 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, pp. 1–72. IEEE (2015)

    Google Scholar 

  15. Schubert, E.F., Gessmann, T., Kim, J.K.: Light emitting diodes. In: Kirk‐Othmer Encyclopedia of Chemical Technology (2000)

    Google Scholar 

  16. Cahyadi, W.A., Jeong, T.I., Kim, Y.H., Chung, Y.H., Adiono, T.: Patient monitoring using visible light uplink data transmission. In: 2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Nusa Dua Bali, Indonesia, pp. 431–434. IEEE (2015)

    Google Scholar 

  17. Chi, Y.C., et al.: Violet laser diode enables lighting communication. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  18. Wang, J., Che, Y., Wang, X., Guo, L., Li, J.: Study of LED layout in indoor visible light communication and performance analysis. In: AOPC 2017: Fiber Optic Sensing and Optical Communications, Beijing, China, p. 1046417. International Society for Optics and Photonics (2017)

    Google Scholar 

  19. Khan, L.U.: Visible light communication: applications, architecture, standardization and research challenges. Digit. Commun. Netw. 3(2), 78–88 (2017)

    Article  Google Scholar 

  20. Chi, Y.C., Hsieh, D.H., Tsai, C.T., Chen, H.Y., Kuo, H.C., Lin, G.R.: 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. Opt. Express 23(10), 13051–13059 (2015)

    Article  Google Scholar 

  21. Janjua, B., et al.: Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. Opt. Express 23(14), 18746–18753 (2015)

    Article  Google Scholar 

  22. Gnecchi, S., et al.: A simulation model for digital silicon photomultipliers. IEEE Trans. Nuclear Sci. 63(3), 1343–1350 (2016)

    Article  Google Scholar 

  23. Corsi, F., et al.: Modelling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design. Nucl. Instrum. Methods Phys. Res., Sect. A 572(1), 416–418 (2007)

    Google Scholar 

  24. Eraerds, P., Legré, M., Rochas, A., Zbinden, H., Gisin, N.: SiPM for fast photon-counting and multiphoton detection. Opt. Express 15(22), 14539–14549 (2007)

    Article  Google Scholar 

  25. Braga, L.H., et al.: A fully digital 8×16 SiPM array for PET applications with per-pixel TDCs and real-time energy output. IEEE J. Solid-State Circuits 49(1), 301–314 (2013)

    Google Scholar 

  26. Powolny, F., et al.: Time-based readout of a silicon photomultiplier (SiPM) for time of flight positron emission tomography (TOF-PET). IEEE Trans. Nuclear Sci. 58(3), 597–604 (2011)

    Article  Google Scholar 

  27. Várkonyi, G., McKendry, J.J., McAlinden, N., Dawson, M.D., Mathieson, K.: Data transmission for high-bandwidth neural interfacing using visible light communication. In: 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, pp. 41–42. IEEE (2016)

    Google Scholar 

  28. Yepes-Ramirez, H., et al.: Development of a high performance characterization setup for SiPMs and MPGDs towards their integration in mid-large scale systems. In: Proceedings of Science (2016)

    Google Scholar 

  29. Castañeda, L.F., Castaño, J.F., Gutierrez, R.M., Hernandez, A.I., Yepes-Ramirez, H.: High-speed visible light communication system based on SiPM. In: Proceedings of the 38th International Conference on High Energy Physics (ICHEP 2016), Chicago, p. 842 (2016)

    Google Scholar 

  30. Konstantinou, G., Ali, W., Chil, R., Cossu, G., Ciaramella, E., Vaquero, J.J.: Experimental demonstration of an optical wireless MRI compatible PET/SPECT insert front-end. In: 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, pp. 1–4. IEEE (2016)

    Google Scholar 

  31. Buzhan, P., et al.: Large area silicon photomultipliers: performance and applications. Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 78–82 (2006)

    Google Scholar 

  32. Bencardino, R., Eberhardt, J.E.: Development of a fast-neutron detector with silicon photomultiplier readout. IEEE Trans. Nucl. Sci. 56(3), 1129–1134 (2009)

    Article  Google Scholar 

  33. Deng, Z., Xie, Q.: Empirical Bayesian energy estimation for multi-voltage threshold digitizer in PET. In: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2013), Seoul, Korea, pp. 1–5. IEEE (2013)

    Google Scholar 

  34. Xie, Q., et al.: Potentials of digitally sampling scintillation pulses in timing determination in PET. IEEE Trans. Nuclear Sci. 56(5), 2607–2613 (2009)

    Article  Google Scholar 

  35. Deng, Z., Xie, Q.: Quadratic programming time pickoff method for multivoltage threshold digitizer in PET. IEEE Trans. Nucl. Sci. 62(3), 805–813 (2015)

    Article  Google Scholar 

  36. Deng, Z., Liu, Y., Wu, Z., Xie, Q.: Maximum likelihood solution of arrival time for the event pulse modeled by filtered inhomogeneous poisson process in PET detectors. J. Nucl. Med. 56(Suppl. 3), 1842 (2015)

    Google Scholar 

  37. Deng, Z., Xie, Q., Duan, Z., Xiao, P.: Scintillation event energy measurement via a pulse model based iterative deconvolution method. Phys. Med. Biol. 58(21), 7815 (2013)

    Article  Google Scholar 

  38. Nagaoka, R., Yoshizawa, S., Umemura, S.I., Saijo, Y.: Basic study of improvement of axial resolution and suppression of time side lobe by phase-corrected Wiener filtering in photoacoustic tomography. Jpn. J. Appl. Phys. 57(7S1), 07LD11 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhou Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Z. et al. (2022). A Novel Visible Light Communication System Based on a SiPM Receiver. In: Ma, M. (eds) Proceedings of the 4th International Conference on Telecommunications and Communication Engineering. ICTCE 2020. Lecture Notes in Electrical Engineering, vol 797. Springer, Singapore. https://doi.org/10.1007/978-981-16-5692-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5692-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5691-0

  • Online ISBN: 978-981-16-5692-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics