Skip to main content

Bone Tissue and Its Mechanical Regulation of Remodeling

  • Chapter
  • First Online:
Osteoporotic Fracture and Systemic Skeletal Disorders
  • 812 Accesses

Abstract

Exercise is effective in promoting bone health because skeletal cells are highly mechanosensitive. The bone cell population can sense and respond to mechanical perturbations induced by exercise, and generate signals that ultimately result in a more mechanically competent skeleton. A number of factors affect bone tissue’s ability to respond appropriately to exercise/loading. These are important considerations in a clinical context, where the positive effects of mechanotransduction can be harnessed to improve outcomes and prevent future fractures. Recovery periods and cellular saturation are important factors when designing and implementing exercise sessions, as these phenomena can affect the efficiency of bone gain. Other factors include the cellular effects of aging, and the hormonal milieu, both of which can modify the responsiveness of bone cells to strain stimuli. Many medications can affect the cellular processes associated with mechanical signaling in bone cells. Though not well studied, it is possible that the effects of exercise on the skeleton can be compromised in patients who are prescribed many of these agents, including calcium channel blockers, NSAIDS, and nitric oxide inhibitors. As the cellular and molecular mechanisms involved in bone cell mechanotransduction become better defined, new targets for therapeutic intervention will be identified. As these pathways become more thoroughly characterized, it might be possible to trigger the signaling cascades activated by mechanical loading without applying any force to the bone. This would be particularly useful for patients in whom exercise would be beneficial to bone health, but have skeletal properties that would put them at too great a risk for fracture if exercise protocols were introduced.

The present invited review was completed and submitted to the publisher on 20-Sep-19. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vandenbrink JP, Kiss JZ. Plant responses to gravity. Semin Cell Dev Biol. 2019;92:122–5.

    Article  CAS  PubMed  Google Scholar 

  2. Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.

    Article  CAS  PubMed  Google Scholar 

  3. Palumbo C, Ferretti M, Marotti G. Osteocyte dendrogenesis in static and dynamic bone formation: an ultrastructural study. Anat Rec A Discov Mol Cell Evol Biol. 2004;278(1):474–80.

    Article  PubMed  Google Scholar 

  4. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75.

    Article  CAS  PubMed  Google Scholar 

  5. Inaoka T, Lean JM, Bessho T, Chow JW, Mackay A, Kokubo T, Chambers TJ. Sequential analysis of gene expression after an osteogenic stimulus: c-fos expression is induced in osteocytes. Biochem Biophys Res Commun. 1995;217(1):264–70.

    Article  CAS  PubMed  Google Scholar 

  6. Lara-Castillo N, Kim-Weroha NA, Kamel MA, Javaheri B, Ellies DL, Krumlauf RE, Thiagarajan G, Johnson ML. In vivo mechanical loading rapidly activates beta-catenin signaling in osteocytes through a prostaglandin mediated mechanism. Bone. 2015;76:58–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hert J, Liskova M, Landrgot B. Influence of the long-term, continuous bending on the bone. An experimental study on the tibia of the rabbit. Folia Morphol (Praha). 1969;17(4):389–99.

    CAS  Google Scholar 

  8. Liskova M, Hert J. Reaction of bone to mechanical stimuli. 2. Periosteal and endosteal reaction of tibial diaphysis in rabbit to intermittent loading. Folia Morphol (Praha). 1971;19(3):301–17.

    CAS  Google Scholar 

  9. Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 1994;8(11):875–8.

    Article  CAS  PubMed  Google Scholar 

  10. Warden SJ, Turner CH. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz. Bone. 2004;34(2):261–70.

    Article  CAS  PubMed  Google Scholar 

  11. Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res. 1994;298:165–74.

    Article  Google Scholar 

  12. Blottner D, Salanova M, Puttmann B, Schiffl G, Felsenberg D, Buehring B, Rittweger J. Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol. 2006;97(3):261–71.

    Article  PubMed  Google Scholar 

  13. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19(3):360–9.

    Article  PubMed  Google Scholar 

  14. Oliveira LC, Oliveira RG, Pires-Oliveira DA. Effects of whole body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Osteoporos Int. 2016;27(10):2913–33.

    Article  CAS  PubMed  Google Scholar 

  15. O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech. 1982;15(10):767–81.

    Article  PubMed  Google Scholar 

  16. Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Phys. 1995;269(3 Pt 1):E438–42.

    CAS  Google Scholar 

  17. Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone. 1998;23(4):313–8.

    Article  CAS  PubMed  Google Scholar 

  18. Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievanen H. Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int. 2010;21(10):1687–94.

    Article  CAS  PubMed  Google Scholar 

  19. Ma D, Wu L, He Z. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women: a systematic review and meta-analysis. Menopause. 2013;20(11):1216–26.

