Skip to main content

Differential Influence of Diabetes on Stroke Subtype

  • Chapter
  • First Online:
  • 526 Accesses

Part of the book series: Stroke Revisited ((STROREV))

Abstract

Stroke is categorized into ischemic and hemorrhagic stroke; the ischemic stroke is further divided into an atherosclerotic stroke, small vessel occlusion, and cardioembolism, by their presumed etiology. Diabetes is one of the potent atherogenic risk factors and increases the risk of extracranial and intracranial atherosclerotic stroke. Cerebral small vessel occlusion from the occlusion of a cerebral perforating small artery or arterial has a modest association with diabetes in the initiation of endothelial injuries. Ischemic strokes from cardioembolization or hemorrhagic stroke have been reported to increase in diabetic individuals. Still, diabetes is likely to contribute indirectly to those strokes through the development of atherosclerosis in other vascular beds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51–60.

    Article  CAS  PubMed  Google Scholar 

  2. Ay H, Furie KL, Singhal A, Smith WS, Sorensen AG, Koroshetz WJ. An evidence-based causative classification system for acute ischemic stroke. Ann Neurol. 2005;58(5):688–97.

    Article  PubMed  Google Scholar 

  3. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke. 1993;24(1):35–41.

    Article  PubMed  Google Scholar 

  4. Adams HP Jr, Biller J. Classification of subtypes of ischemic stroke: history of the trial of org 10172 in acute stroke treatment classification. Stroke. 2015;46(5):e114–7.

    Article  PubMed  Google Scholar 

  5. Ko Y, Lee S, Chung JW, Han MK, Park JM, Kang K, et al. MRI-based algorithm for acute ischemic stroke subtype classification. J Stroke. 2014;16(3):161–72.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA, Wolf ME, Hennerici MG. The ASCOD phenotyping of ischemic stroke (updated ASCO phenotyping). Cerebrovasc Dis. 2013;36(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  7. Mehndiratta P, Chapman Smith S, Worrall BB. Etiologic stroke subtypes: updated definition and efficient workup strategies. Curr Treat Options Cardiovasc Med. 2015;17(1):357.

    Article  PubMed  Google Scholar 

  8. White H, Albala BB, Wang CL, Elkind MSV, Rundek T, Wright CB, et al. Ischemic stroke subtype incidence among whites, blacks, and Hispanics - the northern Manhattan study. Circulation. 2005;111(10):1327–31.

    Article  PubMed  Google Scholar 

  9. Petty GW, Brown RD Jr, Whisnant JP, Sicks JD, O'Fallon WM, Wiebers DO. Survival and recurrence after first cerebral infarction: a population-based study in Rochester, Minnesota, 1975 through 1989. Neurology. 1998;50(1):208–16.

    Article  CAS  PubMed  Google Scholar 

  10. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan RC, Tirschwell DL, Longstreth WT Jr, Manolio TA, Heckbert SR, Lefkowitz D, et al. Vascular events, mortality, and preventive therapy following ischemic stroke in the elderly. Neurology. 2005;65(6):835–42.

    Article  CAS  PubMed  Google Scholar 

  12. Chambless LE, Folsom AR, Davis V, Sharrett R, Heiss G, Sorlie P, et al. Risk factors for progression of common carotid atherosclerosis: the atherosclerosis risk in communities study, 1987-1998. Am J Epidemiol. 2002;155(1):38–47.

    Article  PubMed  Google Scholar 

  13. Amarenco P, Hobeanu C, Labreuche J, Charles H, Giroud M, Meseguer E, et al. Carotid atherosclerosis evolution when targeting a low-density lipoprotein cholesterol concentration <70 mg/dL after an ischemic stroke of atherosclerotic origin. Circulation. 2020;142(8):748–57.

    Article  CAS  PubMed  Google Scholar 

  14. Tsivgoulis G, Vemmos K, Papamichael C, Spengos K, Manios E, Stamatelopoulos K, et al. Common carotid artery intima-media thickness and the risk of stroke recurrence. Stroke. 2006;37(7):1913–6.

    Article  PubMed  Google Scholar 

  15. O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  16. Barrett KM, Brott TG. Stroke caused by extracranial disease. Circ Res. 2017;120(3):496–501.

    Article  CAS  PubMed  Google Scholar 

  17. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci. 2008;11(3):309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klein JP, Waxman SG. The brain in diabetes: molecular changes in neurons and their implications for end-organ damage. Lancet Neurol. 2003;2(9):548–54.

    Article  CAS  PubMed  Google Scholar 

  19. Launer LJ. Diabetes: vascular or neurodegenerative: an epidemiologic perspective. Stroke. 2009;40(3 Suppl):S53–5.

    PubMed  Google Scholar 

  20. Arenillas JF. Intracranial atherosclerosis: current concepts. Stroke. 2011;42(1 Suppl):S20–3.

    PubMed  Google Scholar 

  21. Gorelick P, Wong KS, Liu L. Epidemiology. Front Neurol Neurosci. 2016;40:34–46.

    Article  PubMed  Google Scholar 

  22. Holmstedt CA, Turan TN, Chimowitz MI. Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol. 2013;12(11):1106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bang OY. Intracranial atherosclerosis: current understanding and perspectives. J Stroke. 2014;16(1):27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qureshi AI, Caplan LR. Intracranial atherosclerosis. Lancet. 2014;383(9921):984–98.

    Article  PubMed  Google Scholar 

  25. Sacco RL, Kargman DE, Zamanillo MC. Race-ethnic differences in stroke risk factors among hospitalized patients with cerebral infarction: the northern Manhattan stroke study. Neurology. 1995;45(4):659–63.

    Article  CAS  PubMed  Google Scholar 

  26. Wong LK. Global burden of intracranial atherosclerosis. Int J Stroke. 2006;1(3):158–9.

    Article  PubMed  Google Scholar 

  27. Wong KS, Ng PW, Tang A, Liu R, Yeung V, Tomlinson B. Prevalence of asymptomatic intracranial atherosclerosis in high-risk patients. Neurology. 2007;68(23):2035–8.

    Article  CAS  PubMed  Google Scholar 

  28. Nah HW, Kang DW, Kwon SU, Kim JS. Diversity of single small subcortical infarctions according to infarct location and parent artery disease: analysis of indicators for small vessel disease and atherosclerosis. Stroke. 2010;41(12):2822–7.

    Article  PubMed  Google Scholar 

  29. Bang OY, Chung JW, Kim DH, Won HH, Yeon JY, Ki CS, et al. Moyamoya disease and spectrums of RNF213 vasculopathy. Transl Stroke Res. 2020;11(4):580–9.

    Article  PubMed  Google Scholar 

  30. Velican C. Studies on the age-related changes occurring in human cerebral arteries. Atherosclerosis. 1970;11(3):509–29.

    Article  CAS  PubMed  Google Scholar 

  31. Bevan JA. Sites of transition between functional systemic and cerebral arteries of rabbits occur at embryological junctional sites. Science. 1979;204(4393):635–7.

    Article  CAS  PubMed  Google Scholar 

  32. Moossy J. Morphology, sites and epidemiology of cerebral atherosclerosis. Res Publ Assoc Res Nerv Ment Dis. 1966;41:1–22.

    CAS  PubMed  Google Scholar 

  33. Portanova A, Hakakian N, Mikulis DJ, Virmani R, Abdalla WM, Wasserman BA. Intracranial vasa vasorum: insights and implications for imaging. Radiology. 2013;267(3):667–79.

    Article  PubMed  Google Scholar 

  34. Aydin F. Do human intracranial arteries lack vasa vasorum? A comparative immunohistochemical study of intracranial and systemic arteries. Acta Neuropathol. 1998;96(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ritz K, Denswil NP, Stam OC, van Lieshout JJ, Daemen MJ. Cause and mechanisms of intracranial atherosclerosis. Circulation. 2014;130(16):1407–14.

    Article  PubMed  Google Scholar 

  36. Fujiyoshi A, Suri MFK, Alonso A, Selvin E, Chu H, Guallar E, et al. Hyperglycemia, duration of diabetes, and intracranial atherosclerotic stenosis by magnetic resonance angiography: the ARIC-NCS study. J Diabetes Complicat. 2020;34(9):107605.

    Article  Google Scholar 

  37. Sattar N. Revisiting the links between glycaemia, diabetes and cardiovascular disease. Diabetologia. 2013;56(4):686–95.

    Article  CAS  PubMed  Google Scholar 

  38. van Veluw SJ, Shih AY, Smith EE, Chen C, Schneider JA, Wardlaw JM, et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 2017;16(9):730–40.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684–96.

    Article  PubMed  Google Scholar 

  40. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–38.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Veluw SJv, Shih AY, Smith EE, Chen C, Schneider JA, Wardlaw JM, et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 2017;16(9):730–40.

    Article  Google Scholar 

  42. Wardlaw JM, Makin SJ, Hernandez MCV, Armitage PA, Heye AK, Chappell FM, et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimers Dement. 2017;13(6):634–43.

    Article  PubMed Central  Google Scholar 

  43. Vinters HV, Zarow C, Borys E, Whitman JD, Tung S, Ellis WG, et al. Review: vascular dementia: clinicopathologic and genetic considerations. Neuropathol Appl Neurobiol. 2018;44(3):247–66.

    Article  CAS  PubMed  Google Scholar 

  44. Arvanitakis Z, Capuano AW, Leurgans SE, Buchman AS, Bennett DA, Schneider JA. The relationship of cerebral vessel pathology to brain microinfarcts. Brain Pathol. 2017;27(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  45. N-o P, Dodge HH, Lahna D, Boespflug EL, Kaye JA, Rooney WD, et al. Baseline NAWM structural integrity and CBF predict periventricular WMH expansion over time. Neurology. 2018;90(24):e2119–e26.

    Article  Google Scholar 

  46. Duering M, Csanadi E, Gesierich B, Jouvent E, Herve D, Seiler S, et al. Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease. Brain. 2013;136(9):2717–26.

    Article  PubMed  Google Scholar 

  47. Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM, Scheltens P, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82(2):126–35.

    Article  PubMed  Google Scholar 

  48. Caplan LR. Lacunar infarction and small vessel disease: pathology and pathophysiology. J Stroke. 2015;17(1):2–6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tajiri N, Dailey T, Metcalf C, Mosley YI, Lau T, Staples M, et al. In vivo animal stroke models: a rationale for rodent and non-human primate models. Transl Stroke Res. 2013;4(3):308–21.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ayata C. CADASIL: experimental insights from animal models. Stroke. 2010;41(10 Suppl):S129–34.

    PubMed  PubMed Central  Google Scholar 

  51. Kim BJ, Lee SH, Kang BS, Yoon BW, Roh JK. Diabetes increases large artery diseases, but not small artery diseases in the brain. J Neurol. 2008;255(8):1176–81.

    Article  PubMed  Google Scholar 

  52. Park JH, Heo SH, Lee MH, Kwon HS, Kwon SU, Lee JS, et al. White matter hyperintensities and recurrent stroke risk in patients with stroke with small-vessel disease. Eur J Neurol. 2019;26(6):911–8.

    Article  PubMed  Google Scholar 

  53. Delgado-Rodriguez M, Llorca J. Bias. J Epidemiol Community Health. 2004;58(8):635–41.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Umemura T, Kawamura T, Hotta N. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: a possible link between cerebral and retinal microvascular abnormalities. J Diabetes Investig. 2017;8(2):134–48.

    Article  CAS  PubMed  Google Scholar 

  55. Liu J, Rutten-Jacobs L, Liu M, Markus HS, Traylor M. Causal impact of type 2 diabetes mellitus on cerebral small vessel disease: a Mendelian randomization analysis. Stroke. 2018;49(6):1325–31.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sanahuja J, Alonso N, Diez J, Ortega E, Rubinat E, Traveset A, et al. Increased burden of cerebral small vessel disease in patients with type 2 diabetes and retinopathy. Diabetes Care. 2016;39(9):1614–20.

    Article  PubMed  Google Scholar 

  57. Lespagnol E, Dauchet L, Pawlak-Chaouch M, Balestra C, Berthoin S, Feelisch M, et al. Early endothelial dysfunction in type 1 diabetes is accompanied by an impairment of vascular smooth muscle function: a meta-analysis. Front Endocrinol. 2020;11:203.

    Article  Google Scholar 

  58. Bogiatzi C, Hackam DG, McLeod AI, Spence JD. Secular trends in ischemic stroke subtypes and stroke risk factors. Stroke. 2018;45(11):3208–13.

    Article  CAS  Google Scholar 

  59. Yiin GS, Howard DP, Paul NL, Li L, Luengo-Fernandez R, Bull LM, et al. Age-specific incidence, outcome, cost, and projected future burden of atrial fibrillation-related embolic vascular events: a population-based study. Circulation. 2014;130(15):1236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kamel H, Healey JS. Cardioembolic stroke. Circ Res. 2017;120(3):514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saver JL, Mattle HP, Thaler D. Patent foramen ovale closure versus medical therapy for cryptogenic ischemic stroke: a topical review. Stroke. 2018;49(6):1541–8.

    Article  PubMed  Google Scholar 

  62. Ntaios G, Papavasileiou V, Sagris D, Makaritsis K, Vemmos K, Steiner T, et al. Closure of patent foramen ovale versus medical therapy in patients with cryptogenic stroke or transient ischemic attack: updated systematic review and meta-analysis. Stroke. 2018;49(2):412–8.

    Article  PubMed  Google Scholar 

  63. Pretorius L, Thomson GJA, Adams RCM, Nell TA, Laubscher WA, Pretorius E. Platelet activity and hypercoagulation in type 2 diabetes. Cardiovasc Diabetol. 2018;17(1):141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carr ME. Diabetes mellitus: a hypercoagulable state. J Diabetes Complicat. 2001;15(1):44–54.

    Article  CAS  Google Scholar 

  65. Pomero F, Minno MNDD, Fenoglio L, Gianni M, Ageno W, Dentali F. Is diabetes a hypercoagulable state? A critical appraisal. Acta Diabetol. 2015;52(6):1007–16.

    Article  CAS  PubMed  Google Scholar 

  66. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.

    Article  PubMed  Google Scholar 

  67. Peters SAE, Huxley RR, Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775 385 individuals and 12 539 strokes. Lancet. 2014;383(9933):1973–80.

    Article  PubMed  Google Scholar 

  68. Saliba W, Barnett-Griness O, Gronich N, Molad J, Naftali J, Rennert G, et al. Association of diabetes and glycated hemoglobin with the risk of intracerebral hemorrhage: a population-based cohort study. Diabetes Care. 2019;42(4):682–8.

    Article  CAS  PubMed  Google Scholar 

  69. Jin C, Li G, Rexrode KM, Gurol ME, Yuan X, Hui Y, et al. Prospective study of fasting blood glucose and intracerebral hemorrhagic risk. Stroke. 2018;49(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  70. Svensson EH, Abul-Kasim K, Engstrom G, Soderholm M. Risk factors for intracerebral haemorrhage - results from a prospective population-based study. Eur Stroke J. 2020;5(3):278–85.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Boulanger M, Poon MT, Wild SH, Al-Shahi SR. Association between diabetes mellitus and the occurrence and outcome of intracerebral hemorrhage. Neurology. 2016;87(9):870–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Joon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, B.J. (2021). Differential Influence of Diabetes on Stroke Subtype. In: Lee, SH., Kang, DW. (eds) Stroke Revisited: Diabetes in Stroke. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-16-5123-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5123-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5122-9

  • Online ISBN: 978-981-16-5123-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics