Skip to main content

Die Design and Its Parameters for Grain Refinement of AA6XXX Series Through Equal Channel Angular Pressing

  • Conference paper
  • First Online:
Recent Advances in Industrial Production (ICEM 2020)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 731 Accesses

Abstract

Basic need of industry is to have a material with less weight and high strength. There are number of techniques to enhance mechanical properties and microstructure, among which equal channel angular pressing is found to be most effective technique. Equal Channel Angular Pressing (ECAP) is one of the famous grain refinement techniques of severe plastic deformation. For this process the die plays an important role. Factors like corner angle, channel angle, friction, number of passes, routes, back pressure and many more may affect the results of the process. In the current study all the parameters for the ECAP process influencing the mechanical properties for the AA6XXX series has been reviewed and analyzed for the better conclusion. Mainly ECAP passed materials have better mechanical, microstructure and physical properties. Two main alloying elements for the 6000 series are Si and Mg. AA6xxx is known for its ease in design, high strength to weight ratio, resistant to corrosion, plasticity and has various applications such as they are used in aircraft, automobile, defense, medical applications etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagherpour E, Pardis N, Reihanian M, Ebrahimi R (2019) An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications. Int J Adv Manuf Technol 100(5–8):1647–1694. https://doi.org/10.1007/s00170-018-2652-z

    Article  Google Scholar 

  2. Langdon TG (2011) Processing by severe plastic deformation: historical developments and current impact. Mater Sci Forum 667–669:9–14. www.scientific.net/MSF.667-669.9

  3. K. Mohan Agarwal, R. K. Tyagi, and A. Dixit, “Theoretical analysis of equal channel angular pressing method for grain refinement of metals and alloys,” Mater. Today Proc., vol. 25, no. xxxx, pp. 668–673, 2020, doi: https://doi.org/10.1016/j.matpr.2019.08.026.

  4. Wang S, Liang W, Wang Y, Bian L, Chen K (2009) A modified die for equal channel angular pressing. J Mater Process Technol 209(7):3182–3186. https://doi.org/10.1016/j.jmatprotec.2008.07.022

    Article  Google Scholar 

  5. Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197(2):157–164. https://doi.org/10.1016/0921-5093(95)09705-8

    Article  MathSciNet  Google Scholar 

  6. Langdon TG, Furukawa M, Nemoto M, Horita Z (2000) Using equal-channel angular pressing for refining grain size. Jom 52(4):30–33. https://doi.org/10.1007/s11837-000-0128-7

    Article  Google Scholar 

  7. K. Mohan Agarwal, R. K. Tyagi, V. K. Chaubey, and A. Dixit, “Comparison of different methods of Severe Plastic Deformation for grain refinement,” IOP Conf. Ser. Mater. Sci. Eng., vol. 691, no. 1, 2019, doi: https://doi.org/10.1088/1757-899X/691/1/012074.

  8. K. M. Agarwal, R. K. Tyagi, and A. Kapoor, “Deformation and strain analysis for grain refinement of materials processed through ECAP,” Mater. Today Proceeding, no. 1, 2019.

    Google Scholar 

  9. D. M. Jafarlou, E. Zalnezhad, A. S. Hamouda, G. Faraji, N. A. Bin Mardi, and M. A. Hassan Mohamed, “Evaluation of the Mechanical Properties of AA 6063 Processed by Severe Plastic Deformation,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 46, no. 5, pp. 2172–2184, 2015, doi: https://doi.org/10.1007/s11661-015-2806-7.

  10. Djavanroodi F, Ebrahimi M (2010) Effect of die parameters and material properties in ECAP with parallel channels. Mater Sci Eng A 527(29–30):7593–7599. https://doi.org/10.1016/j.msea.2010.08.022

    Article  Google Scholar 

  11. P. Thakur, P. Surve, and S. Sanas, “Advancement in Die Design of Equi-Channel Angular Pressing (ECAP) Process: A Review,” Int. J. Sci. Eng. Res., vol. 5, no. 12, pp. 93–96, 2014, [Online]. Available: http://www.ijser.org.

  12. Mathieu JP, Suwas S, Eberhardt A, Tóth LS, Moll P (2006) A new design for equal channel angular extrusion. J Mater Process Technol 173(1):29–33. https://doi.org/10.1016/j.jmatprotec.2005.11.007

    Article  Google Scholar 

  13. P. Ponce-Peña, E. López-Chipres, E. García-Sánchez, M. A. Escobedo-Bretado, B. X. Ochoa-Salazar, and M. A. González-Lozano, “Optimized design of an ECAP die using the finite element method for obtaining nanostructured materials,” Adv. Mater. Sci. Eng., vol. 2015, 2015, doi: https://doi.org/10.1155/2015/702548.

  14. A. Dayal, K. Hans Raj, and R. S. Sharma, “ECAP Die Design for Minimising Corner Gap,” Mater. Today Proc., vol. 5, no. 1, pp. 1686–1690, 2018, doi: https://doi.org/10.1016/j.matpr.2017.11.264.

  15. Djavanroodi F, Ebrahimi M (2010) Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater Sci Eng A 527(4–5):1230–1235. https://doi.org/10.1016/j.msea.2009.09.052

    Article  Google Scholar 

  16. Roven HJ, Nesboe H, Werenskiold JC, Seibert T (2005) Mechanical properties of aluminium alloys processed by SPD: Comparison of different alloy systems and possible product areas. Mater Sci Eng A 410–411:426–429. https://doi.org/10.1016/j.msea.2005.08.112

    Article  Google Scholar 

  17. Veveçka A, Cabibbo M, Langdon TG (2013) A characterization of microstructure and microhardness on longitudinal planes of an Al-Mg-Si alloy processed by ECAP. Mater Charact 84:126–133. https://doi.org/10.1016/j.matchar.2013.07.016

    Article  Google Scholar 

  18. Chang JY, Shan A (2003) Microstructure and mechanical properties of AlMgSi alloys after equal channel angular pressing at room temperature. Mater Sci Eng A 347(1–2):165–170. https://doi.org/10.1016/S0921-5093(02)00577-4

    Article  Google Scholar 

  19. M. P. Liu et al., “Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 12, pp. 3858–3865, 2014, doi: https://doi.org/10.1016/S1003-6326(14)63543-3.

  20. Z. Horita, T. Fujinami, M. Nemoto, and T. G. Langdon, “Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 31, no. 3, pp. 691–701, 2000, doi: https://doi.org/10.1007/s11661-000-0011-8.

  21. Sahai A, Raj KH, Gupta NK (2017) Mechanical Behaviour and Surface Profile Analysis of Al6061 alloy Processed by Equal Channel Angular Extrusion. Procedia Eng. 173:956–963. https://doi.org/10.1016/j.proeng.2016.12.155

    Article  Google Scholar 

  22. Chung CS, Kim JK, Kim HK, Kim WJ (2002) Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing. Mater Sci Eng A 337(1–2):39–44. https://doi.org/10.1016/S0921-5093(02)00010-2

    Article  Google Scholar 

  23. Xu C, Furukawa M, Horita Z, Langdon TG (2005) The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP. Mater Sci Eng A 398(1–2):66–76. https://doi.org/10.1016/j.msea.2005.03.083

    Article  Google Scholar 

  24. Chaudhury PK, Cherukuri B, Srinivasan R (2005) Scaling up of equal-channel angular pressing and its effect on mechanical properties, microstructure, and hot workability of AA 6061. Mater Sci Eng A 410–411:316–318. https://doi.org/10.1016/j.msea.2005.08.023

    Article  Google Scholar 

  25. Chang SY, Lee KS, Choi SH, Shin DH (2003) Effect of ECAP on microstructure and mechanical properties of a commercial 6061 Al alloy produced by powder metallurgy. J Alloys Compd 354(1–2):216–220. https://doi.org/10.1016/S0925-8388(03)00008-2

    Article  Google Scholar 

  26. Majzoobi GH, Nemati J, Pipelzadeh MK, Sulaiman S (2016) Characterization of mechanical properties of Al-6063 deformed by ECAE. Int J Adv Manuf Technol 84(1–4):663–672. https://doi.org/10.1007/s00170-015-7709-7

    Article  Google Scholar 

  27. El-Danaf EA (2011) Mechanical properties, microstructure and texture of single pass equal channel angular pressed 1050, 5083, 6082 and 7010 aluminum alloys with different dies. Mater Des 32(7):3838–3853. https://doi.org/10.1016/j.matdes.2011.03.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kapoor, A., Gupta, B., Singhal, A., Agarwal, K.M. (2022). Die Design and Its Parameters for Grain Refinement of AA6XXX Series Through Equal Channel Angular Pressing. In: Agrawal, R., Jain, J.K., Yadav, V.S., Manupati, V.K., Varela, L. (eds) Recent Advances in Industrial Production. ICEM 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5281-3_32

Download citation

Publish with us

Policies and ethics