    Article  PubMed  Google Scholar 

  20. Zhao R, Zhao M, Zhang L. Efficiency of jumping exercise in improving bone mineral density among premenopausal women: a meta-analysis. Sports Med. 2014;44(10):1393–402.

    Article  PubMed  Google Scholar 

  21. Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr). 2012;34(6):1493–515.

    Article  Google Scholar 

  22. Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009;43(12):898–908.

    Article  CAS  PubMed  Google Scholar 

  23. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  24. Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12(9):1480–5.

    Article  CAS  PubMed  Google Scholar 

  25. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23(5):399–407.

    Article  CAS  PubMed  Google Scholar 

  26. Forwood MR, Turner CH. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone. 1994;15(6):603–9.

    Article  CAS  PubMed  Google Scholar 

  27. Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res. 2002;17(9):1613–20.

    Article  PubMed  Google Scholar 

  28. Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001;204(Pt 19):3389–99.

    Article  CAS  PubMed  Google Scholar 

  29. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17(8):1545–54.

    Article  PubMed  Google Scholar 

  30. Robling AG, Hinant FM, Burr DB, Turner CH. Shorter, more frequent mechanical loading sessions enhance bone mass. Med Sci Sports Exerc. 2002;34(2):196–202.

    Article  PubMed  Google Scholar 

  31. Saxon LK, Robling AG, Alam I, Turner CH. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone. 2005;36(3):454–64.

    Article  CAS  PubMed  Google Scholar 

  32. Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int. 1992;50(4):306–13.

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasan S, Ausk BJ, Prasad J, Threet D, Bain SD, Richardson TS, Gross TS. Rescuing loading induced bone formation at senescence. PLoS Comput Biol. 2010;6(9):e1000924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Turner CH, Takano Y, Owan I. Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res. 1995;10(10):1544–9.

    Article  CAS  PubMed  Google Scholar 

  35. Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21(6):369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  37. Robling AG, Fuchs RK, Burr DB. Mechanical adaptation of bone. In: Burr DB, Allen MR, editors. Basic and applied bone biology. New York: Elsevier; 2013. p. 175–204.

    Google Scholar 

  38. Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L. Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature. 2003;424(6947):389.

    Article  CAS  PubMed  Google Scholar 

  39. Moura MLA, Fugimoto M, Kawachi APM, de Oliveira ML, Lazaretti-Castro M, Reginato RD. Estrogen therapy associated with mechanical vibration improves bone microarchitecture and density in osteopenic female mice. J Anat. 2018;233(6):715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thorsen K, Kristoffersson AO, Lerner UH, Lorentzon RP. In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading. J Clin Invest. 1996;98(11):2446–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li J, Burr DB, Turner CH. Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading. Calcif Tissue Int. 2002;70(4):320–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kohrt WM, Barry DW, Van Pelt RE, Jankowski CM, Wolfe P, Schwartz RS. Timing of ibuprofen use and bone mineral density adaptations to exercise training. J Bone Miner Res. 2010;25(6):1415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sherk VD, Carpenter RD, Giles ED, Higgins JA, Oljira RM, Johnson GC, Mills S, Maclean PS. Ibuprofen before exercise does not prevent cortical bone adaptations to training. Med Sci Sports Exerc. 2017;49(5):888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turner CH, Takano Y, Owan I, Murrell GA. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Phys. 1996;270(4 Pt 1):E634–9.

    CAS  Google Scholar 

  45. Li J, Duncan RL, Burr DB, Turner CH. L-type calcium channels mediate mechanically induced bone formation in vivo. J Bone Miner Res. 2002;17(10):1795–800.

    Article  CAS  PubMed  Google Scholar 

  46. Brown GN, Leong PL, Guo XE. T-Type voltage-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics. Bone. 2016;88:56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Summary

The mechanical regulation of bone tissue is a potent mechanism that fine-tunes skeletal size, structure, and strength to meet the demands of everyday use. A greater understanding of the intricacies of mechanical signaling in bone cells will facilitate the use of these inherent mechanisms (e.g., mechanical energy profile, saturation and recovery, biochemical signaling cascades) to be harnessed to improve bone properties, reduce fracture risk, and promote skeletal rehabilitation after injury. As progress is made on the molecular biology of bone cells—particularly osteocytes—it is likely that clues to enhancing the osteogenic effects of exercise will emerge. Each year, more and more compounds targeting a greater breadth of cellular products achieve approval for clinical use; perhaps a small fraction, or some already available, can be repurposed to synergize with exercise to maximize bone health. Only after a more complete understanding of bone cell mechanotransduction will those insights be possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Robling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robling, A.G. (2022). Bone Tissue and Its Mechanical Regulation of Remodeling. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics