Skip to main content

Assessment of Osteoporosis by QCT, HR-pQCT, and MRI

  • Chapter
  • First Online:
Osteoporotic Fracture and Systemic Skeletal Disorders

Abstract

Quantitative CT (QCT) is a method for evaluating bone mineral density (BMD) of the spine and proximal femur three-dimensionally by combining clinical CT with a bone density phantom and dedicated software. It is possible to measure BMD more accurately than with dual energy X-ray absorptiometry (DXA).

High-resolution peripheral quantitative CT (HR-pQCT) is a small-sized clinical CT dedicated to bone research, and its high resolution (voxel size 61 μm) enables analysis of the bone microstructure of living patients noninvasively. It shows osteoporotic changes at the bone microstructure level, such as decreased trabecular number, cortical thickness, and increased cortical porosity.

The present invited review was completed and submitted to the publisher on 01-Jul-20. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Link TM, Lang TF. Axial QCT: clinical applications and new developments. J Clin Densitom. 2014;17:438–48.

    Article  Google Scholar 

  2. Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263:3–17.

    Article  Google Scholar 

  3. Yu W, Glüer CC, Grampp S, Jergas M, Fuerst T, Wu CY, Lu Y, Fan B, Genant HK. Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int. 1995;5:433–9.

    Article  CAS  Google Scholar 

  4. Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK. A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int. 2001;68:74–82.

    Google Scholar 

  5. Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003;349:1207–15.

    Article  CAS  Google Scholar 

  6. Johannesdottir F, Turmezei T, Poole KES. Cortical bone assessed with clinical computed tomography at the proximal femur. J Bone Miner Res. 2014;29:771–83.

    Article  Google Scholar 

  7. Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, Pooler BD, Binkley N. Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res. 2011;26:2194–203.

    Article  Google Scholar 

  8. Lee SJ, Graffy PM, Zea RD, Ziemlewicz TJ, Pickhardt PJ. Future osteoporotic fracture risk related to lumbar vertebral trabecular attenuation measured at routine body CT. J Bone Miner Res. 2018;33:860–7.

    Article  CAS  Google Scholar 

  9. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20:2707–14.

    Article  Google Scholar 

  10. Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469:2179–93.

    Article  Google Scholar 

  11. Cheung AM, Adachi JD, Hanley DA, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian bone strength working group. Curr Osteoporos Rep. 2013;11:136–46.

    Article  Google Scholar 

  12. Nishiyama KK, Shane E. Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep. 2013;11:147–55.

    Article  Google Scholar 

  13. Burghardt AJ, Pialat J-B, Kazakia GJ, et al. Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J Bone Miner Res. 2013;28:524–36.

    Article  Google Scholar 

  14. Chiba K, Okazaki N, Kurogi A, Isobe Y, Yonekura A, Tomita M, Osaki M. Precision of Second-Generation High-Resolution Peripheral Quantitative Computed Tomography: Intra- and Intertester Reproducibilities and Factors Involved in the Reproducibility of Cortical Porosity. J Clin Densitom. 2018;21:295–302.

    Article  Google Scholar 

  15. Manske SL, Zhu Y, Sandino C, Boyd SK. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone. 2015;79:213–21.

    Article  CAS  Google Scholar 

  16. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. 2010;25:1468–1486.

    Google Scholar 

  17. Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int. 2020. https://doi.org/10.1007/s00198-020-05438-5

  18. Yokota K, Chiba K, Okazaki N, et al. Deterioration of bone microstructure by aging and menopause in Japanese healthy women: analysis by HR-pQCT. J Bone Miner Metab. 2020. https://doi.org/10.1007/s00774-020-01115-z

  19. Samelson EJ, Broe KE, Xu H, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the bone microarchitecture international consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 2019;7:34–43.

    Article  Google Scholar 

  20. Pialat J, Burghardt A, Sode M, Link T, Majumdar S. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone. 2012;50:111–8.

    Article  CAS  Google Scholar 

  21. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1997;12:111–8.

    Article  CAS  Google Scholar 

  22. Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging. 2002;13:323–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Chiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiba, K., Osaki, M., Ito, M. (2022). Assessment of Osteoporosis by QCT, HR-pQCT, and MRI. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics